Skip to content
1900

Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review

Abstract

In this review, we compare hydrogen production from waste by pyrolysis and bioprocesses. In contrast, the pyrolysis feed was limited to plastic and tire waste unlikely to be utilized by biological decomposition methods. Recent risks of pyrolysis, such as pollutant emissions during the heat decomposition of polymers, and high energy demands were described and compared to thresholds of bioprocesses such as dark fermentation. Many pyrolysis reactors have been adapted for plastic pyrolysis after successful investigation experiences involving waste tires. Pyrolysis can transform these wastes into other petroleum products for reuse or for energy carriers, such as hydrogen. Plastic and tire pyrolysis is part of an alternative synthesis method for smart polymers, including semi-conductive polymers. Pyrolysis is less expensive than gasification and requires a lower energy demand, with lower emissions of hazardous pollutants. Short-time utilization of these wastes, without the emission of metals into the environment, can be solved using pyrolysis. Plastic wastes after pyrolysis produce up to 20 times more hydrogen than dark fermentation from 1 kg of waste. The research summarizes recent achievements in plastic and tire waste pyrolysis development.

Funding source: The research was supported by the National Centre for Research and Development in Poland, under project no. BIOSTRATEG 3/344128/12/NCBR/2017, and the Institute of Fluid-Flow Machinery, Polish Academy of Science in Gdansk (grant number FBW-44—Solowski).
Related subjects: Production & Supply Chain
Countries: Egypt ; Turkey
Loading

Article metrics loading...

/content/journal4872
2022-12-06
2024-12-22
/content/journal4872
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error