- Home
- A-Z Publications
- Publications
Publications
Measurement of Hydrogen Mixing Process by High Response Hydrogen Sensor
Sep 2017
Publication
According to the Global technical regulation on hydrogen and fuel cell vehicles (FCV) fuel cell discharge system at the vehicle exhaust system`s point of discharge the hydrogen concentration level shall not exceed 4 % average by volume during any moving three-second time interval during normal operation including start-up and shut down [1]. FC stack need to washout by the concentrated hydrogen as the purge gas and how to exhaust gas without exceeding 4 % is the most concerns. Also how to measure hydrogen pulse of millisecond in exhaust is also the rising up issue. In this paper model of FCV hydrogen discharge system was composed and variety of simple experiments were carried out to control the H2 concentration and release. In the case which the semiconductor sensor with porous material (average size less than quench distance) were applied to check H2 concentration the short pulse of high concentration of H2 in millisecond was hard to find. In this experiment the simple exhaust gas model H2/N2 flow was used instead of Air/H2. In the exhaust gas test experiment was conducted under the atmospheric condition in room temperature with small pressure difference and the fast solenoid valve to create quick hydrogen control. Most of the experiments except the turbulent flow experiments laminar flow is expected to be dominated when steady state condition is satisfied but the most result discussed here is the measurement of H2 concentration during the start point at the time of discharge within seconds. The results showed when H2 was added to N2 flow the boundary layer between N2 and H2 contained the high concentration of H2 at the initial wave front and decrease to reach steady state. This H2 pulse is typical in the FCV exhaust gas and topics of this paper.
The Mitigation of Hydrogen Explosions Using Water Fog, Nitrogen Dilution and Chemical Additives
Sep 2013
Publication
This paper describes research work that has been performed at LSBU using both a laminar burning velocity rig and a small scale cylindrical explosion vessel to explore the use of very fine water fog nitrogen dilution and sodium hydroxide additives in the mitigation of hydrogen deflagrations. The results of the work suggest that using a combination of the three measures together produces the optimal mitigation performance and can be extremely effective in: inhibiting the burning velocity reducing the rate of explosion overpressure rise and narrowing the flammability limits of hydrogen-oxygen-nitrogen mixtures.
Advances and Challenges of MOF Derived Carbon-based Electrocatalysts and Photocatalyst for Water Splitting: A Review
Apr 2022
Publication
Environmental pollution and energy shortage are substantial fears to the modern world's long-term sustainability. Water splitting is an essential technique for eco - friendly and sustainable energy storage as well as a pollution-free method to produce hydrogen. In this regards Metal–organic frameworks have emerged as the most competent multifunctional materials in recent times due to its large surface areas adjustable permeability easy compositional alteration and capability for usage as precursors with a wide range of morphological forms. Further MOF-derived carbon-based nanomaterials also offer significant benefits in terms of tunable morphological features and hierarchical permeability as well as ease of functionalization making them extremely effective as catalysts or catalysts supports for a wide variety of important reactions. Recent developments in carbon-based MOFs as catalysts for overall water splitting are discussed in this review. We explore how MOFs and carbon-based MOFs might well be beneficial as well as which methods should be explored for future development. We divided our review into two sections: photocatalytic and electrocatalytic water splitting and we gathered published literature on carbon-based MOFs materials for their outstanding activity offers helpful methods for catalysts design and analysis as well as difficulties This study highlights the developments in MOF derived materials as photo and electro catalysts by explaining respective approaches for their use in overall water splitting.
The Study on the Internal Temperature Change of Type 3 and Type 4 Composite Cylinder During Filling
Sep 2013
Publication
The number of eco friendly vehicle which is using green energy such as natural gas(NG) and hydrogen(H2) is rapidly increasing in the world. Almost all of the car manufacturers are adopting the pressurizing fuel method to storage gas. The fuel storage system which can pressurize the fuel as high as possible is necessary to maximize the mileage of the vehicle. In Korea the most important issue is that makes sure of safety of the fuel storage system and several tests are performed to verify safety of the composite cylinder especially for Type 3 and Type 4. In this research an empirical study on the internal temperature change of Type 3 and Type 4 composite cylinder during filling is performed by gas cycling test equipment. In order to measure the temperature totally twelve sensors(every four sensors on the top middle and bottom) are installed in each cylinder. As a consequence large amount of compression heat is generated during rapid filling and the result temperature change in Type 4 is greater than Type 3 is confirmed depending on property of the liner material such as thermal conduction and thickness of carbon composite.
Study of Fire Risk and Accidents Emergency Disposal Technology System of Hydrogen Fuel Vehicles
Sep 2017
Publication
As the energy crisis and environment pollution growing severely the hydrogen fuel motor vehicle has got more and more attention many automobile companies and research institutions invest significant R&D resources to research and develop the hydrogen fuel vehicles. With the development of the hydrogen fuel cell vehicles and hydrogen fuel motor vehicles the hydrogen had more to more extensive application. According to the categories of the hydrogen fuel vehicles the characteristics of hydrogen fuel vehicle fire risk and accidents are analyzed in this paper. As for hydrogen fuel cell vehicles the function of its key components such as the fuel cell the high-pressure storage tank is presented firstly. Then based on the low density fast diffusion and flammable of hydrogen the probable scenarios of accident such as fuel leak jet flame are analyzed and the fire risk of the key components and the whole vehicle is evaluated. Finally the development trend of the emergency warning system of hydrogen fuel cell vehicles is analyzed and some recommendations are proposed referring to the detection pre-warning and control technologies used in the industrial sites. Aiming at the hydrogen car structure characteristics and the fire accident modes and accidents evolution rules the emergency disposal technology system for hydrogen fuel motor vehicles is put forward.
Simulation of DDT in Hydrogen-Air Behind a Single Obstacle
Sep 2011
Publication
Two-dimensional numerical simulations of deflagration-to-detonation transition (DDT) in hydrogen–air mixtures are presented and compared with experiments. The investigated geometry was a 3 m long square channel. One end was closed and had a single obstacle placed 1 m from the end and the other end was open to the atmosphere. The mixture was ignited at the closed end. Experiments and simulations showed that DDT occurred within 1 m behind the obstacle. The onset of detonation followed a series of local explosions occurring far behind the leading edge of the flame in a layer of unburned reactants between the flame and the walls. A local explosion was also seen in the experiments and the pressure records indicated that there may have been more. Furthermore local explosions were observed in the experiments and simulations which did not detonate. The explosions should have sufficient strength and should explode in a layer of sufficient height to result in a detonation. The numerical resolution was 0.5 mm per square cell and further details of the combustion model used are provided in the paper.
Assessment of a CFD Model for Simulations of Fast Filling of Hydrogen Tanks with Pre-cooling
Sep 2013
Publication
High gas temperatures can be reached inside a hydrogen tank during the filling process because of the large pressure increase (up to 70-80 MPa) and because of the short time (~3 minutes) of the process. High temperatures can potentially jeopardize the structural integrity of the storage system and one of the strategies to reduce the temperature increase is to pre-cool the hydrogen before injecting it into the tank. Computational Fluid Dynamics (CFD) tools have the capabilities of capturing the flow field and the temperature rise in the tank. The results of CFD simulations of fast filling with pre-cooling are shown and compared with experimental data to assess the accuracy of the CFD model
An Inter-comparison Exercise on Engineering Models Capabilities to Simulate Hydrogen Vented Explosions
Sep 2013
Publication
A benchmark exercise on vented explosion engineering model was carried out against the maximum overpressures (one or two peaks) of published experiments. The models evaluated are Bauwens et al. (2012-1 and 2012-2) [4 7] models Molkov Vent Sizing Technology 1999 2001 and 2008 models [12 13 6]. The experiments in consideration are Pasman et al. experiments (1974) (30% H2 - 1m3) [1] Bauwens et al. (2012) experiments (64m3) [4] Daubech et al. (2011) experiments (10 to 30% H2 - 1 and 10 m3) [2] and Daubech et al. (2013) [5] experiments (4 m3 – H2 10 to 30%). On this basis recommendations and limits of use of these models are proposed.
Comparison of Two-layer Model for High Pressure Hydrogen Jets with Notional Nozzle Model Predictions and Experimental Data
Oct 2015
Publication
A two-layer reduced order model of high pressure hydrogen jets was developed which includes partitioning of the flow between the central core jet region leading to the Mach disk and the supersonic slip region around the core. The flow after the Mach disk is subsonic while the flow around the Mach disk is supersonic with a significant amount of entrained air. This flow structure significantly affects the hydrogen concentration profiles downstream. The predictions of this model are compared to previous experimental data for high pressure hydrogen jets up to 20 MPa and to notional nozzle models and CFD models for pressures up to 35 MPa using ideal gas properties. The results show that this reduced order model gives better predictions of the mole fraction distributions than previous models for highly underexpanded jets. The predicted locations of the 4% lower flammability limit also show that the two-layer model much more accurately predicts the measured locations than the notional nozzle models. The comparisons also show that the CFD model always underpredicts the measured mole fraction concentrations.
Experimental Determination of Minimum Ignition Current (MIC) for Hydrogen & Methane Mixtures for the Determination of the Explosion Group Corresponding to IEC 60079-20-1
Sep 2017
Publication
Power to gas could get an important issue in future permitting the valorisation of green electric excess energy by producing hydrogen mixing it with natural gas (NG) and use the NG grid as temporary storage. NG grid stakeholders expect that blends up to 20% seem to be a realistic scenario. The knowledge of the explosion group for these hydrogen/NG (H2NG) mixtures is a necessary information for the choice of equipment and protective systems intended for the use in potentially explosive atmospheres of these mixtures. Therefore we determined experimentally the minimum ignition current (MIC) the MIC ratios referenced on MIC of pure methane corresponding to IEC 60079-20-1 standard. The results are compared to those obtained by maximum experimental safe gap (MESG) the second standardized method. The tested gas mixtures started from 2 vol.% volume admixture in methane rising in 2% steps up to 20 vol.% of hydrogen. The interpretation of these results could conduct to consider methane/hydrogen mixtures containing more than 14 vol.% of hydrogen as Group IIB gases.
Evaluation of the Protection Effectiveness Against Overpressure From Hydrogen-air Explosion
Sep 2017
Publication
The aim of this study is to assess the probability of the damage to hydrogen fuelling station personnel exposed to the hydrogen explosion shock wave. A three-dimensional mathematical model of the explosion of hydrogen-air cloud formed after the destruction of the high-pressure storage cylinders is developed. A computer technology how to define the personnel damage probability field on the basis of probit analysis of the generated shock wave is developed. To automate the process of computing the "probit function-damage probability" tabular dependence is replaced by a piecewise cubic spline. The results of calculations of overpressure fields impulse loading and the probability of damage to fuelling station personnel exposed to the shock wave are obtained. The mathematical model takes into account the complex terrain and three-dimensional non-stationary nature of the shock wave propagation process. The model allows to obtain time-spatial distribution of damaging factors (overpressure in the shock wave front and the compression phase impulse) required to determine the three-dimensional non-stationary damage probability fields based on probit analysis. The developed computer technology allows to carry out an automated analysis of the safety situation at the fuelling station and to conduct a comparative analysis of the effectiveness of different types of protective facilities.
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
HIAD 2.0 – Hydrogen Incident and Accident Database
Sep 2019
Publication
Hydrogen technologies are expected to play a key role in implementing the transition from a fossil fuel- based to a more sustainable lower-carbon energy system. To facilitate their widespread deployment the safe operation and hydrogen systems needs to be ensured together with the evaluation of the associated risk.<br/>HIAD has been designed to be a collaborative and communicative web-based information platform holding high quality information of accidents and incidents related to hydrogen technologies. The main goal of HIAD was to become not only a standard industrial accident database but also an open communication platform suitable for safety lessons learned and risk communication as well as a potential data source for risk assessment; it has been set up to improve the understanding of hydrogen unintended events to identify measures and strategies to avoid incidents/accidents and to reduce the consequence if an accident occurs.<br/>In order to achieve that goal the data collection is characterized by a significant degree of detail and information about recorded events (e.g. causes physical consequences lesson learned). Data are related not only to real incident and accidents but also to hazardous situations.<br/>The concept of a hydrogen accident database was generated in the frame of the project HySafe an EC co-funded NoE of the 6th Frame Work Programme. HIAD was built by EC-JRC and populated by many HySafe partners. After the end of the project the database has been maintained and populated by JRC with publicly available events. The original idea was to provide a tool also for quantitative risk assessment able to conduct simple analyses of the events; unfortunately that goal could not be reached because of a lack of required statistics: it was not possible to establish a link with potential event providers coming from private sector not willing to share information considered confidential. Starting from June 2016 JRC has been developing a new version of the database (i.e. HIAD 2.0); the structure of the database and the web-interface have been redefined and simplified resulting in a streamlined user interface compared to the previous version of HIAD. The new version is mainly focused to facilitate the sharing of lessons learned and other relevant information related to hydrogen technology; the database will be public and the events will be anonymized. The database will contribute to improve the safety awareness fostering the users to benefit from the experiences of others as well as to share information from their own experiences.
Boundary Layer Effects on the Critical Nozzle of Hydrogen Sonic Jet
Oct 2015
Publication
When hydrogen flows through a small finite length constant exit area nozzle the viscous effects create a fluid throat which acts as a converging-diverging nozzle and lead to Mach number greater than one at the exit if the jet is under-expanded. This phenomenon influences the mass flow rate and the dispersion cloud size. In this study the boundary layer effect on the unsteady hydrogen sonic jet flow through a 1 mm diameter pipe from a high pressure reservoir (up to 70 MPa) is studied using computational fluid dynamics with a large eddy simulation turbulence model. This viscous flow simulation is compared with a non-viscous simulation to demonstrate that the velocity is supersonic at the exit of a small exit nozzle and that the mass flow is reduced.
Environmental Sustainability of Alternative Marine Propulsion Technologies Powered by Hydrogen - A Life Cycle Assessment Approach
Jan 2022
Publication
Shipping is a very important source of pollution worldwide. In recent years numerous actions and measures have been developed trying to reduce the levels of greenhouse gases (GHG) from the marine exhaust emissions in the fight against climate change boosting the Sustainable Development Goal 13. Following this target the action of hydrogen as energy vector makes it a suitable alternative to be used as fuel constituting a very promising energy carrier for energy transition and decarbonization in maritime transport. The objective of this study is to develop an ex-ante environmental evaluation of two promising technologies for vessels propulsion a H2 Polymeric Electrolytic Membrane Fuel Cell (PEMFC) and a H2 Internal Combustion Engine (ICE) in order to determine their viability and eligibility compared to the traditional one a diesel ICE. The applied methodology follows the Life Cycle Assessment (LCA) guidelines considering a functional unit of 1 kWh of energy produced. LCA results reveal that both alternatives have great potential to promote the energy transition particularly the H2 ICE. However as technologies readiness level is quite low it was concluded that the assessment has been conducted at a very early stage so their sustainability and environmental performance may change as they become more widely developed and deployed which can be only achieved with political and stakeholder’s involvement and collaboration.
Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts
Jan 2022
Publication
With global warming and the depletion of fossil resources our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this the photocatalytic water-splitting reaction which produces H2 from water and solar energy through photocatalysis has attracted much attention. However for practical use the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis researchers in the various fields must be employed in this type of study to achieve this. However for researchers in fields other than catalytic chemistry ceramic (semiconductor) materials chemistry and electrochemistry to participate in this field new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore in this review we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.
Experimental Measurements of Structural Displacement During Hydrogen Vented Deflagrations for FE Model Validation
Sep 2017
Publication
Vented deflagration tests were conducted by UNIPI at B. Guerrini Laboratory during the experimental campaign for HySEA project. Experiments included homogeneous hydrogen-air mixture in a 10-18% vol. range of concentrations contained in an about 1 m3 enclosure called SSE (Small Scale Enclosure). Displacement measurements of a test plate were taken in order to acquire useful data for the validation of FE model developed by IMPETUS Afea. In this paper experimental facility displacement measurement system and FE model are briefly described then comparison between experimental data and simulation results is discussed.
Optimal Development of Alternative Fuel Station Networks Considering Node Capacity Restrictions
Jan 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is the use of alternative fuel vehicles (AFV). As global GHG emission standards have been in place for passenger cars for several years infrastructure modelling for new AFV is an established topic. However as the regulatory focus shifts towards heavy-duty vehicles (HDV) the market diffusion of AFV-HDV will increase as will planning the relevant AFV infrastructure for HDV. Existing modelling approaches need to be adapted because the energy demand per individual refill increases significantly for HDV and there are regulatory as well as technical limitations for alternative fuel station (AFS) capacities at the same time. While the current research takes capacity restrictions for single stations into account capacity limits for locations (i.e. nodes) – the places where refuelling stations are built such as highway entries exits or intersections – are not yet considered. We extend existing models in this respect and introduce an optimal development for AFS considering (station) location capacity restrictions. The proposed method is applied to a case study of a potential fuel cell heavy-duty vehicle AFS network. We find that the location capacity limit has a major impact on the number of stations required station utilization and station portfolio variety.
Hydrogen Risk Analysis for a Generic Nuclear Containment Ventilation System
Oct 2015
Publication
Hydrogen safety issue in a ventilation system of a generic nuclear containment is studied. In accidental scenarios a large amount of burnable gas mixture of hydrogen with certain amount of oxygen is released into the containment. In case of high containment pressure the combustible mixture is further ventilated into the chambers and the piping of the containment ventilation system. The burnable even potentially detonable gas mixture could pose a risk to the structures of the system once being ignited unexpectedly. Therefore the main goal of the study is to apply the computational fluid dynamics (CFD) computer code – GASFLOW to analyze the distribution of the hydrogen in the ventilation system and to find how sensitive the mixture is to detonation in different scenarios. The CFD simulations manifest that a ventilation fan with sustained power supply can extinguish the hydrogen risk effectively. However in case of station blackout with loss of power supply to the fan hydrogen/oxygen mixture could be accumulated in the ventilation system. A further study proves that steam injection could degrade the sensitivity of the hydrogen mixture significantly.
A Portfolio of Powertrains for the UK: An Energy Systems Analysis
Jul 2014
Publication
There has recently been a concerted effort to commence a transition to fuel cell vehicles (FCVs) in Europe. A coalition of companies released an influential McKinsey-coordinated report in 2010 which concluded that FCVs are ready for commercial deployment. Public–private H2Mobility programmes have subsequently been established across Europe to develop business cases for the introduction of FCVs. In this paper we examine the conclusions of these studies from an energy systems perspective using the UK as a case study. Other UK energy system studies have identified only a minor role for FCVs after 2030 but we reconcile these views by showing that the differences are primarily driven by different data assumptions rather than methodological differences. Some energy system models do not start a transition to FCVs until around 2040 as they do not account for the time normally taken for the diffusion of new powertrains. We show that applying dynamic growth constraints to the UK MARKAL energy system model more realistically represents insights from innovation theory. We conclude that the optimum deployment of FCVs from an energy systems perspective is broadly in line with the roadmap developed by UK H2Mobility and that a transition needs to commence soon if FCVs are to become widespread by 2050.
No more items...