- Home
- A-Z Publications
- Publications
Publications
Underground Storage of Hydrogen and Hydrogen/methane Mixtures in Porous Reservoirs: Influence of Reservoir Factors and Engineering Choices on Deliverability and Storage Operations
Jul 2023
Publication
Seasonal storage of natural gas (NG) which primarily consists of methane (CH4) has been practiced for more than a hundred years at underground gas storage (UGS) facilities that use depleted hydrocarbon reservoirs saline aquifers and salt caverns. To support a transition to a hydrogen (H2) economy similar facilities are envisioned for long-duration underground H2 storage (UHS) of either H2 or H2/CH4 mixtures. Experience with UGS can be used to guide the deployment of UHS so we identify and quantify factors (formation/fluid properties and engineering choices) that influence reservoir behavior (e.g. viscous fingering and gravity override) the required number of injection/withdrawal wells and required storage volume contrasting the differences between the storage of CH4 H2 and H2/CH4 mixtures. The most important engineering choices are found to be the H2 fraction in H2/CH4 mixtures storage depth and injection rate. Storage at greater depths (higher pressure) but with relatively lower temperature is more favorable because it maximizes volumetric energy-storage density while minimizing viscous fingering and gravity override due to buoyancy. To store an equivalent amount of energy storing H2/CH4 mixtures in UHS facilities will require more wells and greater reservoir volume than corresponding UGS facilities. We use our findings to make recommendations about further research needed to guide deployment of UHS in porous reservoirs.
Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review
Dec 2022
Publication
In this review we compare hydrogen production from waste by pyrolysis and bioprocesses. In contrast the pyrolysis feed was limited to plastic and tire waste unlikely to be utilized by biological decomposition methods. Recent risks of pyrolysis such as pollutant emissions during the heat decomposition of polymers and high energy demands were described and compared to thresholds of bioprocesses such as dark fermentation. Many pyrolysis reactors have been adapted for plastic pyrolysis after successful investigation experiences involving waste tires. Pyrolysis can transform these wastes into other petroleum products for reuse or for energy carriers such as hydrogen. Plastic and tire pyrolysis is part of an alternative synthesis method for smart polymers including semi-conductive polymers. Pyrolysis is less expensive than gasification and requires a lower energy demand with lower emissions of hazardous pollutants. Short-time utilization of these wastes without the emission of metals into the environment can be solved using pyrolysis. Plastic wastes after pyrolysis produce up to 20 times more hydrogen than dark fermentation from 1 kg of waste. The research summarizes recent achievements in plastic and tire waste pyrolysis development.
CFD Modeling and Experimental Validation of an Alkaline Water Electrolysis Cell for Hydrogen Production
Dec 2020
Publication
Although alkaline water electrolysis (AWE) is the most widespread technology for hydrogen production by electrolysis its electrochemical and fluid dynamic optimization has rarely been addressed simultaneously using Computational Fluid Dynamics (CFD) simulation. In this regard a two-dimensional (2D) CFD model of an AWE cell has been developed using COMSOL® software and then experimentally validated. The model involves transport equations for both liquid and gas phases as well as equations for the electric current conservation. This multiphysics approach allows the model to simultaneously analyze the fluid dynamic and electrochemical phenomena involved in an electrolysis cell. The electrical response was evaluated in terms of polarization curve (voltage vs. current density) at different operating conditions: temperature electrolyte conductivity and electrode-diaphragm distance. For all cases the model fits very well with the experimental data with an error of less than 1% for the polarization curves. Moreover the model successfully simulates the changes on gas profiles along the cell according to current density electrolyte flow rate and electrode-diaphragm distance. The combination of electrochemical and fluid dynamics studies provides comprehensive information and makes the model a promising tool for electrolysis cell design.
Towards Energy Freedom: Exploring Sustainable Solutions for Energy Independence and Self-sufficiency using Integrated Renewable Energy-driven Hydrogen System
Jan 2024
Publication
n the pursuit of sustainable energy solutions the integration of renewable energy sources and hydrogen technologies has emerged as a promising avenue. This paper introduces the Integrated Renewable Energy-Driven Hydrogen System as a holistic approach to achieve energy independence and self-sufficiency. Seamlessly integrating renewable energy sources hydrogen production storage and utilization this system enables diverse applications across various sectors. By harnessing solar and/or wind energy the Integrated Renewable EnergyDriven Hydrogen System optimizes energy generation distribution and storage. Employing a systematic methodology the paper thoroughly examines the advantages of this integrated system over other alternatives emphasizing its zero greenhouse gas emissions versatility energy resilience and potential for large-scale hydrogen production. Thus the proposed system sets our study apart offering a distinct and efficient alternative compared to conventional approaches. Recent advancements and challenges in hydrogen energy are also discussed highlighting increasing public awareness and technological progress. Findings reveal a payback period ranging from 2.8 to 6.7 years depending on the renewable energy configuration emphasizing the economic attractiveness and potential return on investment. This research significantly contributes to the ongoing discourse on renewable energy integration and underscores the viability of the Integrated Renewable EnergyDriven Hydrogen System as a transformative solution for achieving energy independence. The employed model is innovative and transferable to other contexts.
Lessons Learned and Recommendations from Analysis of Hydrogen Incidents and Accidents to Support Risk Assessment for the Hydrogen Economy
Feb 2024
Publication
This study addresses challenges associated with hydrogen’s physio-chemical characteristics and the need for safety and public acceptance as a precursor to the emerging hydrogen economy. It highlights the gap in existing literature regarding lessons learned from events in the green hydrogen production value chain. The study aims to use the documented lessons learned from previous hydrogen-related events to assist in enhancing safety measures and to guide stakeholders on how to avoid and mitigate future hydrogen-related events. Given the potential catastrophic consequences robust safety systems are essential for hydrogen economy development. The work underscores the importance of human and operational factors as root causes of these events. The paper recommends establishing a specialized hydrogen-related event database to support risk assessment and risk mitigation thus catering to the growing hydrogen industry’s needs and facilitating quick access to critical information for stakeholders in the private and public sectors.
Industrial Development Status and Prospects of the Marine Fuel Cell: A Review
Jan 2023
Publication
In the context of the increasingly strict pollutant emission regulations and carbon emission reduction targets proposed by the International Maritime Organization the shipping industry is seeking new types of marine power plants with the advantages of high efficiency and low emissions. Among the possible alternatives the fuel cell is considered to be the most practical technology as it provides an efficient means to generate electricity with low pollutant emissions and carbon emissions. Very few comprehensive reviews focus on the maritime applications of the fuel cell. Thus news reports and literature on the maritime applications of the fuel cell in the past sixty years were collected and the industrial development status and prospects of the marine fuel cell were summarized as follows. Some countries in Europe North America and Asia have invested heavily in researching and developing the marine fuel cell and a series of research projects have achieved concrete results such as the industrialized marine fuel cell system or practical demonstration applications. At present the worldwide research of the marine fuel cell focuses more on the proton exchange membrane fuel cell (PEMFC). However the power demand of the marine fuel cell in the future will show steady growth and thus the solid oxide fuel cell (SOFC) with the advantages of higher power and fuel diversity will be the mainstream in the next research stage. Although some challenges exist the SOFC can certainly lead the upgrading and updating of the marine power system with the cooperative efforts of the whole world.
Roles of Bioenergy and Green Hydrogen in Large Scale Energy Storage for Carbon Neutrality
Aug 2023
Publication
A new technical route to incorporate excess electricity (via green hydrogen generation by electrolysis) into a biorefinery to produce modern bioenergy (advanced biofuels) is proposed as a promising alternative. This new route involves storing hydrogen for mobile and stationary applications and can be a three-bird-one-stone solution for the storage of excess electrical energy storage of green hydrogen and high-value utilization of biomass.
Multiperiod Modeling and Optimization of Hydrogen-Based Dense Energy Carrier Supply Chains
Feb 2024
Publication
The production of hydrogen-based dense energy carriers (DECs) has been proposed as a combined solution for the storage and dispatch of power generated through intermittent renewables. Frameworks that model and optimize the production storage and dispatch of generated energy are important for data-driven decision making in the energy systems space. The proposed multiperiod framework considers the evolution of technology costs under different levels of promotion through research and targeted policies using the year 2021 as a baseline. Furthermore carbon credits are included as proposed by the 45Q tax amendment for the capture sequestration and utilization of carbon. The implementation of the mixed-integer linear programming (MILP) framework is illustrated through computational case studies to meet set hydrogen demands. The trade-offs between different technology pathways and contributions to system expenditure are elucidated and promising configurations and technology niches are identified. It is found that while carbon credits can subsidize carbon capture utilization and sequestration (CCUS) pathways substantial reductions in the cost of novel processes are needed to compete with extant technology pathways. Further research and policy push can reduce the levelized cost of hydrogen (LCOH) by upwards of 2 USD/kg.
Experimental Investigation of Fluid-structure Interaction in the Case of Hydrogen/Air Detonation Impacting a Thin Plate
Sep 2023
Publication
In recent years the use and development of hydrogen as a carbon-free energy carrier have grown. However as hydrogen is flammable with air safety issues are raised. In the case of ignition especially in confined space the flame can accelerate and reach the detonation regime causing severe structural damage [1].<br/>To assess these safety issues it is required to understand the fluid-structure interaction in the case of a detonation impacting a deformable structure and to quantify and model this interaction [2]. At the CEA (Commissariat à l’énergie atomique et aux energies alternatives) a combustion tube experimental facility [3] for studying the fluid-structure interaction in the case of hydrogen combustion has been developed. Several Photomultipliers and Pressure sensors are placed along the tube to monitor the flame acceleration and the detonation location. A fluid-structure interaction (FSI) module or a non-deformable flange can be placed at the end of the tube. Post-processing of the sensor’s signal will provide insight into the occurring phenomena inside the tube.<br/>Several experimental campaigns have been conducted with various initial conditions and configurations at the end of the tube. In this contribution the experiments resulting in a detonation are presented. First the recorded pressure and velocities will be compared to theoretical values coming from combustion models [4] [5]. Secondly the impulse before and after reflection for thin plate and non-deformable flange will be compared to quantify the energy transmitted to the plate and the influence of the fluid-structure interaction on the reflected shock.
Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies
Nov 2023
Publication
Electrification using renewable energy sources represents a clear path toward solving the current global energy crisis. In Colombia this challenge also involves the diversification of the electrical energy sources to overcome the historical dependence on hydropower. In this context green hydrogen represents a key energy carrier enabling the storage of renewable energy as well as directly powering industrial and transportation sectors. This work explores the realistic potential of the main renewable energy sources including solar photovoltaics (8172 GW) hydropower (56 GW) wind (68 GW) and biomass (14 GW). In addition a case study from abroad is presented demonstrating the feasibility of using each type of renewable energy to generate green hydrogen in the country. At the end an analysis of the most likely regions in the country and paths to deploy green hydrogen projects are presented favoring hydropower in the short term and solar in the long run. By 2050 this energy potential will enable reaching a levelized cost of hydrogen (LCOH) of 1.7 1.5 3.1 and 1.4 USD/kg-H2 for solar photovoltaic wind hydropower and biomass respectively.
Artificial Intelligence-Driven Innovations in Hydrogen Safety
Jun 2024
Publication
This review explores recent advancements in hydrogen gas (H2 ) safety through the lens of artificial intelligence (AI) techniques. As hydrogen gains prominence as a clean energy source ensuring its safe handling becomes paramount. The paper critically evaluates the implementation of AI methodologies including artificial neural networks (ANN) machine learning algorithms computer vision (CV) and data fusion techniques in enhancing hydrogen safety measures. By examining the integration of wireless sensor networks and AI for real-time monitoring and leveraging CV for interpreting visual indicators related to hydrogen leakage issues this review highlights the transformative potential of AI in revolutionizing safety frameworks. Moreover it addresses key challenges such as the scarcity of standardized datasets the optimization of AI models for diverse environmental conditions etc. while also identifying opportunities for further research and development. This review foresees faster response times reduced false alarms and overall improved safety for hydrogen-related applications. This paper serves as a valuable resource for researchers engineers and practitioners seeking to leverage state-of-the-art AI technologies for enhanced hydrogen safety systems.
Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation
Jan 2024
Publication
In the framework of the “Multidisciplinary Optimization and Regulations for Low-boom and Environmentally Sustainable Supersonic aviation” project pursued by a consortium of European government and academic institutions coordinated by Politecnico di Torino under the European Commission Horizon 2020 financial support the Italian Aerospace Research Centre is computationally investigating the high-pressure hydrogen/air kinetic combustion in the operative conditions typically encountered in supersonic aeronautic ramjet engines. This task is being carried out starting from the zero-dimensional and one-dimensional chemical kinetic assessment of the complex and strongly pressure-sensitive ignition behavior and flame propagation characteristics of hydrogen combustion through the validation against experimental shock tube and laminar flame speed measurements. The 0D results indicate that the kinetic mechanism by Politecnico di Milano and the scheme formulated by Kéromnès et al. provide the best matching with the experimental ignition delay time measurements carried out in high-pressure shock tube strongly argon-diluted reaction conditions. Otherwise the best behavior in terms of laminar flame propagation is achieved by the Mueller scheme while the other investigated kinetic mechanisms fail to predict the flame speeds at elevated pressures. This confirms the non-linear and intensive pressure-sensitive behavior of hydrogen combustion especially in the critical high-pressure and low-temperature region which is hard to be described by a single all-encompassing chemical model.
Exploratory Numerical Study of Liquid Hydrogen Hazards
Sep 2023
Publication
Hydrogen is one of a handful of new low carbon solutions that will be critical for the transition to net zero. The upscaling of production and applications entails that hydrogen is likely to be stored in liquid phase (LH2) at cryogenic conditions to increase its energy density. Widespread LH2 use as an alternative fuel will require significant infrastructure upgrades to accommodate increased bulk transport storage and delivery. However current LH2 bulk storage separation distances are based on subjective expert recommendations rather than experimental observations or physical models. Experimental studies of large-scale LH2 release are challenging and costly. The existing large-scale tests are scarce and numerical studies are a viable option to investigate the existing knowledge gaps. Controlled or accidental releases of LH2 for hydrogen refueling infrastructure would result in high momentum two-phase jets or formation of liquid pools depending on release conditions. Both release scenarios lead to a flammable/explosive cloud posing a safety issue to the public.<br/>The manuscript reports exploratory study to numerically determine the safety zone resulting from cryogenic hydrogen releases related to LH2 storage and refueling using the in-house HyFOAM solver further modified for gaseous hydrogen releases at cryogenic conditions and the subsequent atmospheric dispersion and ignition within the platform of OpenFOAM V8.0. The current version of the solver neglects the flashing process by assuming that the temperature of the stored LH2 is equal to the boiling point at the atmospheric condition. Numerical simulations of dispersion and subsequent ignition of LH2 release scenarios with respect to different release orientations release rates release temperatures and weather conditions were performed. Both hydrogen concentration and temperature fields were predicted and the boundary of zones within the flammability limit was also defined. The study also considered the sensitivities of the consequences to the release orientation wind speed ambient temperature and release content etc. The effect of different barrier walls on the deflagration were also evaluated by changing the height and location.
Numerical Simulation of Underexpanded Cryogenic Hydrogen Jets
Sep 2023
Publication
As a clean and renewable energy carrier hydrogen is one of the most promising alternative fuels. Cryogenic compressed hydrogen can achieve high storage density without liquefying hydrogen which has good application prospects. Investigation of the safety problems of cryogenic compressed hydrogen is necessary before massive commercialization. The present study modeled the instantaneous flow field using the Large Eddy Simulation (LES) for cryogenic (50 and 100 K) underexpanded hydrogen jets released from a round nozzle of 1.5 mm diameter at pressures of 0.5-5.0 MPa. The simulation results were compared with the experimental data for validation. The axial and radial concentration and velocity distributions were normalized to show the self-similar characteristics of underexpanded cryogenic jets. The shock structures near the nozzle were quantified to correlate the shock structure sizes to the source pressure and nozzle diameter. The present study on the concentration and velocity distributions of underexpanded cryogenic hydrogen jets is useful for developing safety codes and standards.
Exploring Dilution Potential for Full Load Operation of Medium Duty Hydrogen Engine for the Transport Sector
Jul 2023
Publication
The current political scenario and the concerns for global warming have pushed very harsh regulations on conventional propulsion systems based on the use of fossil fuels. New technologies are being promoted but their current technological status needs further research and development for them to become a competitive substitute for the ever-present internal combustion engine. Hydrogen-fueled internal combustion engines have demonstrated the potential of being a fast way to reach full decarbonization of the transport sector but they still have to face some limitations in terms of the operating range of the engine. For this reason the present work evaluates the potential of reaching full load operation on a conventional diesel engine assuming the minimum modifications required to make it work under H2 combustion. This study shows the methodology through which the combustion model was developed and then used to evaluate a multi-cylinder engine representative of the medium to high duty transport sector. The evaluation included different strategies of dilution to control the combustion performance and the results show that the utilization of EGR brings different benefits to engine operation in terms of efficiency improvement and emissions reduction. Nonetheless the requisites defined for the needed turbocharging system are harsher than expected and result in a potential non-conventional technical solution.
A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming
Mar 2020
Publication
Hydrogen is an important raw material in chemical industries and the steam reforming of light hydrocarbons (such as methane) is the most used process for its production. In this process the use of a catalyst is mandatory and if compared to precious metal-based catalysts Ni-based catalysts assure an acceptable high activity and a lower cost. The aim of a distributed hydrogen production for example through an on-site type hydrogen station is only reachable if a novel reforming system is developed with some unique properties that are not present in the large-scale reforming system. These properties include among the others (i) daily startup and shutdown (DSS) operation ability (ii) rapid response to load fluctuation (iii) compactness of device and (iv) excellent thermal exchange. In this sense the catalyst has an important role. There is vast amount of information in the literature regarding the performance of catalysts in methane steam reforming. In this short review an overview on the most recent advances in Ni based catalysts for methane steam reforming is given also regarding the use of innovative structured catalysts.
Stakeholder Perspectives on the Scale-up of Green Hydrogen and Electrolyzers
Nov 2023
Publication
Green hydrogen is a promising alternative to fossil fuels. However current production capacities for electrolyzers and green hydrogen are not in line with national political goals and projected demand. Considering these issues we conducted semi-structured interviews to determine the narratives of different stakeholders during this transformation as well as challenges and opportunities for the green hydrogen value chain. We interviewed eight experts with different roles along the green hydrogen value chain ranging from producers and consumers of green hydrogen to electrolyzer manufacturers and consultants as well as experts from the political sphere. Most experts see the government as necessary for scale-up by setting national capacity targets policy support and providing subsidies. However the experts also accuse the governments of delaying development through overregulation and long implementation times for regulations. The main challenges that were identified are the current lack of renewable electricity and demand for green hydrogen. Demand for green hydrogen is influenced by supply costs which partly depend on prices for electrolyzers. However one key takeaway of the interviews is the skeptical assessments by the experts on the currently discussed estimates for price reduction potential of electrolyzers. While demand supply and prices are all factors that influence each other they result in feedback loops in investment decisions for the energy and manufacturing industries. A second key takeaway is that according to the experts current investment decisions in new production capacities are not solely dependent on short-term financial gains but also based on expected first mover advantages. These include experience and market share which are seen as factors for opportunities for future financial gains. Summarized the results present several challenges and opportunities for green hydrogen and electrolyzers and how to address them effectively. These insights contribute to a deeper understanding of the dynamics of the emerging green hydrogen value chain.
Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
Mar 2023
Publication
Environmental emissions global warming and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand there has been significant progress in artificial intelligence machine learning and designing data-driven intelligent controllers. These techniques have found much attention within the community and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction control energy management and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve classify and compare and future trends and directions for sustainability are discussed.
Validation of a Hydrogen Jet Fire Model in FDS
Sep 2023
Publication
Hydrogen jet fire occurs with high probability when hydrogen leaks from high-pressure equipment. The hydrogen jet fire is characterized by its high velocity and energy. Computational Fluid Dynamics (CFD) numerical analysis is a prominent way to predict the potential hazards associated with hydrogen jet fire. Validation of the CFD model is essential to ensure and quantify the accuracy of numerical results. This study focuses on the validation of the hydrogen jet fire model using Fire Dynamic Simulation (FDS). Hydrogen release is modeled using high-speed Lagrangian particles released from a virtual nozzle thus avoiding the modeling of the actual nozzle. The mesh size sensitivity analysis of the model is carried out in a container-size domain with 0.04m – 0.08m resolution of the jet. The model is validated by comparing gas temperatures and heat fluxes with test data. The promising results demonstrated that the model could predict the hazardous influence of the jet fire.
Hydrogen-Powered Vehicles: Comparing the Powertrain Efficiency and Sustainability of Fuel Cell versus Internal Combustion Engine Cars
Feb 2024
Publication
Due to the large quantities of carbon emissions generated by the transportation sector cleaner automotive technologies are needed aiming at a green energy transition. In this scenario hydrogen is pointed out as a promising fuel that can be employed as the fuel of either a fuel cell or an internal combustion engine vehicle. Therefore in this work we propose the design and modeling of a fuel cell versus an internal combustion engine passenger car for a driving cycle. The simulation was carried out using the quasistatic simulation toolbox tool in Simulink considering the main powertrain components for each vehicle. Furthermore a brief analysis of the carbon emissions associated with the hydrogen production method is addressed to assess the clean potential of hydrogen-powered vehicles compared to conventional fossil fuel-fueled cars. The resulting analysis has shown that the hydrogen fuel cell vehicle is almost twice as efficient compared to internal combustion engines resulting in a lower fuel consumption of 1.05 kg-H2/100 km in the WLTP driving cycle for the fuel cell vehicle while the combustion vehicle consumed about 1.79 kg-H2/100 km. Regarding using different hydrogen colors to fuel the vehicle hydrogen-powered vehicles fueled with blue and grey hydrogen presented higher carbon emissions compared to petrol-powered vehicles reaching up to 2–3 times higher in the case of grey hydrogen. Thus green hydrogen is needed as fuel to keep carbon emissions lower than conventional petrol-powered vehicles.
No more items...