- Home
- A-Z Publications
- Publications
Publications
Generalized Thermodynamic Modelling of Hydrogen Storage Tankes for Truck Application
Mar 2024
Publication
Hydrogen-driven heavy-duty trucks are a promising technology for reducing CO2 emissions in the transportation sector. Thus storing hydrogen efficiently onboard is vital. The three available or currently developed physical hydrogen storage technologies (compressed gaseous subcooled liquid and cryo-compressed hydrogen) are promising solutions. For a profound thermodynamic comparison of these storage systems a universally applicable model is required. Thus this article introduces a generalized thermodynamic model and conducts thermodynamic comparisons in terms of typical drive cycle scenarios. Therefore a model introduced by Hamacher et al. [1] for cryo-compressed hydrogen tanks is generalized by means of an explicit model formulation using the property ��2� from REFPROP [2] which is understood as a generic specific isochoric two-phase heat capacity. Due to an implemented decision logic minor changes to the equation system are automatically made whenever the operation mode or phase of the tank changes. The resulting model can simulate all three storage tank systems in all operating scenarios and conditions in the single- and two-phase region. Additionally the explicit model formulation provides deeper insights into the thermodynamic processes in the tank. The model is applied to the three physical hydrogen storage technologies to compare drive cycles heat requirement dormancy behavior and optimal usable density. The highest driving ranges were achieved with cryo-compressed hydrogen however it also comes with higher heating requirements compared to subcooled liquid hydrogen.
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Hydrogen Refueling Stations Powered by Hybrid PV/Wind Renewable Energy Systems: Techno-socio-economic Assessment
Mar 2024
Publication
Hydrogen is considered as an attractive alternative to fossil fuels in the transportation sector. However the penetration of Fuel Cell Electric Vehicles (FCEV) is hindered by the lack of hydrogen refueling station infrastructures. In this study the feasibility of a hybrid PV/wind system for hydrogen refueling station is investigated. Refueling events data is collected in different locations including industrial residential highway and tourist areas. Station Occupancy Fractions (SOF) and Social-to-Solar Fraction (STSF) indicators are developed to assess the level of synchronization between the hydrogen demand and solar potential. Then a validated computer code is used to optimize the renewable system components for off/on-grid cases based on minimizing the Net Present Cost (NPC) and the Loss of Hydrogen Supply Probability (LHSP). For off grid cases the results show that STSF attains maximum value in the industrial area where 0.62 fraction of refueling events occur during the sunshine hours and minimum NPC is achieved. It is observed that when STSF attains lower values of 0.52 0.41 and 0.38 for residential highway and tourist areas NPC increases by 8 16 and 31% respectively. This is associated with lower level of coordination between the hydrogen demand and solar potential. The same conclusion can be stated for the on-grid cases. Therefore for green hydrogen production via solar energy utilization it is recommended that a tariff should be applied to encourage refueling hydrogen vehicles during the availability of solar radiation while reducing the environmental impact storage requirements and eventually the cost of hydrogen production.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the opensource software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030-2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250-265 euro/tCO2 will be necessary for renewable fuels to become competitive.
Thermodynamic Modelling, Testing and Sensitive Analysis of a Directly Pressurized Hydrogen Refuelling Process with a Compressor
Mar 2024
Publication
This paper presents the development of a thermodynamic model for the hydrogen refuelling station (HRS) to simulate the process of refuelling which involves the transfer of hydrogen gas from a high-pressure storage tank to the onboard tank of a fuel cell electric vehicle (FCEV). This model encompasses the fundamental elements of an HRS which consists of a storage tank compressor piping system heat exchanger and an on-board vehicle tank. The model is implemented and validated using experimental data from SAE J2601. Various simulations are conducted to assess the impact of the Joule-Thomson effect and compression on the temperature of hydrogen flow specifically focusing on an average pressure rate of 18 MPa/min. Furthermore a comprehensive analysis is conducted to examine the impact of pressure variations in the storage tank (10–90 MPa) and the initial pressure within the vehicle tank (5–35 MPa) as well as variations in ambient temperature (0–40 °C). The study revealed that the energy consumption in the cooling system surpasses the average power consumption in the more advantageous scenario of 60 MPa by a range of 36% to over 220% when the pressure in the storage system drops below 30 MPa. Furthermore it was noted that the impact of ambient temperature is comparatively less significant when compared to the initial pressure of the vehicle's tank. The impact of an ambient temperature change of 10 °C on the final temperature of a hydrogen vehicle is found to be approximately 2 °C. Similarly a variation in the initial vehicle pressure of 10 MPa results in a modification of the final hydrogen vehicle temperature by approximately 8.5 °C.
Optimal Scheduling of Electricity and Hydrogen Integrated Energy System Considering Multiple Uncertainties
Apr 2024
Publication
The spread of renewable energy (RE) generation not only promotes economy and the environmental protection but also brings uncertainty to power system. As the integration of hydrogen and electricity can effectively mitigate the fluctuation of RE generation an electricity-hydrogen integrated energy system is constructed. Then this paper studies the source-load uncertainties and corresponding correlation as well as the electricity-hydrogen price uncertainties and corresponding correlation. Finally an optimal scheduling model considering economy environmental protection and demand response (DR) is proposed. The simulation results indicate that the introduction of the DR strategy and the correlation of electricity-hydrogen price can effectively improve the economy of the system. After introducing the DR the operating cost of the system is reduced by 5.59% 10.5% 21.06% in each season respectively. When considering the correlation of EP and HP the operating cost of the system is reduced by 4.71% 6.47% 1.4% in each season respectively.
Influence of Air Changes Per Hour on Hydrogen Leaks in Mechanically Ventilated Enclosures
Mar 2024
Publication
The integration of hydrogen energy systems into nearly zero-emission buildings (nZEB) is emerging as a viable strategy to curtail greenhouse gas emissions associated with energy use in these buildings. However the indoor or outdoor placement of certain hydrogen system components or equipment necessitates stringent safety measures particularly in confined environments. This study aims to investigate the dynamics of hydrogen dispersion within an enclosure featuring forced ventilation analyzing the interplay between leakage flow rates and ventilation efficiency both experimentally and numerically. To simulate hydrogen's behavior helium gas which shares similar physical characteristics with hydrogen was utilized in experiments conducted at leakage flows of 4 8 and 10 L/min alongside a ventilation rate of 30 air changes per hour (ACH). The experiments revealed that irrespective of the leakage rate the oxygen concentration returned to its initial level approximately 11 min post-leakage at a ventilation rate of 30 ACH. This study also encompasses a numerical analysis to validate the experimental findings and assess the congruence between helium and hydrogen behaviors. Additionally the impact of varying ACH rates (30 45 60 75) on the concentrations of oxygen and hydrogen was quantified through numerical analysis for different hydrogen leakage rates (4 8 10 20 L/min). The insights derived from this research offer valuable guidance for building facility engineers on designing ventilation systems that ensure hydrogen and oxygen concentrations remain within safe limits in hydrogen-utilizing indoor environments.
A Numerial Study on Hydrogen Blending in Natural Gas Pipeline by a T-pipe
Mar 2024
Publication
In order to study the flow blending and transporting process of hydrogen that injects into the natural gas pipelines a three-dimensional T-pipe blending model is established and the flow characteristics are investigated systematically by the large eddy simulation (LES). Firstly the mathematical formulation of hydrogen-methane blending process is provided and the LES method is introduced and validated by a benchmark gas blending model having experimental data. Subsequently the T-pipe blending model is presented and the effects of key parameters such as the velocity of main pipe hydrogen blending ratio diameter of hydrogen injection pipeline diameter of main pipe and operating pressure on the hydrogen-methane blending process are studied systematically. The results show that under certain conditions the gas mixture will be stratified downstream of the blending point with hydrogen at the top of the pipeline and methane at the bottom of the pipeline. For the no-stratified scenarios the distance required for uniformly mixing downstream the injection point increases when the hydrogen mixing ratio decreases the diameter of the hydrogen injection pipe and the main pipe increase. Finally based on the numerical results the underlying physics of the stratification phenomenon during the blending process are explored and an indicator for stratification is proposed using the ratio between the Reynolds numbers of the natural gas and hydrogen.
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
Effect of Gas Composition and Initial Turbulence on the Propagation Dynamics of Premixed Flames of Hydrogen-blended Natural Gas Fuel
Jul 2024
Publication
In order to reduce carbon emissions the effects of gas composition and initial turbulence on the premixed flame dynamics of hydrogen-blended natural gas were investigated. The results show that an increase in hydrogen content leads to earlier formation of flame wrinkles. When the equivalence ratio is 1 and hydrogen blending ratio is below 20% Tulip flames appear approximately 2.25 m away from the ignition point. When hydrogen blending ratio exceeds 20% Tulip flames appear approximately 1.3 m away from the ignition point and twisted Tulip flames appear approximately 2.5 m away from the ignition position. During the 0.05 m process of flame propagation downstream from ignition point flame propagation velocity increases by about 2 m/s for every 10% increase in hydrogen content. The increase in hydrogen content has the most significant impact on the flame propagation velocity during the ignition stage. The average flame propagation velocity increases with the increase of hydrogen blending ratio. The greater the initial turbulence the more obvious the stretching deformation of flame front structure. With the increase of wind speed the flame propagation velocity first increases and then decreases. At a wind speed of 3 m/s the flame propagation velocity reaches its maximum value.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Overview and Prospects of Low-emissions Hydrogen (H2) Energy Systems: Roadmap for a Sustainable H2 Economy
Jul 2024
Publication
Hydrogen (2 ) has a big role to play in energy transition to achieve net-zero carbon emissions by 2050. For 2 to compete with other fuels in the energy market more research is required to mitigate key issues like greenhouse gas (GHG) emissions safety and end-use costs. For these reasons a software-supported technical overview of 2 production storage transportation and utilisation is introduced. Drawbacks and mitigation approaches for 2 technologies were highlighted. The recommended areas include solar thermal or renewable-powered plasma systems for feedstock preheating and oxy-hydrogen combustion to meet operating temperatures and heat duties due to losses; integration of electrolysis of 2 into hydrocarbon reforming methods to replace air separation unit (ASU); use of renewable power sources for electrical units and the introduction of thermoelectric units to maximise the overall efficiency. Furthermore a battolyser system for small-scale energy storage; new synthetic hydrides with lower absorption and desorption energy; controlled parameters and steam addition to the combustor/cylinder and combustors with fitted heat exchangers to reduce emissions and improve the overall efficiency are also required. This work also provided detailed information on any of these systems implementations based on location factors and established a roadmap for 2 production and utilisation. The proposed 2 production technologies are hybrid pyrolysis-electrolysis and integrated AD-MEC and DR systems using renewable bioelectrochemical and low-carbon energy systems. Production and utilisation of synthetic natural gas (NG) using renewablepowered electrolysis of 2 oxy-fuel and direct air capture (DAC) is another proposed 2 energy system for a sustainable 2 economy. By providing these factors and information researchers can work towards pilot development and further efficiency enhancement.
Economic Analysis of Hydrogen Energy Systems: A Global Perspective
Aug 2024
Publication
In the realm of renewable energy the integration of wind power and hydrogen energy systems represents a promising avenue towards environmental sustainability. However the development of cost-effective hydrogen energy storage solutions is crucial to fully realize the potential of hydrogen as a renewable energy source. By combining wind power generation with hydrogen storage a comprehensive hydrogen energy system can be established. This study aims to devise a physiologically inspired optimization approach for designing a standalone wind power producer that incorporates a hydrogen energy system on a global scale. The optimization process considers both total cost and capacity loss to determine the optimal configuration for the system. The optimal setup for an off-grid solution involves the utilization of eight distinct types of compact horizontal-axis wind turbines. Additionally a sensitivity analysis is conducted by varying component capital costs to assess their impact on overall cost and load loss. Simulation results indicate that at a 15% loss the cost of energy (COE) is $1.3772 while at 0% loss it stands at $1.6908. Capital expenses associated with wind turbines and hydrogen storage systems significantly contribute to the overall cost. Consequently the wind turbine-hydrogen storage system emerges as the most cost-effective and reliable option due to its low cost of energy.
No more items...