- Home
- A-Z Publications
- Publications
Publications
Prediction of the Lift-off, Blow-out and Blow-off Stability Limits of Pure Hydrogen and Hydrogen and Hydrocarbon Mixture Jet Flames
Sep 2007
Publication
The paper presented experimental studies of the liftoff and blowout stability of pure hydrogen hydrogen/propane and hydrogen/methane jet flam es using a 2 mm burner. Carbon dioxide and Argon gas were also used in the study for the comparison with hydrocarbon fuel. Comparisons of the stability of H 2/C3H8 H 2/CH4 H 2/Ar and H 2/CO2 flames showed that H 2/C3H8 produced the highest liftoff height and H 2/CH4 required highest liftoff and blowoff velocities. The non-dimensional analysis of liftoff height approach was used to correlate liftoff data of H 2 H2-C3H8 H 2-CO2 C 3H8 and H2-Ar jet flames tested in the 2 mm burner. The suitability of extending the empirical correlations based on hydrocarbon flames to both hydrogen and hydrogen/ hydrocarbon flames was examined.
High Pressure Hydrogen Jets in the Presence of a Surface
Sep 2009
Publication
The effect of surfaces on the extent of high pressure vertical and horizontal unignited jets is studied using CFD numerical simulations performed with FLACS Hydrogen and Phoenics. For a constant flow rate release of hydrogen from a 284 bar storage unit through a 8.5 mm orifice located 1 meter from the ground the maximum extent of the flammable cloud is determined as a function of time and compared to a free vertical hydrogen jet under identical release conditions. The results are compared to methane numerical simulations and to the predictions of the Birch correlations for the size of the flammable cloud. We find that the maximum extent of the flammable clouds of free jets obtained using CFD numerical simulations for both hydrogen and methane are in agreement with the Birch predictions. For hydrogen horizontal free jets there is strong buoyancy effect observed towards the end of the flammable cloud thus noticeably reducing its centreline extent. For methane horizontal free jets this effect is not observed. For methane the presence of the ground results in a pronounced increase in the extent of the flammable cloud compared to a free jet. The effects of a surface on vertical jets are also studied.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
Hydrogen Risk Assessment in Sao Paulo State, Brazil
Sep 2011
Publication
Sao Paulo State Environmental Protection Agency CETESB Brazil adopts a so called Reference Distance (RD) from hazardous substances storage facilities to populated places as a decision making tool for the application of a simplified or a full Risk Analysis (RA). As for hydrogen RD was set up based on instantaneous release scenarios where consequences reaching off-site population were estimated for delayed ignition ending up in vapor cloud explosion (VCE) with a 0.1 bar blast wave overpressure as a chosen endpoint corresponding to a 1%2of death probability range. Procedures for RD evaluation and further adoption by CETESB are presented in this paper.
Risk Analysis of the Storage Unit in Hydrogen Refuelling Station
Sep 2007
Publication
Nowadays consumer demand for local and global environmental quality in terms of air pollution and in particular greenhouse gas emissions reduction may help to drive to the introduction of zero emission vehicles. At this regard the hydrogen technology appears to have future market valuablepotential. On the other hand the use of hydrogen vehicles which requires appropriate infrastructures for production storage and refuelling stages presents a lot of safety problems due to the peculiar chemicophysical hydrogen characteristics. Therefore safe at the most practices are essential for the successful proliferation of hydrogen vehicles. Indeed to avoid limit hazards it is necessary to implement practices that if early adopted in the development of a fuelling station project can allow very low environmental impact safety being incorporated in the project itself. Such practices generally consist in the integrated use of Failure Mode and Effect Analysis (FMEA) HAZard OPerability (HAZOP) and Fault Tree Analysis (FTA) which constitute well established standards in reliability engineering. At this regard however a drawback is the lack of experience and the scarcity of the relevant data collection. In this work we present the results obtained by the integrated use of FMEA HAZOP and FTA analyses relevant for the moment the high-pressure storage equipment in a hydrogen gas refuelling station. The study that is intended to obtain elements for improving safety of the system can constitute a basis for further more refined works.
H21- Public Perceptions of Converting the Gas Network to Hydrogen - Social Sciences Sudy
Jun 2020
Publication
The next decade will see fundamental changes in how people heat their homes. The global energy system is changing in response to the need to transition away from fossil-based generation towards more environmentally sustainable alternatives.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen offers one such alternative but currently there is limited understanding of public perceptions of hydrogen the information that people need in order to make an informed choice about using hydrogen in their homes and how misunderstandings could present barriers to the uptake of hydrogen technology. This is crucial to ensure the success of future policy and investment. The H21 concept is to convert the UK gas distribution network to 100% hydrogen over time thereby decarbonising heat and supporting decarbonisation of electric large industrials and transport. This would be achieved using the existing UK gas grid network and technology available across the world today whilst maintaining the benefits of gas and the gas networks in the energy mix for the long-term future. Additionally this would maintain choice of energy for customers i.e. they would be able to use both gas and electricity. The H21 project is being delivered by the UK gas distribution networks Northern Gas Networks Cadent Wales & West Utilities and SGN. As part of the H21 project Leeds Beckett University has been working with Northern Gas Networks to gain insight into public perceptions of hydrogen as a domestic fuel. Using innovative social science methods the research team has explored for the first time public perceptions of moving the UK domestic fuel supply to 100% hydrogen. We identify what people think and feel about a potential conversion the concerns and questions that they have and how to address them clearly. The findings presented in this report will ensure that issues around the current perception of hydrogen are identified and addressed prior to any large-scale technology rollout.
The first stage of the project comprised a series of discovery interviews which explored how to talk to people about hydrogen and the H21 project. We interviewed 12 participants selected to ensure we included people with a range of experiences and domestic settings for example people who live in urban and rural areas those who live alone those who live with children or a partner those who live in their own home and those who rent. Most participants had given very little thought about where their gas and electric comes from and other than switching supplier to get a better tariff had very little interest in it. They had not previously considered their domestic heating as a source of carbon emissions and were surprised that there may be a need in the future to change their gas supply. From the discovery interviews we identified several key areas to explore in the next stage of the work:
- Beliefs about the environment
- Beliefs about inconvenience and cost
- Beliefs about safety
- Beliefs about the economic impact
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Using Solar Power Regulation to Electrochemically Capture Carbon Dioxide: Process Integration and Case Studies
Mar 2022
Publication
This work focuses on the use of solar photovoltaic energy to capture carbon dioxide by means of a combined electrolyzer–absorption system and compares operating results obtained in two cases studies (operation during one clear and one cloudy day in March) in which real integration of solar photovoltaics electrolyzer and absorption technologies is made at the bench-scale. The system is a part of a larger process (so-called EDEN⃝R Electrochemically-based Decarbonizing ENergy) which aims to regulate solar photovoltaic energy using a reversible chloralkaline electrochemical cell. Results demonstrate the feasibility of the sequestering technology which can produce chlorine and hydrogen but also the sequestration of CO2 and its transformation into a mixture of sodium chloride bicarbonate and carbonate useful as raw matter. Efficiencies over 70% for chlorine 60% for hydrogen and 90% for sodium hydroxide were obtained. The sequestration of carbon dioxide reached 24.4 mmol CO2/Ah with an average use of 1.6 mmol NaOH/mmol CO2. Important differences are found between the performance of the system in a clear and a cloudy day which point out the necessity of regulating the dosing of the electrochemically produced sodium hydroxide to optimize the sequestration of CO2.
H21- Strategic Modelling Major Urban Centres
Aug 2019
Publication
This report summarises the results of an independent audit carried out by DNV GL on the model conversions from natural gas to hydrogen for the models being used as a benchmark for the wider UK proposed hydrogen conversion of the natural gas network. The detailed model conversion process was derived from the H21 modelling meetings and the detailed notes were put together by NGN as a basic guide which has been included in Appendix A and is summarised as follows:
- Current 5 year planning model is updated and then used to generate a Replacement Expenditure (REPEX) natural gas model which would remove metallic pipes from the networks by insertion where possible
- Merging models together to form larger networks where required
- Preparation for conversion to hydrogen which would include the District Governor (DG) capacity increases to run the additional model flows
- Conversion of the models to hydrogen by changing demands to thermal and the gas characteristics to those of hydrogen
- Applying reinforcement to remove pressure failures.
Evaluation of Optical and Spectroscopic Experiments of Hydrogen Jet Fires
Sep 2009
Publication
This paper reports results of evaluating joint experiments under the work programme of Hysafe occurring at HSL who provided the test facilities and basic measurements to generate jet fires whereas Fraunhofer ICT applied their equipment to visualise the jet fires by fast video techniques IR-cameras and fast scanning spectroscopy in the NIR/IR spectral region. Another paper describes the experimental set up and main findings of flame structures and propagation resolved in time. The spatial distribution of species and temperate as well as their time history and fluctuations give a basis of the evaluation of effects caused by such jet fires. Fraunhofer ICT applied their comprehensive evaluation codes to model the radiation emission from 3-atomic species in the flame especially H2O in the Infrared spectral range. The temperatures of the hydrogen flame were about 2000 K as found by least squares fit of the measured molecular bands by the codes. In comparison with video and thermo camera frames these might enable to estimate on a qualitative level species distribution and air entrainment and temperatures to identify hot and reactive zones. The risk analysis could use this information to estimate heat transfer and the areas of risk to direct inflammation from the jet fires by semi-empirical approaches.
H2FC SUPERGEN- Delivering Negative Emissions from Biomass derived Hydrogen
Apr 2020
Publication
Bioenergy with carbon capture and storage (BECCS) removes carbon dioxide (CO2) from the atmosphere i.e. negative CO2 emissions. It will likely have an important role in the transition to a net-zero economy by offsetting hard-to-abate greenhouse gas emissions. However there are concerns about the sustainability of large scale BECCS deployment using bioenergy from predominantly primary biomass sources (i.e. dedicated energy crops). Secondary sources of biomass (e.g. waste biomass municipal solid wastes forest/agricultural residues) are potentially an economical and sustainable alternative resource. Furthermore supplementing primary biomass demand with secondary sources could enable the supply of biomass from solely indigenous sources (i.e. from the UK) which could provide economic advantages in a growing global bio-economy.<br/><br/>There is also a growing interest in biomass-derived hydrogen production with CCS (BHCCS) which generates hydrogen and removes CO2 from the atmosphere. Hydrogen could help decarbonise fuel-dependent sectors such as heat industry or transportation. The aim of this study was to determine whether BHCCS could possibly deliver net negative CO2 emissions making comparisons against the other BECCS technologies.
Laser-Induced Generation of Hydrogen in Water by Using Graphene Target
Jan 2022
Publication
A new method of hydrogen generation from water by irradiation with CW infrared laser diode of graphene scaffold immersed in solution is reported. Hydrogen production was extremely efficient upon admixing NaCl into water. The efficiency of hydrogen production increased exponentially with laser power. It was shown that hydrogen production was highly efficient when the intense white light emission induced by laser irradiation of graphene foam was occurring. The mechanism of laser-induced dissociation of water is discussed. It was found that hydrogen production was extremely high at about 80% and assisted by a small emission of O2 CO and CO2 gases.
Computational Modelling of Pressure Effects from Hydrogen Explosions
Sep 2007
Publication
The statement of the problem and algorithm of computational modelling of the processes of formation of the hydrogen-air mixture in the atmosphere its explosion (taking into account chemical interaction) and dispersion of the combustion materials in the open space with complex relief are presented. The finite-difference scheme was developed for the case of the three-dimensional system of gas dynamics equations complemented by the mass conservation laws of the gas admixture and combustion materials. The algorithm of the computation of thermal and physical parameters of the gas mixture appearing as a result of the instantaneous explosion taking into account chemical interaction was developed. The algorithm of computational solution of the difference scheme obtained on the basis of Godunov method was considered. The verification of the mathematical model showed its acceptable accuracy in comparison with known experimental data. It allows using the developed model for the modelling of pressure and thermal consequences of possible failures at the industrial enterprises which store and use hydrogen. The computational modelling of an explosion of the gas hydrogen cloud appearing as a result of instantaneous destruction of high pressure containers at the fuelling station was carried out. The analysis of different ways of protection of the surrounding buildings from destructive effects of the shock wave was conducted. The recommendations considering the choice of dimensions of the protection area around the fuelling station were worked out.
Numerical Studies of Dispersion and Flammable Volume of Hydrogen in Enclosures
Sep 2007
Publication
Hydrogen dispersion in an enclosure is numerically studied using simple analytical solutions and a large-eddy-simulation based CFD code. In simple calculations the interface height and temperature rise of the upper layer are obtained based on mass and energy conservation and the centreline hydrogen volume fraction is derived from similarity solutions of buoyant jets. The calculated centreline hydrogen volume fraction using the two methods agree with each other; however discrepancies are found for the calculated total flammable volume as a result of the inability of simple calculations in taking into account local mixing and diffusion. The CFD model in contrast is found to be capable of correctly reproducing the diffusion and stratification phenomena during the mixing stage.
CFD Study of the Unignited and Ignited Hydrogen Releases from TRPD Under a Fuel Cell Car
Oct 2015
Publication
This paper describes a CFD study of a scenario involving the vertical downward release of hydrogen from a thermally-activated pressure relief device (TPRD) under a fuel cell car. The volumetric source model is applied to simulate hydrogen release dynamics during the tank blowdown process. Simulations are conducted for both unignited and ignited releases from onboard storage at 35 MPa and 70 MPa with TPRD orifice 4.2 mm. Results show that after TPRD opening the hazards associated with the release of hydrogen lasts less than two minutes and the most hazardous timeframe occurs within ten seconds of the initiation of the release. The deterministic separation distances for unignited releases are longer than those for ignited releases indicating that the separation distances are dominated by delayed ignition events rather than immediate ignition events. The deterministic separation distances for both unignited and ignited hydrogen downward releases under the car are significantly shorter than those of free jets. To ensure the safety of people a deterministic separation distance of at least 10 m for 35 MPa releases is required. This distance should be increased to 12 m for the 70 MPa release case. To ensure that the concentration of hydrogen is always less than 4% at the location of the air intake of buildings the deterministic separation distance should be at least 11 m for 35 MPa releases and 13 m for 70 MPa releases.
LES Modelling Of Hydrogen Release and Accumulation Within a Non-Ventilated Ambient Pressure Garage Using The Adrea-HF CFD Code
Sep 2011
Publication
Computational Fluid Dynamics (CFD) has already proven to be a powerful tool to study the hydrogen dispersion and help in the hydrogen safety assessment. In this work the Large Eddy Simulation (LES) recently incorporated into the ADREA-HF CFD code is evaluated against the INERIS-6C experiment of hydrogen leakage in a supposed garage which provides detailed experimental measurements visualization of the flow and availability of previous CFD results from various institutions (HySafe SBEP-V3). The short-term evolution of the hydrogen concentrations in this confined space is examined and comparison with experimental data is provided along with comments about the ability of LES to capture the transient phenomena occurring during hydrogen dispersion. The influence of the value of the Smagorinsky constant on the resolved and on the unresolved turbulence is also presented. Furthermore the renormalization group (RNG) LES methodology is also tested and its behaviour in both highly-turbulent and less-turbulent parts of the flow is highlighted.
Validated Equivalent Source Model for an Under-expanded Hydrogen Jet
Oct 2015
Publication
As hydrogen fuel cell vehicles become more widely adopted by consumers the demand for refuelling stations increases. Most vehicles require high-pressure (either 350 or 700 bar) hydrogen and therefore the refuelling infrastructure must support these pressures. Fast running reduced order physical models of releases from high-pressure sources are needed so that quantitative risk assessment can guide the safety certification of these stations. A release from a high pressure source is choked at the release point forming the complex shock structures of an under-expanded jet before achieving a characteristic Gaussian pro le for velocity density mass fraction etc. downstream. Rather than using significant computational resources to resolve the shock structure an equivalent source model can be used to quickly and accurately describe the ow in terms of velocity diameter and thermodynamic state after the shock structure. In this work we present correlations for the equivalent boundary conditions of a subsonic jet as a high-pressure jet downstream of the shock structure. Schlieren images of under-expanded jets are used to show that the geometrical structure of under-expanded jets scale with the square root of the static to ambient pressure ratio. Correlations for an equivalent source model are given and these parameters are also found to scale with square root of the pressure ratio. We present our model as well as planar laser Rayleigh scattering validation data for static pressures up to 60 bar.
Study of a Post-fire Verification Method for the Activation Status of Hydrogen Cylinder Pressure Relief Devices
Oct 2015
Publication
To safely remove from its fire accident site a hydrogen fuel cell vehicle equipped with a carbon fiber reinforced plastic composite cylinder for compressed hydrogen (CFRP cylinder) and to safely keep the burnt vehicle in a storage facility it is necessary to verify whether the thermally-activated pressure relief device (TPRD) of the CFRP cylinder has already been activated releasing the hydrogen gas from the cylinder. To develop a simple post-fire verification method on TPRD activation the present study was conducted on the using hydrogen densitometer and Type III and Type IV CFRP cylinders having different linings. As the results TPRD activation status can be determined by measuring hydrogen concentrations with a catalytic combustion hydrogen densitometer at the cylinder's TPRD gas release port.
Characteristics of Hydrogen Leakage Sound from a Fuel-cell Vehicle by Hearing
Oct 2015
Publication
Fuel-cell vehicle run on hydrogen is known that it has better energy efficiency than existing gasoline cars. The vehicles are designed so that hydrogen leaks from the tank are stopped automatically upon detection of hydrogen leakage or detection of impact in a collision. However we investigated the characteristics of hydrogen leakage sound from a hydrogen-leaking vehicle and the threshold of discrimination of hydrogen leakage from noise at a crossing with much traffic to examine a method to rescue people safely depending on the sense of hearing in the event of a continuous hydrogen leak. Here in the discrimination threshold test we conducted the test by using helium which is alternative gas of hydrogen leakage sound. We clarified that hydrogen leakage sound from vehicles has directivity height dependence and distance dependence. Furthermore we confirmed the threshold flow rate for distinguishing hydrogen gas when hydrogen leakage is heard at a distance of 5–10 m from the center of the hydrogen leaking vehicle in a 74 dB traffic noise environment.
Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers
Apr 2022
Publication
Hydrogen energy is a clean zero-carbon long-term storage flexible and efficient secondary energy. Accelerating the development of the hydrogen energy industry is a strategic choice to cope with global climate change achieve the goal of carbon neutrality and realize high-quality economic and social development. This study aimed to analyze the economic impact of introducing valueadded services to the hydrogen energy market on hydrogen energy suppliers. Considering the network effect of value-added services this study used a two-stage game model to quantitatively analyze the revenue of hydrogen energy suppliers under different scenarios and provided the optimal decision. The results revealed that (1) the revenue of a hydrogen energy supplier increases only if the intrinsic value of value-added services exceeds a certain threshold; (2) the revenue of hydrogen energy suppliers is influenced by a combination of four key factors: the intrinsic value of value-added services network effects user scale and the sales strategies of rivals; (3) the model developed in this paper can provide optimal decisions for hydrogen energy suppliers to improve their economic efficiency and bring more economic investment to hydrogen energy market in the future.
Influence of Initial Pressure in Hydrogen/Air flame Acceleration During Severe Accident in Nuclear Power Plant
Sep 2017
Publication
Flame acceleration (FA) and explosion of hydrogen/air mixtures remain key issues for severe accident management in nuclear power plants. Empirical criteria were developed in the early 2000s by Dorofeev and colleagues providing effective tools to discern possible FA or DDT (Deflagration-to-Detonation Transition) scenarios. A large experimental database composed mainly of middle-scale experiments in obstacle-laden ducts at atmospheric pressure condition has been used to validate these criteria. However during a severe accident the high release rate of steam and non-condensable gases into the containment can result in pressure increase up to 5 bar abs. In the present work the influence of the unburnt gas initial pressure on flame propagation mechanisms was experimentally investigated. Premixed hydrogen/air mixtures with hydrogen concentration close to 11% and 15% were considered. From the literature we know that these flames are supposed to accelerate up to Chapman-Jouguet deflagration velocity in long obstacle-laden tubes at initial atmospheric conditions. Varying the pressure in the fresh gas in the range 0.6–4 bar no effects on the flame acceleration phase were observed. However as the initial pressure was increased we observed a decrease in the flame velocity close to the end of the tube. The pressure increase due to the combustion reaction was found to be proportional to the initial pressure according to adiabatic isochoric complete combustion.
No more items...