- Home
- A-Z Publications
- Publications
Publications
Assessing the Social Acceptance of Key Technologies for the German Energy Transition
Jan 2022
Publication
Background: The widespread use of sustainable energy technologies is a key element in the transformation of the energy system from fossil-based to zero-carbon. In line with this technology acceptance is of great importance as resistance from the public can slow down or hinder the construction of energy technology projects. The current study assesses the social acceptance of three energy technologies relevant for the German energy transition: stationary battery storage biofuel production plants and hydrogen fuel station. Methods: An online survey was conducted to examine the public’s general and local acceptance of energy technologies. Explored factors included general and local acceptance public concerns trust in relevant stakeholders and attitudes towards financial support. Results: The results indicate that general acceptance for all technologies is slightly higher than local acceptance. In addition we discuss which public concerns exist with regard to the respective technologies and how they are more strongly associated with local than general acceptance. Further we show that trust in stakeholders and attitudes towards fnancial support is relatively high across the technologies discussed. Conclusions: Taken together the study provides evidence for the existence of a “general–local” gap despite measuring general and local acceptance at the same level of specifcity using a public sample. In addition the collected data can provide stakeholders with an overview of worries that might need to be addressed when planning to implement a certain energy project.
Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology
Oct 2018
Publication
Methanol is currently considered one of the most useful chemical products and is a promising building block for obtaining more complex chemical compounds such as acetic acid methyl tertiary butyl ether dimethyl ether methylamine etc. Methanol is the simplest alcohol appearing as a colorless liquid and with a distinctive smell and can be produced by converting CO2 and H2 with the further benefit of significantly reducing CO2 emissions in the atmosphere. Indeed methanol synthesis currently represents the second largest source of hydrogen consumption after ammonia production. Furthermore a wide range of literature is focused on methanol utilization as a convenient energy carrier for hydrogen production via steam and autothermal reforming partial oxidation methanol decomposition or methanol–water electrolysis reactions. Last but not least methanol supply for direct methanol fuel cells is a well-established technology for power production. The aim of this work is to propose an overview on the commonly used feedstocks (natural gas CO2 or char/biomass) and methanol production processes (from BASF—Badische Anilin und Soda Fabrik to ICI—Imperial Chemical Industries process) as well as on membrane reactor technology utilization for generating high grade hydrogen from the catalytic conversion of methanol reviewing the most updated state of the art in this field.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants
Mar 2023
Publication
This paper uses established and recently introduced methods from the applied mathematics and statistics literature to study trends in the end-use sector and the capacity of low-carbon hydrogen projects in recent and upcoming decades. First we examine distributions in plants over time for various end-use sectors and classify them according to metric discrepancy observing clear similarity across all industry sectors. Next we compare the distribution of usage sectors between different continents and examine the changes in sector distribution over time. Finally we judiciously apply several regression models to analyse the association between various predictors and the capacity of global hydrogen projects. Across our experiments we see a welcome exponential growth in the capacity of zero-carbon hydrogen plants and significant growth of new and planned hydrogen plants in the 2020’s across every sector.
Fuel Cells in Road Vehicles
Nov 2022
Publication
Issues related to the reduction of the environmental impact of means of road transport by the use of electric motors powered by Proton Exchange Membrane (PEM) fuel cells are presented in this article. The overall functional characteristics of electric vehicles are presented as well as the essence of the operation of a fuel cell. On the basis of analyzing the energy conversion process significant advantages of electric drive are demonstrated especially in vehicles for urban and suburban applications. Moreover the analyzed literature indicated problems of controlling and maintaining fuel cell power caused by its highest dynamic and possible efficiency. This control was related to the variable load conditions of the fuel cell vehicle (FCV) engine. The relationship with the conventional dependencies in the field of vehicle dynamics is demonstrated. The final part of the study is related to the historical outline and examples of already operating fuel cell systems using hydrogen as an energy source for energy conversion to power propulsion vehicle’s engines. In conclusion the necessity to conduct research in the field of methods for controlling the power of fuel cells that enable their effective adaptation to the temporary load resulting from the conditions of vehicle motion is indicated.
Fission Battery Markets and Economic Requirements
Oct 2022
Publication
Fission Batteries (FBs) are nuclear reactors for customers with heat demands less than 250 MWt—replacing oil and natural gas in a low-carbon economy. Individual FBs would have outputs between 5 and 30 MWt. The small FB size has two major benefits: (1) the possibility of mass production and (2) ease of transport and leasing with return of used FBs to factory for refurbishing and reuse. Comparatively these two features are lacking in larger conventional reactors. Larger reactors are not transportable and thus can’t obtain the manufacturing economics possible with mass production or the operational advantages of returning the FB to the factory after use. Leasing places the regulatory maintenance and fuel-cycle burden on the leasing company that is minimized by large-fleet operations of identical units. The markets and economic requirements for FBs were examined. The primary existing markets are industrial biofuels off-grid electricity and container ships. Two major future markets were identified—advanced biofuels and hydrogen. In a low-carbon world the competitive price range for heat is $20–50/MWh ($6–15/million BTU) and $70–115/MWh for non-grid electricity. The primary competition in these sectors is likely to be biofuels and hydrogen produced using alternative energy sources—grid electricity is non-competitive. Larger users of energy have alternative low-carbon energy choices including modular nuclear reactors and fossil fuels with carbon capture and sequestration (CCS).
Source-to-sink Efficiency of Blue and Green District Heating and Hydrogen-based Heat Supply Systems
Apr 2022
Publication
Hydrogen is commonly mentioned as a future proof energy carrier. Hydrogen supporters 6 advocate for repurposing existing natural gas grids for a sustainable hydrogen supply. While the 7 long-term vision of the hydrogen community is green hydrogen the community acknowledges that 8 in the short term it will be to large extent manufactured from natural gas but in a decarbonized 9 way giving it the name blue hydrogen. While hydrogen has a role to play in hard to decarbonize 10 sectors its role for building heating demands is doubtful as mature and more energy efficient alter- 11 natives exist. As building heat supply infrastructures built today will operate for the decades to 12 come it is of highest importance to ensure that the most efficient and sustainable infrastructures are 13 chosen. This paper compares the source to sink efficiencies of hydrogen-based heat supply system 14 to a district heating system operating on the same primary energy source. The results show that a 15 natural gas-based district heating could be 267% more efficient and consequently have significantly 16 lower global warming potential than a blue hydrogen-based heat supply A renewable power-based 17 district heating could achieve above 440% higher efficiency than green hydrogen-based heat supply 18 system.
Optimal Configuration and Scheduling Model of a Multi-Park Integrated Energy System Based on Sustainable Development
Mar 2023
Publication
To maximize the utilization of renewable energy (RE) as much as possible in cold areas while reducing traditional energy use and carbon dioxide emissions a three-layer configuration optimization and scheduling model considering a multi-park integrated energy system (MPIES) a shared energy storage power station (SESPS) and a hydrogen refueling station (HRS) cooperation based on the Wasserstein generative adversarial networks the simultaneous backward reduction technique and the Quantity-Contour (WGAN-SBR_QC) method is proposed. Firstly the WGAN-SBR_QC method is used to generate typical scenarios of RE output. Secondly a three-layer configuration and schedule optimization model is constructed using MPIES SESPS and HRS. Finally the model’s validity is investigated by selecting a multi-park in Eastern Mongolia. The results show that: (1) the typical scenario of RE output improved the overall robustness of the system. (2) The profits of the MPIES and HRS increased by 1.84% and 52.68% respectively and the SESPS profit increased considerably. (3) The proposed approach increased RE utilization to 99.47% while reducing carbon emissions by 32.67%. Thus this model is a reference for complex energy system configuration and scheduling as well as a means of encouraging RE use.
Chile and its Potential Role Among the Most Affordable Green Hydrogen Producers in the World
Jul 2022
Publication
As result of the adverse effects caused by climate change the nations have decided to accelerate the transition of the energy matrix through the use of non-conventional sources free of polluting emissions. One of these alternatives is green hydrogen. In this context Chile stands out for the exceptional climate that makes it a country with a lot of renewable resources. Such availability of resources gives the nation clear advantages for hydrogen production strong gusts of wind throughout the country the most increased solar radiation in the world lower cost of production of electrical supplies among others. Due to this the nation would be between the lowest estimated cost for hydrogen production i.e. 1.5 USD/kg H2 approximately scenario that would place it as one of the cheapest green hydrogen producer in the world.
Thermodynamic Analysis of Solid Oxide Electrolyzer Integration with Engine Waste Heat Recovery for Hydrogen Production
Jul 2021
Publication
Water electrolysis based on solid oxide electrolysis cell (SOEC) exhibits high conversion efficiency due to part of energy demand can be derived from thermal energy. Therefore it can be integrated with other sources of thermal energy to reduce the consumption of electrical energy. In this paper a diesel engine is integrated with the SOEC stacks for heat recovery steam generator (HRSG). The thermal energy from the engine exhaust gas used to heat the inlet H2O of the SOEC is carried out as the integration case. A SOEC plant using electricity as the thermal heat input is selected as the base case. Thermodynamic analysis of the benchmark and integration scheme reveals that an electrical efficiency of 73.12% and 85.17% can be achieved respectively. The diesel to power efficiency can be increased to 70% when the exhaust gas is completely utilized by the SOEC system. The impacts of some key parameters including current density and operating temperature on system performance have also been conducted and found that the system has optimized parameters of current density and operating temperature to achieve better performance.
Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis
Sep 2021
Publication
This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries system sizes evaluation methods and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review full identification of the sources of discrepancies (methods applied assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
P2H Modeling and Operation in the Microgrid Under Coupled Electricity–Hydrogen Markets
Dec 2021
Publication
The uncertainty and volatility of wind power have led to large-scale wind curtailment during grid connections. The adoption of power-to-hydrogen (P2H) system in a microgrid (MG) can mitigate the renewable curtailment by hydrogen conversion and storage. This paper conducts unified modeling for different types of P2H systems and considers the multi-energy trading in a hydrogen-coupled power market. The proposed bi-level equilibrium model is beneficial to minimize the energy cost of microgrids. Firstly a microgrid operation model applied to different P2H systems including an alkaline electrolysis cell (AEC) a proton exchange membrane electrolysis cell (PEMEC) or a solid oxide electrolysis cell (SOEC) is proposed at the upper level. Secondly an electricity market–clearing model and a hydrogen market model are constructed at the lower level. Then the diagonalization algorithm is adopted to solve the multi-market equilibrium problem. Finally case studies based on an IEEE 14-bus system are conducted to validate the proposed model and the results show that the microgrid with a P2H system could gain more profits and help increase the renewable penetration.
Assessment of the Co-combustion Process of Ammonia with Hydrogen in a Research VCR Piston Engine
Oct 2022
Publication
The presented work concerns experimental research of a spark-ignition engine with variable compression ratio (VCR) adapted to dual-fuel operation in which co-combustion of ammonia with hydrogen was conducted and the energy share of hydrogen varied from 0% to 70%. The research was aimed at assessing the impact of the energy share of hydrogen co-combusted with ammonia on the performance stability and emissions of an engine operating at a compression ratio of 8 (CR 8) and 10 (CR 10). The operation of the engine powered by ammonia alone for both CR 8 and CR 10 is associated with either a complete lack of ignition in a significant number of cycles or with significantly delayed ignition and the related low value of the maximum pressure pmax. Increasing the energy share of hydrogen in the fuel to 12% allows to completely eliminate the instability of the ignition process in the combustible mixture which is confirmed by a decrease in the IMEP uniqueness and a much lower pmax dispersion. For 12% of the energy share of hydrogen co-combusted with ammonia the most favorable course of the combustion process was obtained the highest engine efficiency and the highest IMEP value were recorded. The conducted research shows that increasing the H2 share causes an increase in NO emissions for both analyzed compression ratios
Comparative Life Cycle Assessment of Battery and Fuel Cell Electric Cars, Trucks, and Buses
Mar 2024
Publication
Addressing the pressing challenge of global warming reducing greenhouse gas emissions in the transportation sector is a critical imperative. Battery and fuel cell electric vehicles have emerged as promising solutions for curbing emissions in this sector. In this study we conducted a comprehensive life cycle assessment (LCA) for typical passenger vehicles heavy-duty trucks and city buses using either proton-exchange membrane fuel cells or Li-ion batteries with different cell chemistries. To ensure accuracy we supplemented existing studies with data from the literature particularly for the recycling phase as database limitations were encountered. Our results highlight that fuel cell and battery systems exhibit large emissions in the production phase. Recycling can significantly offset some of these emissions but a comparison of the technologies examined revealed considerable differences. Overall battery electric vehicles consistently outperform fuel cell electric vehicles regarding absolute greenhouse gas emissions. Hence we recommend prioritizing battery electric over fuel cell vehicles. However deploying fuel cell electric vehicles could become attractive in a hydrogen economy scenario where other factors e. g. the conversion and storage of surplus renewable electricity via electrolysis become important.
Potential Renewable Hydrogen from Curtailed Electricity to Decarbonize ASEAN’s Emissions: Policy Implications
Dec 2020
Publication
The power generation mix of the Association of Southeast Asian Nations (ASEAN) is dominated by fossil fuels which accounted for almost 80% in 2017 and are expected to account for 82% in 2050 if the region does not transition to cleaner energy systems. Solar and wind power are the most abundant energy resources but contribute negligibly to the power mix. Investors in solar or wind farms face high risks from electricity curtailment if surplus electricity is not used. Employing the policy scenario analysis of the energy outlook modelling results this paper examines the potential scalability of renewable hydrogen production from curtailed electricity in scenarios of high share of variable renewable energy in the power generation mix. The study found that ASEAN has high potential in developing renewable hydrogen production from curtailed electricity. The study further found that the falling cost of renewable hydrogen production could be a game changer to upscaling the large-scale hydrogen production in ASEAN through policy support. The results implied a future role of renewable hydrogen in energy transition to decarbonize ASEAN’s emissions.
Increasing Technical Efficiency of Renewable Energy Sources in Power Systems
Mar 2023
Publication
This paper presents a method for refining the forecast schedule of renewable energy sources (RES) generation by its intraday adjustment and investigates the measures for reserving RES with unstable generation in electric power systems (EPSs). Owing to the dependence of electricity generation by solar and wind power plants (PV and WPPs respectively) on natural conditions problems arise with their contribution to the process of balancing the power system. Therefore the EPS is obliged to keep a power reserve to compensate for deviations in RES from the planned generation amount. A system-wide reserve (mainly the shunting capacity of thermal and hydroelectric power plants) is used first followed by other means of power reserve: electrochemical hydrogen or biogas plants. To analyze the technical and economic efficiency of certain backup means mathematical models based on the theory of similarity and the criterion method were developed. This method is preferred because it provides the ability to compare different methods of backing up RES generation with each other assess their proportionality and determine the sensitivity of costs to the capacity of backup methods with minimal available initial information. Criterion models have been formed that allow us to build dependencies of the costs of backup means for unstable RES generation on the capacity of the backup means. It is shown that according to the results of the analysis of various methods and means of RES backup hydrogen technologies are relatively the most effective. The results of the analysis in relative units can be clarified if the current and near-term price indicators are known.
Green Hydrogen Blends with Natural Gas and Its Impact on the Gas Network
Oct 2022
Publication
With increasing shares of variable and uncertain renewable generation in many power systems there is an associated increase in the importance of energy storage to help balance supply and demand. Gas networks currently store and transport energy and they have the potential to play a vital role in longer-term renewable energy storage. Gas and electricity networks are becoming more integrated with quick-responding gas-fired power plants providing a significant backup source for renewable electricity in many systems. This study investigates Ireland’s gas network and operation when a variable green hydrogen input from excess wind power is blended with natural gas. How blended hydrogen impacts a gas network’s operational variables is also assessed by modelling a quasi-transient gas flow. The modelling approach incorporates gas density and a compressibility factor in addition to the gas network’s main pressure and flow rate characteristics. With an increasing concentration of green hydrogen up to 20% in the gas network the pipeline flow rate must be increased to compensate for reduced energy quality due to the lower energy density of the blended gas. Pressure drops across the gas pipeline have been investigated using different capacities of P2H from 18 MW to 124 MW. The results show significant potential for the gas network to store and transport renewable energy as hydrogen and improve renewable energy utilisation without upgrading the gas network infrastructure.
A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines
Mar 2023
Publication
The shipping industry has reached a higher level of maturity in terms of its knowledge and awareness of decarbonization challenges. Carbon-free or carbon-neutralized green fuel such as green hydrogen green ammonia and green methanol are being widely discussed. However little attention has paid to the green fuel pathway from renewable energy to shipping. This paper therefore provides a review of the production methods for green power (green hydrogen green ammonia and green methanol) and analyzes the potential of green fuel for application to shipping. The review shows that the potential production methods for green hydrogen green ammonia and green methanol for the shipping industry are (1) hydrogen production from seawater electrolysis using green power; (2) ammonia production from green hydrogen + Haber–Bosch process; and (3) methanol production from CO2 using green power. While the future of green fuel is bright in the short term the costs are expected to be higher than conventional fuel. Our recommendations are therefore as follows: improve green power production technology to reduce the production cost; develop electrochemical fuel production technology to increase the efficiency of green fuel production; and explore new technology. Strengthening the research and development of renewable energy and green fuel production technology and expanding fuel production capacity to ensure an adequate supply of low- and zero-emission marine fuel are important factors to achieve carbon reduction in shipping.
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Methanol as a Renewable Energy Carrier: An Assessment of Production and Transportation Costs for Selected Global Locations
Jun 2021
Publication
The importing of renewable energy will be one part of the process of defossilizing the energy systems of countries and regions which are currently heavily dependent on the import of fossil-based energy carriers. This study investigates the possibility of importing renewable methanol comprised of hydrogen and carbon dioxide. Based on a methanol synthesis simulation model the net production costs of methanol are derived as a function of hydrogen and carbon dioxide expenses. These findings enable a comparison of the import costs of methanol and hydrogen. For this the hydrogen production and distribution costs for 2030 as reported in a recent study for four different origin/destination country combinations are considered. With the predicted hydrogen production costs of 1.35–2 €/kg and additional shipping costs methanol can be imported for 370–600 €/t if renewable or process-related carbon dioxide is available at costs of 100 €/t or below in the hydrogen-producing country. Compared to the current fossil market price of approximately 400 €/t renewable methanol could therefore become cost-competitive. Within the range of carbon dioxide prices of 30–100 €/t both hydrogen and methanol exhibit comparable energy-specific import costs of 18–30 €/GJ. Hence the additional costs for upgrading hydrogen to methanol are balanced out by the lower shipping costs of methanol compared to hydrogen. Lastly a comparison for producing methanol in the hydrogen’s origin or destination country indicates that carbon dioxide in the destination country must be 181–228 €/t less expensive than that in the origin country to balance out the more expensive shipping costs for hydrogen.
Jet Zero Strategy: One Year On
Jul 2023
Publication
This report sets out progress against our strategic framework for decarbonising aviation as well as the latest aviation emissions data and updated Jet Zero analysis.<br/>Among the significant milestones achieved since the Jet Zero strategy launch are the:<br/>- agreement at the International Civil Aviation Organization for a long-term aspirational goal for aviation of net zero 2050 carbon dioxide (CO2) emissions for international aviation<br/>- publication of the 2040 zero emissions airport target call for evidence<br/>significant progress on sustainable aviation fuels (SAF) including:<br/>- publishing the second SAF mandate consultation<br/>- launching a second round of the Advanced Fuels Fund<br/>- publishing the Philip New report and the government response on how to develop a UK SAF industry<br/>- publication of the government response to the UK ETS consultation setting out a range of commitments that will enhance the effectiveness of the UK Emissions Trading Scheme (ETS) for aviation<br/>- launch of the expressions of interest for 2 DfT- funded research projects into aviation’s non-CO2 impacts<br/>The report also acknowledges that big challenges remain and we need to continue to work across the aviation sector and with experts across the economy to ensure we continue to make progress on our path to decarbonise aviation.
No more items...