- Home
- A-Z Publications
- Publications
Publications
Hydrogen Production, Transporting and Storage Processes—A Brief Review
Sep 2024
Publication
This review aims to enhance the understanding of the fundamentals applications and future directions in hydrogen production techniques. It highlights that the hydrogen economy depends on abundant non-dispatchable renewable energy from wind and solar to produce green hydrogen using excess electricity. The approach is not limited solely to existing methodologies but also explores the latest innovations in this dynamic field. It explores parameters that influence hydrogen production highlighting the importance of adequately controlling the temperature and concentration of the electrolytic medium to optimize the chemical reactions involved and ensure more efficient production. Additionally a synthesis of the means of transport and materials used for the efficient storage of hydrogen is conducted. These factors are essential for the practical feasibility and successful deployment of technologies utilizing this energy resource. Finally the technological innovations that are shaping the future of sustainable use of this energy resource are emphasized presenting a more efficient alternative compared to the fossil fuels currently used by society. In this context concrete examples that illustrate the application of hydrogen in emerging technologies are highlighted encompassing sectors such as transportation and the harnessing of renewable energy for green hydrogen production.
Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review
Oct 2024
Publication
Hydrogen has the capability of being a potential energy carrier and providing a long-term solution for sustainable lower-carbon and ecologically benign fuel supply. Because lower-carbon hydrogen is widely used in chemical synthesis it is regarded as a fuel with no emissions for transportation. This review paper offers a novel technique for producing hydrogen using wastewater in a sustainable manner. The many techniques for producing hydrogen with reduced carbon emissions from wastewater are recognized and examined in detail taking into account the available prospects significant obstacles and potential future paths. A comparison of the assessment showed that water electrolysis and dark fermentation technologies are the most effective methods for hydrogen generation from wastewater with microbial electrolysis and photofermentation. Thus the incorporation of systems that are simultaneously producing lower-carbon hydrogen and meant for wastewater treatment is important for the minimization of emissions from greenhouse gases and recovering the energy utilized in the treatment of wastewater.
A Review of Hydrogen Production via Seawater Electrolysis: Current Status and Challenges
Oct 2024
Publication
Seawater electrolysis represents a promising green energy technology with significant potential for efficient energy conversion. This study provides an in-depth examination of the key scientific challenges inherent in the seawater-electrolysis process and their potential solutions. Initially it analyzes the potential issues of precipitation and aggregation at the cathode during hydrogen evolution proposing strategies such as self-cleaning cathodes and precipitate removal to ensure cathode stability in seawater electrolysis. Subsequently it addresses the corrosion challenges faced by anode catalysts in seawater introducing several anti-corrosion strategies to enhance anode stability including substrate treatments such as sulfidation phosphidation selenidation and LDH (layered double hydroxide) anion intercalation. Additionally this study explores the role of regulating the electrode surface microenvironment and forming unique coordination environments for active atoms to enhance seawater electrolysis performance. Regulating the surface microenvironment provides a novel approach to mitigating seawater corrosion. Contrary to the traditional understanding that chloride ions accelerate anode corrosion certain catalysts benefit from the unique coordination environment of chloride ions on the catalyst surface potentially enhancing oxygen evolution reaction (OER) performance. Lastly this study presents the latest advancements in the industrialization of seawater electrolysis including the in situ electrolysis of undiluted seawater and the implementation of three-chamber dual anion membranes coupled with circulating electrolyte systems. The prospects of seawater electrolysis are also explored.
Safety of Hydrogen Storage Technologies
Oct 2024
Publication
While hydrogen is regularly discussed as a possible option for storing regenerative energies its low minimum ignition energy and broad range of explosive concentrations pose safety challenges regarding hydrogen storage and there are also challenges related to hydrogen production and transport and at the point of use. A risk assessment of the whole hydrogen energy system is necessary to develop hydrogen utilization further. Here we concentrate on the most important hydrogen storage technologies especially high-pressure storage liquid hydrogen in cryogenic tanks methanol storage and salt cavern storage. This review aims to study the most recent research results related to these storage techniques by describing typical sensors and explosion protection measures thus allowing for a risk assessment of hydrogen storage through these technologies.
Investigating the Future of Freight Transport Low Carbon Technologies Market Acceptance across Different Regions
Oct 2024
Publication
Fighting climate change has become a major task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore long term strategies all over the world have been set up to reduce on-road combustion emissions. In this context the road freight sector faces significant challenges in decarbonization driven by its limited availability of low-emission fuels and commercialized zero-emission vehicles compared with its high energy demand. In this work we develop the Mobility and Energy Transportation Analysis (META) Model a python-based optimization model to quantify the impact of transportation projected policies on freight transport by projecting conventional and alternative fuel technologies market acceptance as well as greenhouse gas (GHG) emissions. Along with introducing e-fuels as an alternative refueling option for conventional vehicles META investigates the market opportunities of Mobile Carbon Capture (MCC) until 2050. To accurately assess this technology a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. The novelty of this work comes from the detailed cost categories taken into consideration in the analysis including intangible costs associated with heavy-duty technologies such as recharging/refueling time cargo capacity limitations and consumer acceptance towards emerging technologies across different regions. Based on the study results the competitive total cost of ownership (TCO) and marginal abatement cost (MAC) values of MCC make it an economically promising alternative option to decarbonize the freight transport sector. Both in the KSA and EU MCC options could reach greater than 50% market shares of all ICE vehicle sales equivalent to a combined 35% of all new sales shares by 2035.
An Overview of Different Water Electrolyzer Types for Hydrogen Production
Oct 2024
Publication
While fossil fuels continue to be used and to increase air pollution across the world hydrogen gas has been proposed as an alternative energy source and a carrier for the future by scientists. Water electrolysis is a renewable and sustainable chemical energy production method among other hydrogen production methods. Hydrogen production via water electrolysis is a popular and expensive method that meets the high energy requirements of most industrial electrolyzers. Scientists are investigating how to reduce the price of water electrolytes with different methods and materials. The electrolysis structure equations and thermodynamics are first explored in this paper. Water electrolysis systems are mainly classified as high- and low-temperature electrolysis systems. Alkaline PEM-type and solid oxide electrolyzers are well known today. These electrolyzer materials for electrode types electrolyte solutions and membrane systems are investigated in this research. This research aims to shed light on the water electrolysis process and materials developments.
0-D Dynamic Performance Simulation of Hydrogen-Fueled Turboshaft Engine
Oct 2024
Publication
In the last few decades the problem of pollution resulting from human activities has pushed research toward zero or net-zero carbon solutions for transportation. The main objective of this paper is to perform a preliminary performance assessment of the use of hydrogen in conventional turbine engines for aeronautical applications. A 0-D dynamic model of the Allison 250 C-18 turboshaft engine was designed and validated using conventional aviation fuel (kerosene Jet A-1). A dedicated experimental campaign covering the whole engine operating range was conducted to obtain the thermodynamic data for the main engine components: the compressor lateral ducts combustion chamber high- and low-pressure turbines and exhaust nozzle. A theoretical chemical combustion model based on the NASA-CEA database was used to account for the energy conversion process in the combustor and to obtain quantitative feedback from the model in terms of fuel consumption. Once the engine and the turbomachinery of the engine were characterized the work focused on designing a 0-D dynamic engine model based on the engine’s characteristics and the experimental data using the MATLAB/Simulink environment which is capable of replicating the real engine behavior. Then the 0-D dynamic model was validated by the acquired data and used to predict the engine’s performance with a different throttle profile (close to realistic request profiles during flight). Finally the 0-D dynamic engine model was used to predict the performance of the engine using hydrogen as the input of the theoretical combustion model. The outputs of simulations running conventional kerosene Jet A-1 and hydrogen using different throttle profiles were compared showing up to a 64% reduction in fuel mass flow rate and a 3% increase in thermal efficiency using hydrogen in flight-like conditions. The results confirm the potential of hydrogen as a suitable alternative fuel for small turbine engines and aircraft.
Hydrogen Refueling Stations: A Review of the Technology Involved from Key Energy Consumption Processes to Related Energy Management Strategies
Sep 2024
Publication
Over the last few years hydrogen has emerged as a promising solution for problems related to energy sources and pollution concerns. The integration of hydrogen in the transport sector is one of the possible various applications and involves the implementation of hydrogen refueling stations (HRSs). A key obstacle for HRS deployment in addition to the need for well-developed technologies is the economic factor since these infrastructures require high capital investments costs and are largely dependent on annual operating costs. In this study we review hydrogen’s application as a fuel summarizing the principal systems involved in HRS from production to the final refueling stage. In addition we also analyze the main equipment involved in the production compression and storage processes of hydrogen. The current work also highlights the main refueling processes that impact energy consumption and the methodologies presented in the literature for energy management strategies in HRSs. With the aim of reducing energy costs due to processes that require high energy consumption most energy management strategies are based on the use of renewable energy sources in addition to the use of the power grid.
Towards a Synthetic Positive Energy District (PED) in ˙Istanbul: Balancing Cost, Mobility, and Environmental Impact
Oct 2024
Publication
The influence of mobility modes within Positive Energy Districts (PEDs) has gained limited attention despite their crucial role in reducing energy consumption and greenhouse gas emissions. Buildings in the European Union (EU) account for 40% of energy consumption and 36% of greenhouse gas emissions. In comparison transport contributes 28% of energy use and 25% of emissions with road transport responsible for 72% of these emissions. This study aims to design and optimize a synthetic PED in Istanbul that integrates renewable energy sources and public mobility systems to address these challenges. The renewable energy sources integrated into the synthetic PED model include solar energy hydrogen energy and regenerative braking energy from a tram system. Solar panels provided a substantial portion of the energy while hydrogen energy contributed to additional electricity generation. Regenerative braking energy from the tram system was also utilized to further optimize energy production within the district. This system powers a middle school 10 houses a supermarket and the tram itself. Optimization techniques including Linear Programming (LP) for economic purposes and the Weighted Sum Method (WSM) for environmental goals were applied to balance cost and CO2 emissions. The LP method identified that the PED model can achieve cost competitiveness with conventional energy grids when hydrogen costs are below $93.16/MWh. Meanwhile the WSM approach demonstrated that achieving a minimal CO2 emission level of 5.74 tons requires hydrogen costs to be $32.55/MWh or lower. Compared to a conventional grid producing 97 tons of CO2 annually the PED model achieved reductions of up to 91.26 tons. This study contributes to the ongoing discourse on sustainable urban energy systems by addressing key research gaps related to the integration of mobility modes within PEDs and offering insights into the optimization of renewable energy sources for reducing emissions and energy consumption.
The Environmental Impacts of Future Global Sales of Hydrogen Fuel Cell Vehicles
Oct 2024
Publication
During the last decade developing more sustainable transportation modes has become a primary objective for car manufacturers and governments around the world to mitigate environmental issues such as climate change the continuous increase in greenhouse gas (GHG) emissions and energy depletion. The use of hydrogen fuel cell technology as a source of energy in electric vehicles is considered an emerging and promising technology that could contribute significantly to addressing these environmental issues. In this study the effects of Hydrogen Fuel Cell Battery Electric Vehicles (HFCBEVs) on global GHG emissions compared to other technologies such as BEVs were determined based on different relevant factors such as predicted sales for 2050 (the result of the developed prediction model) estimated daily traveling distance estimated future average global electricity emission factors future average Battery Electric Vehicle (BEV) emission factors future global hydrogen production emission factors and future average HFCBEV emission factors. As a result the annual GHG emissions produced by passenger cars that are expected to be sold in 2050 were determined by considering BEV sales in the first scenario and HFCBEV replacement in the second scenario. The results indicate that the environmental benefits of HFCBEVs are expected to increase over time compared to those of BEVs due to the eco-friendly methods that are expected to be used in hydrogen production in the future. For instance in 2021 HFCBEVs could produce more GHG emissions than BEVs by 54.9% per km of travel whereas in 2050 BEVs could produce more GHG emissions than HFCBEVs by 225% per km of travel.
Above-ground Hydrogen Storage: A State-of-the-art Review
Nov 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Innovative Strategies for Combining Solar and Wind Energy with Green Hydrogen Systems
Oct 2024
Publication
The integration of wind and solar energy with green hydrogen technologies represents an innovative approach toward achieving sustainable energy solutions. This review examines state-ofthe-art strategies for synthesizing renewable energy sources aimed at improving the efficiency of hydrogen (H2 ) generation storage and utilization. The complementary characteristics of solar and wind energy where solar power typically peaks during daylight hours while wind energy becomes more accessible at night or during overcast conditions facilitate more reliable and stable hydrogen production. Quantitatively hybrid systems can realize a reduction in the levelized cost of hydrogen (LCOH) ranging from EUR 3.5 to EUR 8.9 per kilogram thereby maximizing the use of renewable resources but also minimizing the overall H2 production and infrastructure costs. Furthermore advancements such as enhanced electrolysis technologies with overall efficiencies rising from 6% in 2008 to over 20% in the near future illustrate significant progress in this domain. The review also addresses operational challenges including intermittency and scalability and introduces system topologies that enhance both efficiency and performance. However it is essential to consider these challenges carefully because they can significantly impact the overall effectiveness of hydrogen production systems. By providing a comprehensive assessment of these hybrid systems (which are gaining traction) this study highlights their potential to address the increasing global energy demands. However it also aims to support the transition toward a carbon-neutral future. This potential is significant because it aligns with both environmental goals and energy requirements. Although challenges remain the promise of these systems is evident.
Hydrogen as an Energy Source: A Review of Production Technologies and Challenges of Fuel Cell Vehicles
Oct 2024
Publication
The significant growth of both the global population and economy in recent years has led to a rise in global energy demand. Fossil fuels have a significant contribution to generating energy which has raised concerns about sustainability and environmental impact. There are widespread efforts to find alternative sources in order to reduce dependence on fossil fuels and mitigate their environmental consequences. Among the alternative sources hydrogen has emerged as a promising option due to its potential to be a clean and sustainable energy source. Hydrogen possesses several advantages such as a high calorific value a high reaction rate various sources and the ability to integrate with other renewable energy sources and existing systems. These attributes render hydrogen a stable and reliable energy resource which can help reduce greenhouse gas emissions (GHG) and transition towards a sustainable future. In this review paper distinct hydrogen production technologies such as conventional renewable and nuclear energy are investigated and compared. In addition the challenges and limitations of the application of hydrogen fuel cells on vehicles and hydrogen circulation components are explored. Finally the environmental impact of hydrogen vehicles specifically their role in promoting sustainable development is investigated.
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
19 Import Options for Green Hydrogen and Derivatives - An Overview of Efficiencies and Technology Readiness Levels
Oct 2024
Publication
The import of hydrogen and derivatives forms part of many national strategies and is fundamental to achieving climate protection targets. This paper provides an overview and technical comparison of import pathways for hydrogen and derivatives in terms of efficiency technological maturity and development and construction times with a focus on the period up to 2030. The import of hydrogen via pipeline has the highest system efficiency at 57–67 % and the highest technological maturity with a technology readiness level (TRL) of 8–9. The import of ammonia and methanol via ship and of SNG via pipeline shows efficiencies in the range of 39–64 % and a technological maturity of TRL 7 to 9 when using point sources. Liquid hydrogen LOHC and Fischer-Tropsch products have the lowest efficiency and TRL in comparison. The use of direct air capture (DAC) reduces efficiency and TRL considerably. Reconversion of the derivatives to hydrogen is also associated with high losses and is not achievable for all technologies on an industrial scale up to 2030. In the short to medium term import routes for derivatives that can utilise existing infrastructures and mature technologies are the most promising for imports. In the long term the most promising option is hydrogen via pipelines.
Pressure Decline and Gas Expansion in Underground Hydrogen Storage: A Pore-scale Percolation Study
Aug 2024
Publication
Using high-resolution micro-CT imaging at 2.98 μm/voxel we compared the percolation of hydrogen in gas injection with gas expansion for a hydrogen-brine system in Bentheimer sandstone at 1 MPa and 20 ◦C representing hydrogen storage in an aquifer. We introduced dimensionless numbers to quantify the contribution of advection and expansion to displacement. We analysed the 3D spatial distribution of gas and its displacement in both cases and demonstrated that in gas injection hydrogen can only advance from a connected cluster in an invasion-percolation type process while in gas expansion hydrogen can access more of the pore space even from disconnected clusters. The average gas saturation in the sample increased from 30% to 50% by gas expansion and we estimated that 10% of the expanded volume is attributed to hydrogen exsolution from the brine. This work emphasises the importance of studying the combined effects of pressure decline and gas withdrawal in hydrogen storage to assess the influence of gas expansion on remobilising trapped gases.
The Potential for the Use of Hydrogen Storage in Energy Cooperatives
Oct 2024
Publication
According to the European Hydrogen Strategy hydrogen will solve many of the problems with energy storage for balancing variable renewable energy sources (RES) supply and demand. At the same time we can see increasing popularity of the so-called energy communities (e.g. cooperatives) which (i) enable groups of entities to invest in manage and benefit from shared RES energy infrastructure; (ii) are expected to increase the energy independence of local communities from large energy corporations and increase the share of RES. Analyses were conducted on 2000 randomly selected energy cooperatives and four energy cooperatives formed on the basis of actual data. The hypotheses assumed in the research and positively verified in this paper are as follows: (i) there is a relationship between hydrogen storage capacity and the power of RES which allows an energy community to build energy independence; (ii) the type of RES generating source is meaningful when optimizing hydrogen storage capacity. The paper proves it is possible to build “island energy independence” at the local level using hydrogen storage and the efficiency of the power-to-power chain. The results presented are based on simulations carried out using a dedicated optimization model implemented by mixed integer programming. The authors’ next research projects will focus on optimizing capital expenditures and operating costs using the Levelized Cost of Electricity and Levelized Cost of Hydrogen methodologies.
Design Considerations and Preliminary Hydrodynamic Analysis of an Offshore Decentralised Floating Wind-hydrogen System
Sep 2024
Publication
Despite the number of works on the techno-economics of offshore green hydrogen production there is a lack of research on the design of floating platforms to concomitantly support hydrogen production facilities and wind power generation equipment. Indeed previous studies on offshore decentralised configuration for hydrogen production implicitly assume that a floating platform designed for wind power generation (FOWT) can be also suitable as a floating wind hydrogen system (FWHS). This work proposes a novel design for an offshore decentralised FWHS and analyses the effects of the integration of the hydrogen facilities on the platform’s dynamics and how this in turn affects the performances of the wind turbine and the hydrogen equipment. Our findings indicate that despite the reduction in platform’s stability the performance of the wind turbine is barely affected. Regarding the hydrogen system our results aim at contributing to further assessment and design of this equipment for offshore conditions.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Hydrogen Production from Wastewater: A Comprehensive Review of Conventional and Solar Powered Technologies
Mar 2024
Publication
The need to reduce the carbon footprint of conventional energy sources has made green hydrogen a promising solution for the energy transition. The most environmentally friendly way to produce hydrogen is through water-based production using renewable energy. However the availability of fresh water is limited so switching to wastewater instead of fresh water is the key solution to this problem. In response to this issue the present review reports the main findings of the research studies dealing with the feasibility of hydrogen production from wastewater using various technologies including biological electrochemical and advanced oxidation routes. These methods have been studied in a large number of experiments with the aim of investigating and improving the potential of each method. On the other hand the maturity of solar energy technologies has led researchers to focus on the possibility of harnessing this source and combining it with wastewater treatment techniques for the production of green hydrogen. Therefore the present review pays special attention to solar driven hydrogen production from wastewater by highlighting the potential of several technologies for simultaneous water treatment and green hydrogen production from wastewater. Recent results limitations challenges possible improvements and techno-economic assessments reported by several authors as well as future directions of research and industrial implementation in this field are reported.
No more items...