- Home
- A-Z Publications
- Publications
Publications
Evaluation of the ADREA-HF CFD Code Against a Hydrogen Deflagration in a Tunnel
Sep 2013
Publication
In the present work the capabilities of the computational fluid dynamics (CFD) code ADREA-HF to predict deflagration in homogenous near stoichiometric hydrogen-air mixture in a model of a tunnel were tested. The tunnel is 78.5 m long. Hydrogen-air mixture is located in a 10 m long region in the middle of the tunnel. Two cases are studied: one with a complete empty tunnel and one with the presence of four vehicles near the center of the tunnel. The combustion model is based on the turbulent flame speed concept. The turbulent flame speed is a modification of Yakhot's equation in order to account for additional physical mechanisms. A sensitivity analysis for the parameter of the combustion model and for the mesh resolution was made for the empty tunnel case. The agreement between experimental and computational results concerning the value of the maximum pressure and the time it appears is satisfactory in both cases. The sensitivity analysis for the parameter of the combustion model showed that even small changes in it can have impact on the simulating results whereas the sensitivity analysis of the mesh resolution did not reveal any significant differences.
Numerical Simulations of Spontaneous Ignition of High-pressure Hydrogen Based on Detailed Chemical Kinetics
Sep 2013
Publication
A two-dimensional (2-D) simulation of spontaneous ignition of high-pressure hydrogen in a length of duct is conducted in order to explore its underlying ignition mechanisms. The present study adopts a 2-D rectangular duct (i.e. not axisymmetric geometry) and focuses on the effects of initial diaphragm shape on the spontaneous ignitions. The Navier-Stokes equations with a detailed chemical kinetics mechanism are solved in a manner of direct numerical simulation. The detailed mechanisms of spontaneous ignition are discussed for each initial diaphragm shape. For a straight diaphragm shape it is found that the ignition occurs only near the wall due to the adiabatic wall condition while the three ignition events: ignitions due to leading shock wave reflection at the wall hydrogen penetration into shock-heated air near the wall and deep penetration of hydrogen into shock-heated air behind the leading shock wave are identified for a largely deformed diaphragm shape.
Helium Release in A Closed Enclosure- Comparisons Between Simple Models, CFD Calculations And Experimental Results
Sep 2011
Publication
In the prospect of a safe use of hydrogen in our society one important task is to evaluate under which conditions the storage of hydrogen systems can reach a sufficient level of safety. One of the most important issues is the use of such system in closed area for example a private garage or an industrial facility. In the scope of this paper we are mainly interested in the following scenario: a relatively slow release of hydrogen (around 5Nl/min) in a closed and almost cubic box representing either a fuel cell at normal scale or a private garage at a smaller scale. For practical reasons helium was used instead of hydrogen in the experiments on which are based our comparisons. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of either a stably stratified distribution of concentration or the formation of a homogeneous layer due to high enough convective flows at the top of the enclosure. Nevertheless most of them consider the cases of accidental situation in which the flow rate is relatively important (higher than 10Nl/min). Numerical simulations carried out with the CEA code Cast3M and a LES turbulence model confirm the differences of results already observed in experimental helium concentration measurements for a same injection flow rate and two different injection nozzle diameters contradicting simple physical models used in safety calculations.
Real-size Calculation of High-pressure Hydrogen Flow and its Auto-ignition in Cylindrical Tube
Sep 2013
Publication
A real-size calculation is performed for high-pressure hydrogen release in a tube using the axisymmetric Navier–Stokes equations with the full hydrogen chemistry. A Harten–Yee-type total variation diminishing scheme and point-implicit method are used to integrate the governing equations. The calculated real-size results show that the leading shock wave velocity is similar to that calculated using a smaller tube. The mixing process and ignition behaviour of high-pressure hydrogen are explained in detail; the velocity shear layer and Kelvin–Helmholtz instability are the main causes of mixing of hydrogen with air and ignition in the high-temperature region behind the leading shock wave.
Safety of Hydrogen Powered Industrial Trucks, Lessons Learned and Existing Codes and Standards Gaps
Sep 2011
Publication
This paper provides an introduction to the powered industrial truck application of fuel cell power systems the safety similarities with the automotive application and safety lessons learned. Fuel Cell niche markets have proven their value to many early adopters. How has the automotive market provided a springboard for these niche applications? How are niche markets revealing gaps in current safety approaches? What is different about the powered industrial truck application and what new codes and standards are needed to accommodate those differences?
Turbulent Flame Propagation in Large Unconfined H2/O2/N2 Clouds
Oct 2015
Publication
Turbulence is a key aspect in hydrogen explosions. Unfortunately only limited experimental data is available and the current understanding of flame turbulence interactions is too limited to permit safe predictions. New experimental data are presented in which the flame trajectory and pressure history are interpreted for unconfined explosions of H2/O2/N2 clouds of 7 m3. The intensity of the turbulence is varied between 0 and 5 m/s and the integral scale of the turbulence is on the order of 10 cm which is at least an order of magnitude larger than lab scale.
Fatigue and Fracture of High-hardenability Steels for Thick-walled Hydrogen Pressure Vessels
Sep 2017
Publication
Stationary pressure vessels for the storage of large volumes of gaseous hydrogen at high pressure (>70 MPa) are typically manufactured from Cr-Mo steels. These steels display hydrogen-enhanced fatigue crack growth but pressure vessels can be manufactured using defect-tolerant design methodologies. However storage volumes are limited by the wall thickness that can be reliably manufactured for quench and tempered Cr-Mo steels typically not more than 25-35 mm. High-hardenability steels can be manufactured with thicker walls which enables larger diameter pressure vessels and larger storage volumes. The goal of this study is to assess the fracture and fatigue response of high hardenability Ni-Cr-Mo pressure vessel steels for use in high-pressure hydrogen service at pressure in excess of 1000 bar. Standardized fatigue crack growth tests were performed in gaseous hydrogen at frequency of 1Hz and for R-ratios in the range of 0.1 to 0.7. Elastic-plastic fracture toughness measurements were also performed. The measured fatigue and fracture behavior is placed into the context of previous studies on fatigue and fracture of Cr-Mo steels for gaseous hydrogen.
Dispersion and Burning Behavior of Hydrogen Released in a Full-scale Residential Garage in the Presence and Absence of Conventional Automobiles
Sep 2011
Publication
Experiments are described in which hydrogen was released at the center of the floor of a real-scale enclosure having dimensions of a typical two-car residential garage. Real-time hydrogen concentrations were monitored at a number of locations. The hydrogen/air mixtures were ignited at pre-determined local volume fractions ranging from 8% to 29%. The combustion behavior and structural effects were monitored using combinations of high-speed pressure transducers and ionization gauges standard thermocouples hydrogen sensors and digital infrared and high-speed video cameras. Experiments were performed both for empty garages and garages with conventional automobiles parked above the hydrogen release location.
Hydrogen Ironmaking: How It Works
Jul 2020
Publication
A new route for making steel from iron ore based on the use of hydrogen to reduce iron oxides is presented detailed and analyzed. The main advantage of this steelmaking route is the dramatic reduction (90% off) in CO2 emissions compared to those of the current standard blast-furnace route. The first process of the route is the production of hydrogen by water electrolysis using CO2-lean electricity. The challenge is to achieve massive production of H2 in acceptable economic conditions. The second process is the direct reduction of iron ore in a shaft furnace operated with hydrogen only. The third process is the melting of the carbon-free direct reduced iron in an electric arc furnace to produce steel. From mathematical modeling of the direct reduction furnace we show that complete metallization can be achieved in a reactor smaller than the current shaft furnaces that use syngas made from natural gas. The reduction processes at the scale of the ore pellets are described and modeled using a specific structural kinetic pellet model. Finally the differences between the reduction by hydrogen and by carbon monoxide are discussed from the grain scale to the reactor scale. Regarding the kinetics reduction with hydrogen is definitely faster. Several research and development and innovation projects have very recently been launched that should confirm the viability and performance of this breakthrough and environmentally friendly ironmaking process.
A Numerical Simulation of Hydrogen Diffusion for the Hydrogen Leakage from a Fuel Cell Vehicle in an Underground Parking Garage
Sep 2011
Publication
In the present study the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking garage is analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial evolution of the hydrogen concentration as well as the flammable region in the parking garage was predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance to relieve the accumulation of the hydrogen gas. The volume of the flammable region shows a non-linear growth in time and rapidly increases eventually. The present numerical analysis can provide a physical insight and quantitative data for safety of various hydrogen applications.
Cell Failure Mechanisms in PEM Water Electrolyzers
Sep 2011
Publication
PEM water electrolysis offers an efficient and flexible way to produce “green-hydrogen” from renewable (intermittent) energy sources. Most research papers published in the open literature on the subject are addressing performances issues and to date very few information is available concerning the mechanisms of performance degradation and the associated consequences. Results reported in this communication have been used to analyze the failure mechanisms of PEM water electrolysis cells which can ultimately lead to the destruction of the electrolyzer. A two-step process involving firstly the local perforation of the solid polymer electrolyte followed secondly by the catalytic recombination of hydrogen and oxygen stored in the electrolysis compartments has been evidenced. The conditions leading to the onset of such mechanism are discussed and some preventive measures are proposed to avoid accidents.
Experimental Study of the Effects of Vent Geometry on the Dispersion of a Buoyant Gas in a Small Enclosure
Sep 2011
Publication
We present an experimental study on the dispersion of helium in an enclosure of 1 m3 with natural ventilation through one vent. Three vent geometries have been studied. Injection parameters have been varied so that the injection Richardson number ranges from 2·10−6 to 9 and the volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 8·10−4 to 900. It has been found that the vertical distribution of helium volume fraction can exhibit significant gradient. Nevertheless the results are compared to the simple analytical model based on the homogenous mixture hypothesis which gives fairly good estimates of the maximum helium volume fraction.
Numerical Simulation and Experiments of Hydrogen Diffusion Behaviour for Fuel Cell Electric Vehicle
Sep 2011
Publication
Research was conducted on hydrogen diffusion behaviour to construct a simulation method for hydrogen leaks into complexly shaped spaces such as around the hydrogen tank of a fuel cell electric vehicle (FCEV). To accurately calculate the hydrogen concentration distribution in the vehicle underfloor space it is necessary to take into account the effects of hydrogen mixing and diffusion due to turbulence. The turbulence phenomena that occur in the event that hydrogen leaks into the vehicle underfloor space were classified into the three elements of jet flow wake flow and wall turbulence. Experiments were conducted for each turbulence element to visualize the flows and the hydrogen concentration distributions were measured. These experimental values were then compared with calculated values to determine the calculation method for each turbulence phenomenon. Accurate calculations could be performed by using the k-ω Shear Stress Transport (SST) model for the turbulence model in the jet flow calculations and the Reynolds Stress Model (RSM) in the wall turbulence calculations. In addition it was found that the large fluctuations produced by wake flow can be expressed by unsteady state calculations with the steady state calculation solutions as the initial values. Based on the above information simulations of hydrogen spouting were conducted for the space around the hydrogen tank of an FCEV. The hydrogen concentration calculation results matched closely with the experimental values which verified that accurate calculations can be performed even for the complex shapes of an FCEV.
Safety Distances: Comparison of the Methodologies for Their Determination
Sep 2011
Publication
In this paper a study on the comparison between the different methodologies for the determination of the safety distances proposed by Standard Organizations and national Regulations is presented. The application of the risk-informed approach is one of the methodologies used for the determination of safety distances together with the risk-based approach. One of the main differences between the various methodologies is the risk criterion chosen. In fact a critical point is which level of risk should be used and then which are the harm events that must be considered. The harm distances are evaluated for a specified leak diameter that is a consequence of some parameters used in the various methodologies. The values of the safety distances proposed by Standard Organizations and national Regulations are a demonstration of the different approaches of the various methodologies especially in the choice of the leak diameter considered.
Catalysis of Oxides in Hydrogen Generation by the Reaction of Al with Water
Sep 2013
Publication
Hydrogen generation by the reaction of pure Al powder in water with the addition of Al(OH)3 γ- Al2O3 α-Al2O3 or TiO2 at mild temperatures was investigated. It was found that the reaction of Al with water is promoted and the reaction induction time decreases greatly by the above hydroxide and oxides. X-ray diffraction analyses revealed that the hydroxide and oxide phases have no any change during the Al-water reaction indicating that they are just as catalysts to assist the reaction of Al with water. A possible mechanism was proposed which shows that hydroxide and oxides could dissociate water molecules and promote the hydration of the passive oxide film on Al particle surfaces.
Applying Risk Management Strategies Prudently
Sep 2011
Publication
During the current global financial crisis the term “Risk Management” is often heard. Just as the causes for the financial problems are elusive so is a complete definition of what Risk Management means. The answer is highly dependent upon your perceptions of “risk” and your appetite for assuming risks. The proposed paper will explore these issues with some brief case studies as they apply to hydrogen industrial applications hydrogen refuelling stations and fuel cell technologies for distributed generation.
Specifically the paper will identify the various risk exposures from the perspective of the project developers original equipment suppliers end users project funding sources and traditional insurance providers. What makes this evaluation intriguing is that it is a mixed bag of output capacities Combine Heat & Power (CHP) potential and technology maturity. Therefore the application considerations must be part of any overall Risk Management program.
Specifically the paper will identify the various risk exposures from the perspective of the project developers original equipment suppliers end users project funding sources and traditional insurance providers. What makes this evaluation intriguing is that it is a mixed bag of output capacities Combine Heat & Power (CHP) potential and technology maturity. Therefore the application considerations must be part of any overall Risk Management program.
The Effect of Tube Internal Geometry on the Propensity to Spontaneous Ignition in Pressurized Hydrogen Release
Sep 2013
Publication
Spontaneous ignition of compressed hydrogen release through a length of tube with different internal geometries is numerically investigated using our previously developed model. Four types of internal geometries are considered: local contraction local enlargement abrupt contraction and abrupt enlargement. The presence of internal geometries was found to significantly increase the propensity to spontaneous ignition. Shock reflections from the surfaces of the internal geometries and the subsequent shock interactions further increase the temperature of the combustible mixture at the contact region. The presence of the internal geometry stimulates turbulence enhanced mixing between the shock-heated air and the escaping hydrogen resulting in the formation of more flammable mixture. It was also found that forward-facing vertical planes are more likely to cause spontaneous ignition by producing the highest heating to the flammable mixture than backward-facing vertical planes.
Natural and Forced Ventilation of Buoyant Gas Released In a Full-Scale Garage, Comparison of Model Predictions and Experimental Data
Sep 2011
Publication
An increase in the number of hydrogen-fuelled applications in the marketplace will require a better understanding of the potential for fires and explosion associated with the unintended release of hydrogen within a structure. Predicting the temporally evolving hydrogen concentration in a structure with unknown release rates leak sizes and leak locations is a challenging task. A simple analytical model was developed to predict the natural and forced mixing and dispersion of a buoyant gas released in a partially enclosed compartment with vents at multiple levels. The model is based on determining the instantaneous compartment over-pressure that drives the flow through the vents and assumes that the helium released under the automobile mixes fully with the surrounding air. Model predictions were compared with data from a series of experiments conducted to measure the volume fraction of a buoyant gas (at 8 different locations) released under an automobile placed in the center of a full-scale garage (6.8 m × 5.4 m × 2.4 m). Helium was used as a surrogate gas for safety concerns. The rate of helium released under an automobile was scaled to represent 5 kg of hydrogen released over 4 h. CFD simulations were also performed to confirm the observed physical phenomena. Analytical model predictions for helium volume fraction compared favourably with measured experimental data for natural and forced ventilation. Parametric studies are presented to understand the effect of release rates vent size and location on the predicted volume fraction in the garage. Results demonstrate the applicability of the model to effectively and rapidly reduce the flammable concentration of hydrogen in a compartment through forced ventilation.
An Experimental Study Dedicated to Wind Influence on Helium Build-up and Concentration Distribution Inside a 1 m 3 Semi-confined Enclosure Considering Hydrogen Energy Applications Conditions of Use
Oct 2015
Publication
Hydrogen energy applications can be used outdoor and thus exposed to environmental varying conditions like wind. In several applications natural ventilation is the first mitigation means studied to limit hydrogen build-up inside a confined area. This study aims at observing and understanding the influence of wind on light gas build-up in addition. Experiments were performed with helium as releasing gas in a 1-m 3 enclosure equipped with ventilation openings varying wind conditions openings location release flow rate; obstructions in front of the openings to limit effects of wind were studied as well. Experimental results were compared together and with the available analytical models.
Safety Requirements for Liquefied Hydrogen Tankers
Oct 2015
Publication
R&D projects for establishing hydrogen supply chain have already been started in Japan in collaboration among the industry government and universities. One of the important subjects of the project is development of liquefied hydrogen tankers i.e. ships carrying liquefied hydrogen in bulk. In general basic safety requirements should be determined to design ships. However the existing regulations do not specify the requirements for hydrogen tankers while requirements for ships carrying many kinds of liquefied gases are specified in “International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk” (IGC Code) issued by the International Maritime Organization i.e. a special organization under the United Nations. Therefore the basic safety requirements for hydrogen tankers should be developed. We conducted bibliographic survey on the IGC Code ISO/TR 15916:2004 “Basic considerations for the safety of hydrogen systems” and so on; in order to provide safety requirements taking into account the properties of liquid and gaseous hydrogen. In this paper we provide safety requirements for liquefied hydrogen tankers as the basis for further consideration by relevant governments.
No more items...