Spain
Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework
Aug 2023
Publication
Current climate crisis makes the need for reducing carbon emissions more than evident. For this reason renewable energy sources are expected to play a fundamental role. However these sources are not controllable but depend on the weather conditions. Therefore green hydrogen (hydrogen produced from water electrolysis using renewable energies) is emerging as the key energy carrier to solve this problem. Although different properties of hydrogen have been widely studied some key aspects such as the water and energy footprint as well as the technological development and the regulatory framework of green hydrogen in different parts of the world have not been analysed in depth. This work performs a data-driven analysis of these three pillars: water and energy footprint technological maturity and regulatory framework of green hydrogen technology. Results will allow the evaluation of green hydrogen deployment both the current situation and expectations. Regarding the water footprint this is lower than that of other fossil fuels and competitive with other types of hydrogen while the energy footprint is higher than that of other fuels. Additionally results show that technological and regulatory framework for hydrogen is not fully developed and there is a great inequality in green hydrogen legislation in different regions of the world.
Phasing Out Steam Methane Reformers with Water Electrolysis in Producing Renewable Hydrogen and Ammonia: A Case Study Based on the Spanish Energy Markets
Jul 2023
Publication
Deploying renewable hydrogen presents a significant challenge in accessing off-takers who are willing to make long-term investments. To address this challenge current projects focus on large-scale deployment to replace the demand for non-renewable hydrogen particularly in ammonia synthesis for fertiliser production plants. The traditional process involving Steam Methane Reformers (SMR) connected to Haber-Bosch synthesis could potentially transition towards decarbonisation by gradually integrating water electrolysis. However the coexistence of these processes poses limitations in accommodating the integration of renewable hydrogen thereby creating operational challenges for industrial hubs. To tackle this issue this paper proposes an optimal dispatch model for producing green hydrogen and ammonia while considering the coexistence of different processes. Furthermore the objective is to analyse external factors that could determine the appropriate regulatory and pricing framework to facilitate the phase-out of SMR in favour of renewable hydrogen production. The paper presents a case study based in Spain utilising data from 2018 2022 and 2030 perspectives on the country's renewable resources gas and electricity wholesale markets pricing ranges and regulatory constraints to validate the model. The findings indicate that carbon emissions taxation and the availability and pricing of Power Purchase Agreements (PPAs) will play crucial roles in this transition - the carbon emission price required for total phasing out SMR with water electrolysis would be around 550 EUR/ton CO2.
Hydrogen Production from Methanol–Water Solution and Pure Water Electrolysis Using Nanocomposite Perfluorinated Sulfocationic Membranes Modified by Polyaniline
Oct 2022
Publication
In this work we report the preparation of Nafion membranes containing two different nanocomposite MF-4SC membranes modified with polyaniline (PANI) by the casting method through two different polyaniline infiltration procedures. These membranes were evaluated as a polymer electrolyte membrane for water electrolysis. Operating conditions were optimized in terms of current density stability and methanol concentration. A study was made on the effects on the cell performance of various parameters such as methanol concentration water and cell voltage. The energy required for pure water electrolysis was analyzed at different temperatures for the different membranes. Our experiments showed that PEM electrolyzers provide hydrogen production of 30 mL/min working at 160 mA/cm2 . Our composite PANI membranes showed an improved behavior over pristine perfluorinated sulfocationic membranes (around 20% reduction in specific energy). Methanol–water electrolysis required considerably less (around 65%) electrical power than water electrolysis. The results provided the main characteristics of aqueous methanol electrolysis in which the power consumption is 2.34 kW h/kg of hydrogen at current densities higher than 0.5 A/cm2 . This value is ~20-fold times lower than the electrical energy required to produce 1 kg of hydrogen by water electrolysis.
Modelling and Operation Strategy Approaches for On-site Hydrogen Refuelling Stations
Aug 2023
Publication
The number of Fuel Cell Electric Vehicles (FCEVs) in circulation has undergone a significant increase in recent years. This trend is foreseen to be stronger in the near future. In correlation with the FCEVs market increase the hydrogen delivery infrastructure must be developed. With this aim many countries have announced ambitious projects. For example Spain has the objective of increasing the number of Hydrogen Refuelling Stations (HRS) with public access from three units in operation currently to about 150 by 2030. HRSs are complex systems with high variability in terms of layout design size of components operational strategy hydrogen generation method or hydrogen generation location. This paper is focused on on-site HRS with electrolysis-based hydrogen production which provides interesting advantages when renewable energy is utilized compared to off-site hydrogen production despite their complexity. To optimize HRS design and operation a simulation model must be implemented. This paper describes a generic on-site HRS with electrolysis-based hydrogen production a cascaded multi-tank storage system with multiple compressors renewable energy sources and multiple types of dispensing formats. A modelling approach of the layout is presented and tested with real-based parameters of an HRS currently under development which is capable of producing 11.34 kg/h of green H2 with irradiation at 1000 W/m2. For the operation an operational strategy is proposed. The modelled system is tested through several simulations. A sensitivity analysis of the effects of hydrogen demand and day-ahead hydrogen production objective on emissions demand satisfaction and variable costs is performed. Simulation results show how the operational strategy has achieved service up to 310 FCEVs refuelling events of heavy duty and light duty FCEVs bringing the total H2 sold up to almost 7200 H2kg in one month of winter. Additionally considering variable costs of the energy from the utility grid the model shows a profit in the range of 21–50 k€ for a daily demand of 60 H2kg/day and 100 H2kg/day respectively. In terms of emissions a year simulation with 60 H2kg/day of demand shows specific emissions in the production of H2 in Spain of 6.26 kgCO2eq/H2kg which represents a greenhouse gas emission intensity of 52.26 kgCO2eq/H2MJ.
The Role of Hydrogen-based Power Systems in the Energy Transition of the Residential Sector
Sep 2021
Publication
The unsustainable and continuous growth of anthropogenic emissions of greenhouse gases (GHG) has pushed governments private companies and stakeholders to adopt measures and policies to fight against climate change. Within this framework increasing the contribution of renewable energy sources (RES) to final consumed energy plays a key role in the planned energy transition. Regarding the residential sector in Europe 92% of GHG emissions comes from 75% of the building stock that is over 25 years old and highly inefficient. Thus this sector must raise RES penetration from the current 36% to 77% by 2050 to comply with emissions targets. In this regard the hybridization of hydrogen-based technologies and RES represents a reliable and versatile solution to facilitate decarbonization of the residential sector. This study provides an overview and analysis of standalone renewable hydrogen-based systems (RHS) focusing on the residential and buildings sector as well as critical infrastructures like telecom stations data servers etc. For detailed evaluation of RHS several pilot plants and real demonstration plants implemented worldwide are reviewed. To this end a techno-economic assessment of relevant parameters like self-sufficiency ratio levelized cost of energy and hydrogen roundtrip efficiency is provided. Moreover the performance of the different configurations is evaluated by comparing the installed power of each component and their energy contribution to cover the load over a defined period of time. Challenges ahead are identified for the wider deployment of RHS in the residential and buildings sector.
Collective Hydrogen Stand-alone Renewable Energy Systems for Buildings in Spain. Towards the Self-sufficiency
May 2024
Publication
The article examines the feasibility of implementing standalone hydrogen-based renewable energy systems in Spanish residential buildings specifically analyzing the optimization of a solar-battery and solar-hydrogen system for a building with 20 dwellings in Spain. The study initially assesses two standalone setups: solarbattery and solar-hydrogen. Subsequently it explores scenarios where these systems are connected to the grid to only generate and sell surplus energy. A scenario involving grid connection for self-consumption without storage serves as a benchmark for comparison. All system optimizations are designed to meet energy demands without interruptions while minimizing costs as determined by a techno-economic analysis. The systems are sized using custom software that incorporates an energy management system and employs the Jaya algorithm for optimization. The findings indicate that selling surplus energy can be economically competitive and enhance the efficiency of grid-connected self-consumption systems representing the study’s main innovation. The conclusion highlights the economic and technical potential of an autonomous hybrid energy system that includes hydrogen with the significant remaining challenge being the development of a regulatory framework to support its technical feasibility in Spain.
Techno-economic Study of Power-to-Power Renewable Energy Storage Based on the Smart Integration of Battery, Hydrogen, and Micro Gas Turbine Technologies
Mar 2023
Publication
This paper deals with the integration of a Power-to-Power Energy Storage System (P2P-ESS) based on a hydrogen driven micro gas turbine (mGT) for an off-grid application with a continuous demand of 30 kWe for three European cities: Palermo Frankfurt and Newcastle. In the first part of the analysis the results show that the latitude of the location is a very strong driver in determining the size of the system (hence footprint) and the amount of seasonal storage. The rated capacity of the PV plant and electrolyzer are 37%/41% and 58%/64% higher in Frankfurt and Newcastle respectively as compared to the original design for Palermo. And not only this but seasonal storage also increases largely from 3125 kg H2 to 5023 and 5920 kg H2 . As a consequence of this LCOE takes values of 0.86 e/kWh 1.26 e/kWh and 1.5 e/kWh for the three cities respectively whilst round-trip efficiency is approximately 15.7% for the three designs at the 3 cities. Finally with the aim to reduce the footprint and rating of the different systems a final assessment of the system hybridised with battery storage shows a 20% LCOE reduction and a 10% higher round-trip efficiency.
System-friendly Process Design: Optimizing Blue Hydrogen Production for Future Energy Systems
Aug 2022
Publication
While the effects of ongoing cost reductions in renewables batteries and electrolyzers on future energy systems have been extensively investigated the effects of significant advances in CO2 capture and storage (CCS) technologies have received much less attention. This research gap is addressed via a long-term (2050) energy system model loosely based on Germany yielding four main findings. First CCS-enabled pathways offer the greatest benefits in the hydrogen sector where hydrogen prices can be reduced by two-thirds relative to a scenario without CCS. Second advanced blue hydrogen technologies can reduce total system costs by 12% and enable negative CO2 emissions due to higher efficiencies and CO2 capture ratios. Third co-gasification of coal and biomass emerged as an important enabler of these promising results allowing efficient exploitation of limited biomass resources to achieve negative emissions and limit the dependence on imported natural gas. Finally CCS decarbonization pathways can practically and economically incorporate substantial shares of renewable energy to reduce fossil fuel dependence. Such diversification of primary energy inputs increases system resilience to the broad range of socio-techno-economic challenges facing the energy transition. In conclusion balanced blue-green pathways offer many benefits and deserve serious consideration in the global decarbonization effort.
Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector
Feb 2021
Publication
Achieving European climate neutrality by 2050 requires further efforts not only from the industry and society but also from policymakers. The use of high-efficiency cogeneration facilities will help to reduce both primary energy consumption and CO2 emissions because of the increase in overall efficiency. Fuel cell-based cogeneration technologies are relevant solutions to these points for small- and microscale units. In this research an innovative and new fuel cell-based cogeneration plant is studied and its performance is compared with other cogeneration technologies to evaluate the potential reduction degree in energy consumption and CO2 emissions. Four energy consumption profile datasets have been generated from real consumption data of different dwellings located in the Mediterranean coast of Spain to perform numerical simulations in different energy scenarios according to the fuel used in the cogeneration. Results show that the fuel cell-based cogeneration systems reduce primary energy consumption and CO2 emissions in buildings to a degree that depends on the heat-to-power ratio of the consumer. Primary energy consumption varies from 40% to 90% of the original primary energy consumption when hydrogen is produced from natural gas reforming process and from 5% to 40% of the original primary energy consumption if the cogeneration is fueled with hydrogen obtained from renewable energy sources. Similar reduction degrees are achieved in CO2 emissions.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
Integration of a Multi-Stack Fuel Cell System in Microgrids: A Solution Based on Model Predictive Control
Sep 2020
Publication
This paper proposes a multi-objective model predictive control (MPC) designed for the power management of a multi-stack fuel cell (FC) system integrated into a renewable sources-based microgrid. The main advantage of MPC is the fact that it allows the current timeslot to be optimized while taking future timeslots into account. The multi-objective function solves the problem related to the power dispatch at time that includes criteria to reduce the multi-stack FC degradation operating and maintenance costs as well as hydrogen consumption. Regarding the scientific literature the novelty of this paper lies in the proposal of a generalized MPC controller for a multi-stack FC that can be used independently of the number of stacks that make it up. Although all the stacks that make up the modular FC system are identical their levels of degradation in general will not be. Thus over time each stack can present a different behavior. Therefore the power control strategy cannot be based on an equal distribution according to the nominal power of each stack. On the contrary the control algorithm should take advantage of the characteristics of the multi-stack FC concept distributing operation across all the stacks regarding their capacity to produce power/energy and optimizing the overall performance.
On Green Hydrogen Generation Technologies: A Bibliometric Review
Mar 2024
Publication
Green hydrogen produced by water electrolysis with renewable energy plays a crucial role in the revolution towards energy sustainability and it is considered a key source of clean energy and efficient storage. Its ability to address the intermittency of renewable sources and its potential to decarbonize sectors that are difficult to electrify make it a strategic component in climate change mitigation. By using a method based on a bibliometric review of scientific publications this paper represents a significant contribution to the emerging field of research on green hydrogen and provides a detailed review of electrolyzer technologies identifying key areas for future research and technology development. The results reflect the immaturity of a technology which advances with different technical advancements waiting to find the optimal technical solution that allows for its massive implementation as a source of green hydrogen generation. According to the results found in this article alkaline (ALK) and proton exchange membrane (PEM) electrolyzers seem to be the ones that interest the scientific community the most. Similarly in terms of regional analysis Europe is clearly committed to green hydrogen in view of the analysis of its scientific results on materials and electrolyzer capacity forecasts for 2030.
Fuel Cell Hybrid Model for Predicting Hydrogen Inflow through Energy Demand
Nov 2019
Publication
Hydrogen-based energy storage and generation is an increasingly used technology especially in renewable systems because they are non-polluting devices. Fuel cells are complex nonlinear systems so a good model is required to establish efficient control strategies. This paper presents a hybrid model to predict the variation of H2 flow of a hydrogen fuel cell. This model combining clusters’ techniques to get multiple Artificial Neural Networks models whose results are merged by Polynomial Regression algorithms to obtain a more accurate estimate. The model proposed in this article use the power generated by the fuel cell the hydrogen inlet flow and the desired power variation to predict the necessary variation of the hydrogen flow that allows the stack to reach the desired working point. The proposed algorithm has been tested on a real proton exchange membrane fuel cell and the results show a great precision of the model so that it can be very useful to improve the efficiency of the fuel cell system.
Optimal Energy Management in a Standalone Microgrid, with Photovoltaic Generation, Short-Term Storage, and Hydrogen Production
Mar 2020
Publication
This paper addresses the energy management of a standalone renewable energy system. The system is configured as a microgrid including photovoltaic generation a lead-acid battery as a short term energy storage system hydrogen production and several loads. In this microgrid an energy management strategy has been incorporated that pursues several objectives. On the one hand it aims to minimize the amount of energy cycled in the battery in order to reduce the associated losses and battery size. On the other hand it seeks to take advantage of the long-term surplus energy producing hydrogen and extracting it from the system to be used in a fuel cell hybrid electric vehicle. A crucial factor in this approach is to accommodate the energy consumption to the energy demand and to achieve this a model predictive control (MPC) scheme is proposed. In this context proper models for solar estimation hydrogen production and battery energy storage will be presented. Moreover the controller is capable of advancing or delaying the deferrable loads from its prescheduled time. As a result a stable and efficient supply with a relatively small battery is obtained. Finally the proposed control scheme has been validated on a real case scenario.
Future of Electric and Hydrogen Cars and Trucks: An Overview
Apr 2023
Publication
The negative consequences of toxic emissions from internal combustion engines energy security climate change and energy costs have led to a growing demand for clean power sources in the automotive industry. The development of eco-friendly vehicle technologies such as electric and hydrogen vehicles has increased. This article investigates whether hydrogen vehicles will replace electric vehicles in the future. The results showed that fuel-cell cars are unlikely to compete with electric cars. This is due to the advancements in electric vehicles and charging infrastructure which are becoming more cost-effective and efficient. Additionally the technical progress in battery electric vehicles (BEVs) is expected to reduce the market share of fuel-cell electric vehicles (FCEVs) in passenger vehicles. However significant investments have been made in hydrogen cars. Many ongoing investments seem to follow the sunk cost fallacy where decision-makers continue to invest in an unprofitable project due to their already invested resources. Furthermore even with megawatt charging fuel-cell trucks cost more than battery-powered electric trucks. The use cases for fuel-cell electric trucks are also much more limited as their running expenses are higher compared to electric cars. Hydrogen vehicles may be beneficial for heavy transport in remote areas. However it remains to be seen if niche markets are large enough to support fuel-cell electric truck commercialization and economies of scale. In summary we believe that hydrogen vehicles will not replace electric cars and trucks at least before 2050.
Chilean National Green Hydrogen Strategy
Nov 2020
Publication
Like hydrogen Chile is small by nature and accordingly contributes just 0.3% to global greenhouse gas emissions. However we too have an outsized role to play in turning the tide on rising emissions and pursuing a low carbon path to growth and development.<br/>What we lack in size we more than make up for in potential. In the desert in the North with the highest solar irradiance on the planet and in the Patagonia in the South with strong and consistent winds we have the renewable energy potential to install 70 times the electricity generation capacity we have today. This abundant renewable energy will enable us to become the cheapest producer of green hydrogen on Earth. Our National Green Hydrogen Strategy is aimed at turning this promise into reality.<br/>The Strategy is the result of collaborative work between industry academia civil society and the public sector and is an essential piece of our carbon neutrality plan and commitment to sustainable development. It will allow us to produce and export products that are created using zero carbon fuels distinguishing our exports as clean products for end users. It will also enable us to export our renewable energy to the world in the form of green liquid hydrogen green ammonia and clean synthetic fuels.<br/>Traditionally Chile lacked fossil fuels and was forced to import the energy it required. Now the coming of age of the tiniest atom will allow us to drive deep decarbonization in our own country and throughout the world. This Strategy is the first step for Chile in embracing this promise and fulfilling its new potential.
Perspectives on Hydrogen
Dec 2022
Publication
Humankind has an urgent need to reduce carbon dioxide emissions. Such a challenge requires deep transformation of the current energy system in our society. Achieving this goal has given an unprecedented role to decarbonized energy vectors. Electricity is the most consolidated of such vectors and a molecular vector is in the agenda to contribute in the future to those end uses that are difficult to electrify. Additionally energy storage is a critical issue for both energy vectors. In this communication discussion on the status hopes and perspectives of the hydrogen contribution to decarbonization are presented emphasizing bottlenecks in key aspects such as education reskilling and storage capacity and some concerns about the development of a flexible portfolio of technologies that could affect the contribution and impact of the whole hydrogen value chain in society. This communication would serve to the debate and boost discussion about the topic.
Decarbonizing the Spanish Transportation Sector by 2050: Design and Techno-economic Assessment of the Hydrogen Generation and Supply Chain
May 2023
Publication
The transport sector is difficult to decarbonize due to its high reliance on fossil fuels accounting for 37% of global end-use sectors emissions in 2021. Therefore this work proposes an energy model to replace the Spanish vehicle fleet by hydrogen-fueled vehicles by 2050. Thus six regions are defined according to their proximity to regasification plants where hydrogen generation hubs are implemented. Likewise renewables deployment is subject to their land availability. Hydrogen is transported through an overhauled primary natural gas transport network while two distribution methods are compared for levelized cost of hydrogen minimization: gaseous pipeline vs liquid hydrogen supply in trucks. Hence a capacity of 443.1 GW of renewables 214 GW of electrolyzers and 3.45 TWh of hydrogen storage is required nationwide. Additionally gaseous hydrogen distribution is on average 17% cheaper than liquid hydrogen delivery. Finally all the regions present lower prices per km traveled than gasoline or diesel.
Concept Design and Energy Balance Optimization of a Hydrogen Fuel Cell Helicoptor for Unmanned Aerial Vehicle and Aerotaxi Applications
May 2023
Publication
In the new scenario where the transportation sector must be decarbonized to limit global warming fuel cellpowered aerial vehicles have been selected as a strategic target application to compose part of the urban fleet to minimize road transport congestion and make goods and personal transportation fast and efficient. To address the necessity of clean and efficient urban air transport this work consists of the conceptual development of a lightweight rotary-winged transport vehicle using a hydrogen-based fuel cell propulsion system and the optimization of its energy balance. For that purpose the methods for integrating the coupled aerodynamic and propulsion system sizing and optimization was developed with the aim of designing concepts capable of carrying 0 (unmanned aerial vehicle — Design 1) and 1 (Aerotaxi — Design 2) passengers for a distance of 300 km at a cruise altitude of 500 m with a minimum climbing rate capability of 6 m s−1 at 1000 m. The results show how these designs with the desired performance specifications can be obtained with a vehicle mass ranging from 416 to 648 kg depending on the application and with specific range and endurance respectively within 46.2–47.8 km/kg and 20.4–21.3 min/kg for design 1 and 33.3–33.8 km/kg and 12.5–13.9 min/kg for design 2.
Risk Management of Energy Communities with Hydrogen Production and Storage Technologies
Jul 2023
Publication
The distributed integration of renewable energy sources plays a central role in the decarbonization of economies. In this regard energy communities arise as a promising entity to coordinate groups of proactive consumers (prosumers) and incentivize investment on clean technologies. However the uncertain nature of renewable energy generation residential loads and trading tariffs pose important challenges both at the operational and economic levels. We study how this management can be directly undertaken by an arbitrageur that making use of an adequate price-based demand response (real-time pricing) system serves as an intermediary with the central electricity market to coordinate different types of prosumers under risk aversion. In particular we consider a sequential futures and spot market where the aggregated shortage or excess of energy within the community can be traded. We aim to study the impact of new hydrogen production and storage technologies on community operation and risk management. These interactions are modeled as a game theoretical setting in the form of a stochastic two-stage bilevel optimization problem which is later reformulated without approximation as a single-level mixed-integer linear problem (MILP). An extensive set of numerical experiments based on real data is performed to study the operation of the energy community under different technical and economical conditions. Results indicate that the optimal involvement in futures and spot markets is highly conditioned by the community’s risk aversion and self-sufficiency levels. Moreover the external hydrogen market has a direct effect on the community’s internal price-tariff system and depending on the market conditions may worsen the utility of individual prosumers.
Life Cycle Cost Analysis of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Feb 2024
Publication
The use of autonomous vehicles for marine and submarine work has risen considerably in the last decade. Developing new monitoring systems navigation and communications technologies allows a wide range of operational possibilities. Autonomous Underwater Vehicles (AUVs) are being used in offshore missions and applications with some innovative purposes by using sustainable and green energy sources. This paper considers an AUV that uses a hydrogen fuel cell achieving zero emissions. This paper analyses the life cycle cost of the UAV and compares it with a UAV powered by conventional energy. The EN 60300-3-3 guidelines have been employed to develop the cost models. The output results show estimations for the net present value under different scenarios and financial strategies. The study has been completed with the discount rate sensibility analysis in terms of financial viability.
Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile
Jun 2023
Publication
Green hydrogen is gaining increasing attention as a key component of the global energy transition towards a more sustainable industry. Chile with its vast renewable energy potential is well positioned to become a major producer and exporter of green hydrogen. In this context this paper explores the prospects for green hydrogen production and use in Chile. The perspectives presented in this study are primarily based on a compilation of government reports and data from the scientific literature which primarily offer a theoretical perspective on the efficiency and cost of hydrogen production. To address the need for experimental data an ongoing experimental project was initiated in March 2023. This project aims to assess the efficiency of hydrogen production and consumption in the Atacama Desert through the deployment of a mobile on-site laboratory for hydrogen generation. The facility is mainly composed by solar panels electrolyzers fuel cells and a battery bank and it moves through the Atacama Desert in Chile at different altitudes from the sea level to measure the efficiency of hydrogen generation through the energy approach. The challenges and opportunities in Chile for developing a robust green hydrogen economy are also analyzed. According to the results Chile has remarkable renewable energy resources particularly in solar and wind power that could be harnessed to produce green hydrogen. Chile has also established a supportive policy framework that promotes the development of renewable energy and the adoption of green hydrogen technologies. However there are challenges that need to be addressed such as the high capital costs of green hydrogen production and the need for supportive infrastructure. Despite these challenges we argue that Chile has the potential to become a leading producer and exporter of green hydrogen or derivatives such as ammonia or methanol. The country’s strategic location political stability and strong commitment to renewable energy provide a favorable environment for the development of a green hydrogen industry. The growing demand for clean energy and the increasing interest in decarbonization present significant opportunities for Chile to capitalize on its renewable energy resources and become a major player in the global green hydrogen market.
Sustainable Propulsion Alternatives in Regional Aviation: The Case of the Canary Islands
May 2023
Publication
Sustainability is one of the main challenges the aviation industry is currently facing. In a global context of energy transition towards cleaner and renewable sources the sector is developing technologies to fly more efficiently and mitigate its environmental impact. Innovative propulsion alternatives such as biofuels electric aircraft and hydrogen engines are already a reality or are close to becoming so. To assess their feasibility a study is conducted on specific routes and aircraft across different flight ranges. The analysis focuses on the Canary Islands an outermost region of the EU with high mobility and no comparable alternative means of transport. For three routes flight profiles are analyzed obtaining the fuel consumption and emissions generated by the conventional propulsion and later applying the sustainable alternatives. The results indicate optimistic perspectives with reductions in environmental impact ranging between 40% and 75% compared to the present.
Green Energy by Hydrogen Production from Water Splitting, Water Oxidation Catalysis and Acceptorless Dehydrogenative Coupling
Feb 2023
Publication
In this review we want to explain how the burning of fossil fuels is pushing us towards green energy. Actually for a long time we have believed that everything is profitable that resources are unlimited and there are no consequences. However the reality is often disappointing. The use of non-renewable resources the excessive waste production and the abandonment of the task of recycling has created a fragile thread that once broken may never restore itself. Metaphors aside we are talking about our planet the Earth and its unique ability to host life including ourselves. Our world has its balance; when the wind erodes a mountain a beach appears or when a fire devastates an area eventually new life emerges from the ashes. However humans have been distorting this balance for decades. Our evolving way of living has increased the number of resources that each person consumes whether food shelter or energy; we have overworked everything to exhaustion. Scientists worldwide have already said actively and passively that we are facing one of the biggest problems ever: climate change. This is unsustainable and we must try to revert it or if we are too late slow it down as much as possible. To make this happen there are many possible methods. In this review we investigate catalysts for using water as an energy source or instead of water alcohols. On the other hand the recycling of gases such as CO2 and N2O is also addressed but we also observe non-catalytic means of generating energy through solar cell production.
Exploring Key Operational Factors for Improving Hydrogen Production in a Pilot-scale Microbial Electrolysis Cell Treating Urban Wastewater
Jun 2023
Publication
Bioelectrochemical systems (BES) are becoming popular technologies with a plethora of applications in the environmental field. However research on the scale-up of these systems is scarce. To understand the limiting factors of hydrogen production in microbial electrolysis cell (MEC) at pilot scale a 135 L MEC was operated for six months under a wide range of operational conditions: applied potential [0.8-1.1 V] hydraulic residence time [1.1-3.9 d] and temperature [18-30 ºC] using three types of wastewater; synthetic (900 mg CODs L-1) raw urban wastewater (200 mg CODs L-1) and urban wastewater amended with acetate (1000 mg CODs L-1). The synthetic wastewater yielded the maximum current density (1.23 A m-2) and hydrogen production (0.1 m3 m-3 d-1) ever reported in a pilot scale MEC with a cathodic recovery of 70% and a coulombic efficiency of 27%. In contrast the use of low COD urban wastewater limited the plant performance. Interestingly it was possible to improve hydrogen production by reducing the hydraulic residence time finding the optimal applied potential or increasing the temperature. Further the pilot plant demonstrated a robust capacity to remove the organic matter present in the wastewater under different conditions with removal efficiencies above 70%. This study shows improved results compared to similar MEC pilot plants treating domestic wastewater in terms of hydrogen production and treatment efficiency and also compares its performance against conventional activated sludge processes.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles
Jul 2014
Publication
Autonomous Underwater Vehicles (AUVs) are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time they are usually powered by lithium-ion secondary batteries which have insufficient specific energies. In order for this technology to achieve a mature state increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed examining solutions adopted in the analogous aerial vehicle applications as well as the underwater ones to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally some closing remarks on the future of this technology are given.
A Review on CO2 Mitigation in the Iron and Steel Industry through Power to X Processes
Feb 2021
Publication
In this paper we present the first systematic review of Power to X processes applied to the iron and steel industry. These processes convert renewable electricity into valuable chemicals through an electrolysis stage that produces the final product or a necessary intermediate. We have classified them in five categories (Power to Iron Power to Hydrogen Power to Syngas Power to Methane and Power to Methanol) to compare the results of the different studies published so far gathering specific energy consumption electrolysis power capacity CO2 emissions and technology readiness level. We also present for the first time novel concepts that integrate oxy-fuel ironmaking and Power to Gas. Lastly we round the review off with a summary of the most important research projects on the topic including relevant data on the largest pilot facilities (2–6 MW).
Investment in Wind-based Hydrogen Production under Economic and Physical Uncertainties
Feb 2023
Publication
This paper evaluates the economic viability of a combined wind-based green-hydrogen facility from an investor’s viewpoint. The paper introduces a theoretical model and demonstrates it by example. The valuation model assumes that both the spot price of electricity and wind capacity factor evolve stochastically over time; these state variables can in principle be correlated. Besides it explicitly considers the possibility to use curtailed wind energy for producing hydrogen. The model derives the investment project’s net present value (NPV) as a function of hydrogen price and conversion capacity. Thus the NPV is computed for a given price and a range of capacities. The one that leads to the maximum NPV is the ‘optimal’ capacity (for the given price). Next the authors estimate the parameters underlying the two stochastic processes from Spanish hourly data. These numerical estimates allow simulate hourly paths of both variables over the facility’s expected useful lifetime (30 years). According to the results green hydrogen production starts becoming economically viable above 3 €/kg. Besides it takes a hydrogen price of 4.7 €/kg to reach an optimal conversion capacity half the capacity of the wind park. The authors develop sensitivity analyses with respect to wind capacity factor curtailment rate and discount rate.
Multilevel Governance, PV Solar Energy, and Entrepreneurship: The Generation of Green Hydrogen as a Fuel of Renewable Origin
Sep 2022
Publication
In Spain the institutional framework for photovoltaic energy production has experienced distinct stages. From 2007 to 2012 the feed-in-tariff system led to high annual growth rates of this renewable energy but after the suppression of the policy of public subsidies the sector stagnated. In recent years green hydrogen an innocuous gas in the atmosphere has become a driving force that stimulates photovoltaic energy production. Since 2020 encouraged by the European energy strategies and corresponding funds Spain has established a regulation to promote green hydrogen as a form of energy resource. Adopting the new institutional economics (NIE) approach this article investigates the process of changing incentives for the energy business sector and its impact on photovoltaic energy production. The results show an increase in the number of both projects approved or on approval and companies involved in green hydrogen that are planning to use photovoltaic energy in Spain thus engendering the creation of a new photovoltaic business environment based on innovation and sustainability.
On the Bulk Transport of Green Hydrogen at Sea: Comparison Between Submarine Pipeline and Compressed and Liquefied Transport by Ship
Jan 2023
Publication
This paper compares six (6) alternatives for green hydrogen transport at sea. Two (2) alternatives of liquid hydrogen (LH2) by ship two (2) alternatives of compressed hydrogen (cH2) by ship and two (2) alternatives of hydrogen by pipeline. The ship alternatives study having hydrogen storage media at both end terminals to reduce the ships’ time at port or prescinding of them and reduce the immobilized capital. In the case of the pipeline new models are proposed by considering pressure costs. One scenario considers that there are compression stations every 500 km and the other one considers that there are none along the way. These alternatives are assessed under nine different scenarios that combine three distances: 100 km 2500 km and 5000 km; and three export rates of hydrogen 100 kt/y 1 Mt/y and 10 Mt/y. The results show including uncertainty bands that for the 100 km of distance the best alternative is the pipeline. For 2500 km and 100 kt/y the top alternative is cH2 shipping without storage facilities at the port terminals. For 2500 km and 1 Mt/y and for 5000 km and 100 kt/y the best alternatives are cH2 or LH2 shipping. For the remaining scenarios the best alternative is LH2 shipping.
Alkaline Electrolysis for Hydrogen Production at Sea: Perspectives on Economic Performance
May 2023
Publication
Alkaline electrolysis is already a proven technology on land with a high maturity level and good economic performance. However at sea little is known about its economic performance toward hydrogen production. Alkaline electrolysis units operate with purified water to split its molecules into hydrogen and oxygen. Purified water and especially that sourced from the sea has a variable cost that ultimately depends on its quality. However the impurities present in that purified water have a deleterious effect on the electrolyte of alkaline electrolysis units that cause them to drop their energy efficiency. This in turn implies a source of economic losses resulting from the cost of electricity. In addition at sea there are various options regarding the electrolyte management of which the cost depends on various factors. All these factors ultimately impact on the levelized cost of the produced hydrogen. This article aims to shed some light on the economic performance of alkaline electrolysis units operating under sea conditions highlighting the knowledge gaps in the literature and initiating a debate in the field.
Emerging Trends and Challenges in Pink Hydrogen Research
May 2024
Publication
Pink hydrogen is the name given to the technological variant of hydrogen generation from nuclear energy. This technology aims to address the environmental challenges associated with conventional hydrogen production positioning itself as a more sustainable and eco-efficient alternative while offering a viable alternative to nuclear power as a source of electricity generation. The present research analyzes the landscape of pink hydrogen research an innovative strand of renewable energy research. The methodology included a comprehensive search of scientific databases which revealed a steady increase in the number of publications in recent years. This increase suggests a growing interest in and recognition of the importance of pink hydrogen in the transition to cleaner and more sustainable energy sources. The results reflect the immaturity of this technology where there is no single international strategy and where there is some diversity of research topic areas as well as a small number of relevant topics. It is estimated that the future development of Gen IV nuclear reactors as well as Small Modular Reactor (SMR) designs will also favor the implementation of pink hydrogen.
Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning
Sep 2023
Publication
Smart energy networks provide an effective means to accommodate high penetrations of variable renewable energy sources like solar and wind which are key for the deep decarbonisation of energy production. However given the variability of the renewables as well as the energy demand it is imperative to develop effective control and energy storage schemes to manage the variable energy generation and achieve desired system economics and environmental goals. In this paper we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to handle the uncertainties related to electricity prices renewable energy production and consumption. We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions while ensuring energy reliability and stability within the network. To achieve this we propose a multi-agent deep deterministic policy gradient approach which is a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real time. The proposed approach is model-free and does not require explicit knowledge and rigorous mathematical models of the smart energy network environment. Simulation results based on real-world data show that (i) integration and optimised operation of the hybrid energy storage system and energy demand reduce carbon emissions by 78.69% improve cost savings by 23.5% and improve renewable energy utilisation by over 13.2% compared to other baseline models; and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like the deep-Q network.
Numerical Study on the Use of Ammonia/Hydrogen Fuel Blends for Automotive Sparking-ignition Engines
Jun 2023
Publication
The importance of new alternative fuels has assumed great relevance in the last decades to face the issues of global warming and pollutant emissions from energy production. The scientific community is responsible for developing solutions to achieve the necessary environmental restriction policies. In this context ammonia appears as a potential fuel candidate and energy vector that may solve the technological difficulties of using hydrogen (H2 ) directly in internal combustion engines. Its high hydrogen content per unit mass higher energy density than liquid hydrogen well-developed infrastructure and experience in handling and storage make it suitable to be implemented as a long-term solution. In this work a virtual engine model was developed to perform prospective simulations of different operating conditions using ammonia and H2 -enriched ammonia as fuel in a spark-ignition (SI) engine integrating a chemical kinetics model and empirical correlations for combustion prediction. In addition specific conditions were evaluated to consider and to understand the governing parameters of ammonia combustion using computational fluid dynamics (CFD) simulations. Results revealed similar thermal efficiency than methane fuel with considerable improvements after appropriate H2 - enrichment. Moreover increasing the intake temperature and the turbulence intensity inside the cylinder evinced significant reductions in combustion duration. Finally higher compression ratios ensure efficiency gains with no evidence of abnormal combustion (knocking) even at high compression ratios (above 16:1) and low engine speeds (800 rpm). Numerical simulations showed the direct influence of the flame front surface area and the turbulent combustion velocity on efficiency reflecting the need for optimizing the SI engines design paradigm for ammonia applications.
Optimisation of Size and Control Strategy in Utility-scale of Green Hydrogen Production Systems
Aug 2023
Publication
The optimisation of green hydrogen production systems is challenging. Moreover an accurate simulation of the system is required for effective optimisation. This study presents a novel method for optimising utility-scale hybrid photovoltaice-wind systems for hydrogen production using accurate simulation models. The optimisation objective is to minimise the levelised cost of hydrogen (LCOH) using genetic algorithms. Different types of systems (such as islanded systems grid-connected systems with or without the possibility of purchasing electricity from the grid and grid-connected systems considering power curtailment) are evaluated and optimised. Each combination of components and control strategy is simulated during the system lifetime (20 yrs) in time steps of 5 min considering the degradation of renewable generators during the system lifetime and different real-time pricing curves and renewable resource curves for each year of the system lifetime. Accurate models are used in the simulations including electrolyser efficiency dependent on the input power and cold-start extra ageing. An application example located in Zaragoza (Spain) is shown obtaining LCOH from 4.74 to 16.06 V/kg depending on the type of project and electrolyser.
Rule-Based Operation Mode Control Strategy for the Energy Management of a Fuel Cell Electric Vehicle
Jun 2024
Publication
Hydrogen due to its high energy density stands out as an energy storage method for the car industry in order to reduce the impact of the automotive sector on air pollution and global warming. The fuel cell electric vehicle (FCEV) emerges as a modification of the electric car by adding a proton exchange membrane fuel cell (PEMFC) to the battery pack and electric motor that is capable of converting hydrogen into electric energy. In order to control the energy flow of so many elements an optimal energy management system (EMS) is needed where rule-based strategies represent the smallest computational burden and are the most widely used in the industry. In this work a rulebased operation mode control strategy for the EMS of an FCEV validated by different driving cycles and several tests at the strategic points of the battery state of charge (SOC) is proposed. The results obtained in the new European driving cycle (NEDC) show the 12 kW battery variation of 2% and a hydrogen consumption of 1.2 kg/100 km compared to the variation of 1.42% and a consumption of 1.08 kg/100 km obtained in the worldwide harmonized light-duty test cycle (WLTC). Moreover battery tests have demonstrated the optimal performance of the proposed EMS strategy
Technical Performance and Environmental Assessment of an Ionic Liquid-based CCS Process for Hydrogen Production
Apr 2023
Publication
Hydrogen (H2) production combined with carbon capture and storage (CCS) is anticipated to be an important technology contributing to reduce the carbon footprint of current fossil-based H2 production systems. This work addresses for the first time the techno-environmental assessment of a CCS process based on the ionic liquid [Bmim][Acetate] for H2 production by steam methane reforming (SMR) and the comparison to conventional amine-based systems. Two different SMR plants using MDEA or [Bmim][Acetate] for CO2 capture were rigorously modelled using Aspen Plus to compute material and energy needs and emissions. Literature and simulation results were then used to perform a life cycle impact assessment (LCIA) of these processes based on the ReCiPe model. Solvent synthesis CCS process and hydrogen production stages were considered for the cradle-to-gate analysis. Results showed that although [Bmim][Acetate] is a priori more harmful to the environment than amines (in a kg-to-kg comparison) LCIAs carried out for both CCS processes showed from 5 to 17 % lower environmental impacts values for all estimated categories when using [Bmim][Acetate] due to a 9.4 % more energy-efficient performance than MDEA which also reduced a 17.4 % the total utility cost. Indeed if a typical amine loss rate of 1.6 kg/tCO2 is assumed the values of the environmental impacts increase up to 14 % for the IL-based CCS plant but still maintaining its favorable results over MDEA. As consequence the SMR plant with the IL-based CCS system exhibited 3–20 % lower values for most of the studied impact categories. These results contribute to shed some light on evaluating the sustainability of ILs with respect to conventional solvents for CO2 capture and to guide the synthesis of new more sustainable ILs but also they would be used to compare the environmental burdens from the synthesis and process performance of other promising ILs for CO2 capture that are not environmentally assed yet.
A Zero CO2 Emissions Large Ship Fuelled by an Ammonia-hydrogen Blend: Reaching the Decarbonisation Goals
Aug 2023
Publication
To reach the decarbonisation goals a zero CO2 emissions large ship propulsion system is proposed in this work. The ship selected is a large ferry propelled by an internal combustion engine fuelled by an ammonia-hydrogen blend. The only fuel loaded in the vessel will be ammonia. The hydrogen required for the combustion in the engine will be produced onboard employing ammonia decomposition. The heat required for this decomposition section will be supplied by using the hot flue gases of the combustion engine. To address the issues regarding NOx emissions a selective catalytic reduction (SCR) reactor was designed. The main operating variables for all the equipment were computed for engine load values of 25% 50% 75% and 100%. Considering the lowest SCR removal rate (91% at an engine load of 100%) the NOx emissions of the vessel were less than 0.5 g/kWh lower than the IMO requirements. An energy analysis of the system proposed to transform ammonia into energy for shipping was conducted. The global energy and exergy efficiencies were 42.4% and 48.1%. In addition an economic analysis of the system was performed. The total capital cost (CAPEX) for the system can be estimated at 8.66 M€ (784 €/kW) while the operating cost (OPEX) ranges between 210 €/MWh (engine load 100%) and 243 €/MWh (engine load of 25%). Finally a sensitivity analysis for the price of ammonia was performed resulting in the feasibility of reducing the operating cost to below 150 €/MWh in the near horizon.
Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing
Oct 2021
Publication
Water electrolysis to obtain hydrogen in combination with intermittent renewable energy resources is an emerging sustainable alternative to fossil fuels. Among the available electrolyzer technologies anion exchange membrane water electrolysis (AEMWE) has been paid much attention because of its advantageous behavior compared to other more traditional approaches such as solid oxide electrolyzer cells and alkaline or proton exchange membrane water electrolyzers. Recently very promising results have been obtained in the AEMWE technology. This review paper is focused on recent advances in membrane electrode assembly components paying particular attention to the preparation methods for catalyst coated on gas diffusion layers which has not been previously reported in the literature for this type of electrolyzers. The most successful methodologies utilized for the preparation of catalysts including co-precipitation electrodeposition sol–gel hydrothermal chemical vapor deposition atomic layer deposition ion beam sputtering and magnetron sputtering deposition techniques have been detailed. Besides a description of these procedures in this review we also present a critical appraisal of the efficiency of the water electrolysis carried out with cells fitted with electrodes prepared with these procedures. Based on this analysis a critical comparison of cell performance is carried out and future prospects and expected developments of the AEMWE are discussed.
Techno-economic Assessment of Blue and Green Ammonia as Energy Carriers in a Low-carbon Future
Feb 2022
Publication
Ammonia is an industrial chemical and the basic building block for the fertilizer industry. Lately attention has shifted towards using ammonia as a carbon-free energy vector due to the ease of transportation and storage in liquid state at − 33 ◦C and atmospheric pressure. This study evaluates the prospects of blue and green ammonia as future energy carriers; specifically the gas switching reforming (GSR) concept for H2 and N2 co-production from natural gas with inherent CO2 capture (blue) and H2 generation through an optimized value chain of wind and solar power electrolysers cryogenic N2 supply and various options for energy storage (green). These longer term concepts are benchmarked against conventional technologies integrating CO2 capture: the Kellogg Braun & Root (KBR) Purifier process and the Linde Ammonia Concept (LAC). All modelled plants utilize the same ammonia synthesis loop for a consistent comparison. A cash flow analysis showed that the GSR concept achieved an attractive levelized cost of ammonia (LCOA) of 332.1 €/ton relative to 385.1–385.9 €/ton for the conventional plants at European energy prices (6.5 €/GJ natural gas and 60 €/MWh electricity). Optimal technology integration for green ammonia using technology costs representative of 2050 was considerably more expensive: 484.7–772.1 €/ton when varying the location from Saudi Arabia to Germany. Furthermore the LCOA of the GSR technology drops to 192.7 €/ton when benefitting from low Saudi Arabian energy costs (2 €/GJ natural gas and 40 €/MWh electricity). This cost difference between green and blue ammonia remained robust in sensitivity analyses where input energy cost (natural gas or wind/solar power) was the most influential parameter. Given its low production costs and the techno-economic feasibility of international ammonia trade advanced blue ammonia production from GSR offers an attractive pathway for natural gas exporting regions to contribute to global decarbonization.
Green Fleet: A Prototype Biogas and Hydrogen Refueling Management System for Private Fleet Stations
Aug 2023
Publication
Biogas and hydrogen (H2 ) are breaking through as alternative energy sources in road transport specifically for heavy-duty vehicles. Until a public network of service stations is deployed for such vehicles the owners of large fleets will need to build and manage their own refueling facilities. Fleet refueling management and remote monitoring at these sites will become key business needs. This article describes the construction of a prototype system capable of solving those needs. During the design and development process of the prototype the standard industry protocols involved in these installations have been considered and the latest expertise in information technology systems has been applied. This prototype has been essential to determine the Strengths Challenges Opportunities and Risks (SCOR) of such a system which is the first step of a more ambitious project. A second stage will involve setting up a pilot study and developing a commercial system that can be widely installed to provide a real solution for the industry.
Assessment of a Fully Renewable System for the Total Decarbonization of the Economy with Full Demand Coverage on Islands Connected to a Central Grid: The Balearic Case in 2040
Jul 2023
Publication
The transition to clean electricity generation is a crucial focus for achieving the current objectives of economy decarbonization. The Balearic Archipelago faces significant environmental economic and social challenges in shifting from a predominantly fossil fuel-based economy to one based on renewable sources. This study proposes implementing a renewable energy mix and decarbonizing the economy of the Balearic Islands by 2040. The proposed system involves an entirely renewable generation system with interconnections between the four Balearic islands and the Spanish mainland grid via a 650 MW submarine cable. This flexible electrical exchange can cover approximately 35% of the peak demand of 1900 MW. The scenario comprises a 6 GWp solar photovoltaic system a wind system of under 1.2 GWp and a 600 MW biomass system as generation sub-systems. A vanadium redox flow battery sub-system with a storage capacity of approximately 21 GWh and 2.5 GWp power is available to ensure system manageability. This system’s levelized electricity cost (LCOE) is around 13.75 cEUR/kWh. The design also incorporates hydrogen as an alternative for difficult-to-electrify uses achieving effective decarbonization of all final energy uses. A production of slightly over 5 × 104 tH2 per year is required with 1.7 GW of electrolyzer power using excess electricity and water resources. The system enables a significant level of economy decarbonization although it requires substantial investments in both generation sources and storage.
Hydrogen-powered Refrigeration System for Environmentally Friendly Transport and Delivery in the Food Supply Chain
Mar 2023
Publication
Urban population and the trend towards online commerce leads to an increase in delivery solution in cities. The growth of the transport sector is very harmful to the environment being responsible for approximately 40% of greenhouse gas emissions in the European Union. The problem is aggravated when transporting perishable foodstuffs as the vehicle propulsion engine (VPE) must power not only the vehicle but also the refrigeration unit. This means that the VPE must be running continuously both on the road and stationary (during delivery) as the cold chain must be preserved. The result is costly (high fuel consumption) and harmful to the environment. At present refrigerated transport does not support full-electric solutions due to the high energy consumption required which motivates the work presented in this article. It presents a turnkey solution of a hydrogen-powered refrigeration system (HPRS) to be integrated into standard light trucks and vans for short-distance food transport and delivery. The proposed solution combines an air-cooled polymer electrolyte membrane fuel cell (PEMFC) a lithium-ion battery and low-weight pressurised hydrogen cylinders to minimise cost and increase autonomy and energy density. In addition for its implementation and integration all the acquisition power and control electronics necessary for its correct management have been developed. Similarly an energy management system (EMS) has been developed to ensure continuity and safety in the operation of the electrical system during the working day while maximizing both the available output power and lifetime of the PEMFC. Experimental results on a real refrigerated light truck provide more than 4 h of autonomy in intensive intercity driving profiles which can be increased if necessary by simply increasing the pressure of the stored hydrogen from the current 200 bar to whatever is required. The correct operation of the entire HPRS has been experimentally validated in terms of functionality autonomy and safety; with fuel savings of more than 10% and more than 3650 kg of CO2/ year avoided.
Evaluating Hydrogen-based Electricity Generation using the Concept of Total Efficiency
Aug 2023
Publication
The popularity of hydrogen has been increasing globally as a promising sustainable energy source. However hydrogen needs to be produced and processed before it can be used in the energy sector. This paper uses total efficiency to evaluate the lifecycle of hydrogen-driven power generation. Total efficiency introduces the energy requirement of fuel preparation in conventional efficiency and is a reliable method to fairly compare different energy sources. Two case studies in Spain and Germany with nine scenarios each are defined to study different hydrogen-preparation routes. The scenarios include the main colors of hydrogen production (grey turquoise yellow and green) and different combinations of processing and transportation choices. In most cases the highest energy penalty in the overall preparation process of the fuel is linked to the production step. A large difference is found between fossil fuel-based hydrogen and green hydrogen derived from excess renewable energy with fossil fuel-based hydrogen resulting in significantly lower total efficiencies compared to green hydrogen. The use of natural gas as the primary source to generate hydrogen is found to be a critical factor affecting total efficiency particularly in cases where the gas must be transported from far away. This shows the value of using excess renewable energy in the production of hydrogen instead of grid power. Even in the most efficient scenario of green hydrogen studied total efficiency was found to be 7 % lower than the respective conventional efficiency that does not account for hydrogen generation. These results emphasize the importance of considering the impact of fuel preparation stages in comparative thermodynamic analyses and evaluations.
Environmental and Material Criticality Assessment of Hydrogen Production via Anion Exchange Membrane Electrolysis
Oct 2023
Publication
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work prospective life cycle assessment and criticality assessment are applied first to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and second to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view the catalyst spraying process heavily dominates the ozone depletion impact category while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded subject to the expected technical progress for this technology.
Carbon-negative Hydrogen: Exploring the Techno-economic Potential of Biomass Co-gasification with CO2 Capture
Sep 2021
Publication
The hydrogen economy is receiving increasing attention as a complement to electrification in the global energy transition. Clean hydrogen production is often viewed as a competition between natural gas reforming with CO2 capture and electrolysis using renewable electricity. However solid fuel gasification with CO2 capture presents another viable alternative especially when considering the potential of biomass to achieve negative CO2 emissions. This study investigates the techno-economic potential of hydrogen production from large-scale coal/ biomass co-gasification plants with CO2 capture. With a CO2 price of 50 €/ton the benchmark plant using commercially available technologies achieved an attractive hydrogen production cost of 1.78 €/kg with higher CO2 prices leading to considerable cost reductions. Advanced configurations employing hot gas clean-up membrane-assisted water-gas shift and more efficient gasification with slurry vaporization and a chemical quench reduced the hydrogen production cost to 1.50–1.62 €/kg with up to 100% CO2 capture. Without contingencies added to the pre-commercial technologies the lowest cost reduces to 1.43 €/kg. It was also possible to recover waste heat in the form of hot water at 120 ◦C for district heating potentially unlocking further cost reductions to 1.24 €/kg. In conclusion gasification of locally available solid fuels should be seriously considered next to natural gas and electrolysis for supplying the emerging hydrogen economy.
Integration of Microgrids in Chemical Industries with Hydrogen as a Byproduct: Styrene Production Case Study
Feb 2024
Publication
The chemical industry serves as a global economic backbone and it is an intensive consumer of conventional energy. Due to the depletion of fossil fuels and the emission of greenhouse gases it is necessary to analyze energy supply solutions based on renewable energy sources in this industrial sector. Unlike other sectors such as residential or service industries which have been thoroughly analyzed by the scientific community the use of renewable energies in the chemical industry remains comparatively less examined by the scientific community. This article studies the use of an energy supply system based on photovoltaic technology or a PEM fuel cell for a styrene production industry analyzing the integration of energy storage systems such as batteries as well as different uses for the surplus hydrogen produced by the facility. The most interesting conclusions of the article are: (1) the renewable microgrid considered is viable both technically and economically with a discounted payback period between 5.4 and 6.5 years using batteries as an energy storage system; and (2) the use of hydrogen as energy storage system for a styrene industry is not yet a viable option from an economic point of view.
Analysis of the Combustion Speed in a Spark Ignition Engine Fuelled with Hydrogen and Gasoline Blends at Different Air Fuel Ratios
Nov 2024
Publication
The use of hydrogen in internal combustion engines is a promising solution for the decarbonisation of the transport sector. The current transition scenario is marked by the unavailability and storage challenges of hydrogen. Dual fuel combustion of hydrogen and gasoline in current spark ignition engines is a feasible solution in the short and medium term as it can improve engine efficiency reduce pollutant emissions and contribute significantly in tank to wheel decarbonisation without major engine modification. However new research is needed to understand how the incorporation of hydrogen affects existing engines to effectively implement gasoline-hydrogen dual fuel option. Understanding the impact of hydrogen on the combustion process (e.g. combustion speed) will guide and optimize the operation of engines under dual fuel combustion conditions. In this work a commercial gasoline direct injection engine has been modified to operate with gasolinehydrogen fuels. The experiments have been carried out at various air–fuel ratios ranging from stoichiometric to lean combustion conditions at constant engine speed and torque. At each one of the 14 experimental points 200-cycle in-cylinder pressure traces were recorded and processed with a quasi-dimensional diagnostic model and a combustion speed analysis was then carried out. It has been understood that hydrogen mainly reduces the duration of the first combustion phase. Hydrogen also enables to increase air excess ratios (lean in fuel combustion) without significantly increasing combustion duration. Furthermore a correlation is proposed to predict combustion speed as a function of the fuel and air mixture properties. This correlation can be incorporated to calculate combustion duration in predictive models of engines operating under different fuel mixtures and different geometries of the combustion chamber with pent-roof cylinder head and flat piston head.
Integration of Air-cooled Multi-stack Polymer Electrolyte Fuel Cell Systems into Renewable Microgrids
May 2022
Publication
Currently there is a growing interest in increasing the power range of air-cooled fuel cells (ACFCs) as they are cheaper easier to use and maintain than water-cooled fuel cells (WCFCs). However air-cooled stacks are only available up to medium power (<10 kW). Therefore a good solution may be the development of ACFCs consisting of several stacks until the required power output is reached. This is the concept of air-cooled multi-stack fuel cell (AC-MSFC). The objective of this work is to develop a turnkey solution for the integration of AC-MSFCs in renewable microgrids specifically those with high-voltage DC (HVDC) bus. This is challenging because the AC-MSFCs must operate in the microgrid as a single ACFC with adjustable power depending on the number of stacks in operation. To achieve this the necessary power converter (ACFCs operate at low voltages so high conversion rates are required) and control loops must be developed. Unlike most designs in the literature the proposed solution is compact forming a system (AC-MSFCS) with a single input (hydrogen) and a single output (high voltage regulated power or voltage) that can be easily integrated into any microgrid and easily scalable depending on the power required. The developed AC-MSFCS integrates stacks balance of plant data acquisition and instrumentation power converters and local controllers. In addition a virtual instrument (VI)has been developed which connected to the energy management system (EMS) of the microgrid allows monitoring of the entire AC-MSFCS (operating temperature purging cell voltage monitoring for degradation evaluation stacks operating point control and alarm and event management) as well as serving as a user interface. This allows the EMS to know the degradation of each stack and to carry out energy distribution strategies or specific maintenance actions which improves efficiency lifespan and of course saves costs. The experimental results have been excellent in terms of the correct operation of the developed AC-MSFCS. Likewise the accumulated degradation of the stacks was quantified showing cells with a degradation of >80%. The excellent electrical and thermal performance of the developed power converter was also validated which allowed the correct and efficient supply of regulated power (average efficiency above 90%) to the HVDC bus according to the power setpoint defined by the EMS of the microgrid.
Development of a Fuel Cell-based System for Refrigerated Transport
Nov 2012
Publication
Benchmark refrigerated systems in the road transportation sector are powered by diesel having operation costs of up to 6000 €/y. This paper presents the development of an alternative refrigeration system based on fuel cells with higher efficiency reduced costs and independent of diesel price fluctuations. Energy load profiles have been analyzed and the fuel cell stack and auxiliaries are being modeled in order to dimension and design a balance of plant and control algorithms that ensure a safe and easy utilization. Additionally a prototype shall be tested under different load profiles to validate the control strategies and to characterize the performance of the system.
CFD Modeling and Experimental Validation of an Alkaline Water Electrolysis Cell for Hydrogen Production
Dec 2020
Publication
Although alkaline water electrolysis (AWE) is the most widespread technology for hydrogen production by electrolysis its electrochemical and fluid dynamic optimization has rarely been addressed simultaneously using Computational Fluid Dynamics (CFD) simulation. In this regard a two-dimensional (2D) CFD model of an AWE cell has been developed using COMSOL® software and then experimentally validated. The model involves transport equations for both liquid and gas phases as well as equations for the electric current conservation. This multiphysics approach allows the model to simultaneously analyze the fluid dynamic and electrochemical phenomena involved in an electrolysis cell. The electrical response was evaluated in terms of polarization curve (voltage vs. current density) at different operating conditions: temperature electrolyte conductivity and electrode-diaphragm distance. For all cases the model fits very well with the experimental data with an error of less than 1% for the polarization curves. Moreover the model successfully simulates the changes on gas profiles along the cell according to current density electrolyte flow rate and electrode-diaphragm distance. The combination of electrochemical and fluid dynamics studies provides comprehensive information and makes the model a promising tool for electrolysis cell design.
Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies
Nov 2023
Publication
Electrification using renewable energy sources represents a clear path toward solving the current global energy crisis. In Colombia this challenge also involves the diversification of the electrical energy sources to overcome the historical dependence on hydropower. In this context green hydrogen represents a key energy carrier enabling the storage of renewable energy as well as directly powering industrial and transportation sectors. This work explores the realistic potential of the main renewable energy sources including solar photovoltaics (8172 GW) hydropower (56 GW) wind (68 GW) and biomass (14 GW). In addition a case study from abroad is presented demonstrating the feasibility of using each type of renewable energy to generate green hydrogen in the country. At the end an analysis of the most likely regions in the country and paths to deploy green hydrogen projects are presented favoring hydropower in the short term and solar in the long run. By 2050 this energy potential will enable reaching a levelized cost of hydrogen (LCOH) of 1.7 1.5 3.1 and 1.4 USD/kg-H2 for solar photovoltaic wind hydropower and biomass respectively.
Exploring Dilution Potential for Full Load Operation of Medium Duty Hydrogen Engine for the Transport Sector
Jul 2023
Publication
The current political scenario and the concerns for global warming have pushed very harsh regulations on conventional propulsion systems based on the use of fossil fuels. New technologies are being promoted but their current technological status needs further research and development for them to become a competitive substitute for the ever-present internal combustion engine. Hydrogen-fueled internal combustion engines have demonstrated the potential of being a fast way to reach full decarbonization of the transport sector but they still have to face some limitations in terms of the operating range of the engine. For this reason the present work evaluates the potential of reaching full load operation on a conventional diesel engine assuming the minimum modifications required to make it work under H2 combustion. This study shows the methodology through which the combustion model was developed and then used to evaluate a multi-cylinder engine representative of the medium to high duty transport sector. The evaluation included different strategies of dilution to control the combustion performance and the results show that the utilization of EGR brings different benefits to engine operation in terms of efficiency improvement and emissions reduction. Nonetheless the requisites defined for the needed turbocharging system are harsher than expected and result in a potential non-conventional technical solution.
Hydrogen-fuelled Internal Combustion Engines: Direct Injection Versus Port-fuel Injection
Jul 2024
Publication
The road-transport is one of the major contributors to greenhouse global gas (GHG) emissions where hydrogen (H2) combustion engines can play a crucial role in the path towards the sector’s decarbonization goal. This study focuses on comparing the performance and emissions of port-fuel injection (PFI) and direct injection (DI) in a spark ignited combustion engine when is fuelled by hydrogen and other noteworthy fuels like methane and coke oven gas (COG). Computational fluid dynamic simulations are performed at optimal spark advance and air-fuel ratio (λ) for engine speeds between 2000 and 5000 rpm. Analysis reveals that brake power increases by 40% for DI attributed to 30.6% enhanced volumetric efficiency while the sNOx are reduced by 36% compared to PFI at optimal λ = 1.5 for hydrogen. Additionally H2 results in 71.8% and 67.2% reduction in fuel consumption compared to methane and COG respectively since the H2 lower heating value per unit of mass is higher.
Towards Suitable Practices for the Integration of Social Life Cycle Assessment into the Ecodesign Framework of Hydrogen-related Products
Feb 2024
Publication
The hydrogen sector is envisaged as one of the key enablers of the energy transition that the European Union is facing to accomplish its decarbonization targets. However regarding the technologies that enable the deployment of a hydrogen economy a growing concern exists about potential burden-shifting across sustainability dimensions. In this sense social life cycle assessment arises as a promising methodology to evaluate the social implications of hydrogen technologies along their supply chains. In the context of the European projects eGHOST and SH2E this study seeks to advance on key methodological aspects of social life cycle assessment when it comes to guiding the ecodesign of two relevant hydrogen-related products: a 5 kW solid oxide electrolysis cell stack for hydrogen production and a 48 kW proton-exchange membrane fuel cell stack for mobility applications. Based on the social life cycle assessment results for both case studies under alternative approaches the definition of a product-specific supply chain making use of appropriate cut-off criteria was found to be the preferable choice when addressing system boundaries definition. Moreover performing calculations according to the activity variable approach was found to provide valuable results in terms of social hotspots identification to support subsequent decision-making processes on ecodesign while the direct calculation approach is foreseen as a complement to ease the interpretation of social scores. It is concluded that advancements in the formalization of such suitable practices could foster the integration of social metrics into the sustainable-by-design framework of hydrogen-related products.
Optimizing Hydrogen Production: A Comparative Study of Direct and Indirect Coupling Between Photovoltaics and Electrolyzer
Jul 2024
Publication
The production of hydrogen from photovoltaics (PV) has gained attention due to its potential as an energy vector. In this context there are two basic configurations for electrically coupling PV to hydrogen electrolyzers: direct and indirect. The direct configuration operates variably based on meteorological conditions but has simplicity as an advantage. The indirect configuration involves a power stage (PS) with a maximum power point tracker and a DC-DC converter maintaining an optimal power transfer from PV to electrolyzers but incurs losses at the PS. The direct configuration avoids these losses but requires a specific design of the PV generator to achieve high electrical transfer. The comparative analysis of hydrogen production between these two approaches indicates that the indirect paradigm yields a 37.5% higher hydrogen output throughout a typical meteorological year compared to the optimized direct configuration. This increase enhances the overall sunlight-to-hydrogen efficiency elevating it from 5.0% in the direct case to 6.9% in the indirect one. Furthermore the direct setup sensitive to PV power fluctuations suffers an 18% reduction in hydrogen production with just a 5% reduction in photogenerated power. Under optimal performance the direct coupling produces less hydrogen unless the DCDC converter efficiency drops 17% below commercial standards.
Levelized Cost of Biohydrogen from Steam Reforming of Biomethane with Carbon Capture and Storage (Golden Hydrogen)—Application to Spain
Feb 2024
Publication
The production of biohydrogen with negative CO2 emissions through the steam methane reforming of biomethane coupled with carbon capture and storage represents a promising technology particularly for industries that are difficult to electrify. In spite of the maturity of this technology which is currently employed in the production of grey and blue hydrogen a detailed cost model that considers the entire supply chain is lacking in the literature. This study addresses this gap by applying correlations derived from actual facilities producing grey and blue hydrogen to calculate the CAPEX while exploring various feedstock combinations for biogas generation to assess the OPEX. The analysis also includes logistic aspects such as decentralised biogas production and the transportation and storage of CO2 . The levelized cost of golden hydrogen is estimated to range from EUR 1.84 to 2.88/kg compared to EUR 1.47/kg for grey hydrogen and EUR 1.93/kg for blue hydrogen assuming a natural gas cost of EUR 25/MWh and excluding the CO2 tax. This range increases to between 3.84 and 2.92 with a natural gas cost of EUR 40/MWh with the inclusion of the CO2 tax. A comparison with conventional green hydrogen is performed highlighting both prices and potential thereby offering valuable information for decision-making.
An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production
Jun 2024
Publication
This work studies the efficiency and long-term viability of powered hydrogen production. For this purpose a detailed exploration of hydrogen production techniques has been undertaken involving data collection information authentication data organization and analysis. The efficiency trends environmental impact and hydrogen production costs in a landscape marked by limited data availability were investigated. The main contribution of this work is to reduce the existing data gap in the field of hydrogen production by compiling and summarizing dispersed data. The findings are expected to facilitate the decision-making process by considering regional variations energy source availability and the potential for technological advancements that may further enhance the economic viability of electrolysis. The results show that hydrogen production methods can be identified that do not cause significant harm to the environment. Photolysis stands out as the least serious offender producing 0 kg of CO2 per kg of H2 while thermolysis emerges as the major contributor to emissions with 20 kg of CO2 per kg of H2 produced.
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Impact of Large-scale Hydrogen Electrification and Retrofitting of Natural Gas Infrastructure on the European Power System
Nov 2023
Publication
In this paper we aim to analyse the impact of hydrogen production decarbonisation and electrification scenarios on the infrastructure development generation mix CO2 emissions and system costs of the European power system considering the retrofit of the natural gas infrastructure. We define a reference scenario for the European power system in 2050 and use scenario variants to obtain additional insights by breaking down the effects of different assumptions. The scenarios were analysed using the European electricity market model COMPETES including a proposed formulation to consider retrofitting existing natural gas networks to transport hydrogen instead of methane. According to the results 60% of the EU’s hydrogen demand is electrified and approximately 30% of the total electricity demand will be to cover that hydrogen demand. The primary source of this electricity would be non-polluting technologies. Moreover hydrogen flexibility significantly increases variable renewable energy investment and production and reduces CO2 emissions. In contrast relying on only electricity transmission increases costs and CO2 emissions emphasising the importance of investing in an H2 network through retrofitting or new pipelines. In conclusion this paper shows that electrifying hydrogen is necessary and cost-effective to achieve the EU’s objective of reducing long-term emissions.
Hydrogen Revolution in Europe: Bibliometric Review of Industrial Hydrogen Applications for a Sustainable Future
Jul 2024
Publication
Industrial applications of hydrogen are key to the transition towards a sustainable lowcarbon economy. Hydrogen has the potential to decarbonize industrial sectors that currently rely heavily on fossil fuels. Hydrogen with its unique and versatile properties has several in-industrial applications that are fundamental for sustainability and energy efficiency such as the following: (i) chemical industry; (ii) metallurgical sector; (iii) transport; (iv) energy sector; and (v) agrifood sector. The development of a bibliometric analysis of industrial hydrogen applications in Europe is crucial to understand and guide developments in this emerging field. Such an analysis can identify research trends collaborations between institutions and countries and the areas of greatest impact and growth. By examining the scientific literature and comparing it with final hydrogen consumption in different regions of Europe the main actors and technologies that are driving innovation in industrial hydrogen use on the continent can be identified. The results obtained allow for an assessment of the knowledge gaps and technological challenges that need to be addressed to accelerate the uptake of hydrogen in various industrial sectors. This is essential to guide future investments and public policies towards strategic areas that maximize the economic and environmental impact of industrial hydrogen applications in Europe.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Internal Combustion Engines and Carbon-Neutral Fuels: A Perspective on Emission Neutrality in the European Union
Mar 2024
Publication
Nowadays there is an intense debate in the European Union (EU) regarding the limits to achieve the European Green Deal to make Europe the first climate-neutral continent in the world. In this context there are also different opinions about the role that thermal engines should play. Furhermore there is no clear proposal regarding the possibilities of the use of green hydrogen in the transport decarbonization process even though it should be a key element. Thus there are still no precise guidelines regarding the role of green hydrogen with it being exclusively used as a raw material to produce E-fuels. This review aims to evaluate the possibilities of applying the different alternative technologies available to successfully complete the process already underway to achieve Climate Neutrality by about 2050 depending on the maturity of the technologies currently available and those anticipated to be available in the coming decades.
Assessment of Selected Alternative Fuels for Spanish Navy Ships According to Multi-Criteria Decision Analysis
Dec 2023
Publication
Climate change and environmental degradation are growing concerns in today’s society which has led to greater awareness and responsibility regarding the need to adopt sustainable practices. The European Union has established the goal of achieving climate neutrality by 2050 which implies a significant reduction in greenhouse gas emissions in all sectors. To achieve this goal renewable energies the circular economy and energy efficiency are being promoted. A major source of emissions is the use of fossil fuels in different types of ships (from transport ships to those used by national navies). Among these it highlights the growing interest of the defense sector in trying to reduce these emissions. The Spanish Ministry of Defense is also involved in this effort and is taking steps to reduce the carbon footprint in military operations and improve sustainability in equipment acquisition and maintenance. The objective of this study is to identify the most promising alternative fuel among those under development for possible implementation on Spanish Navy ships in order to reduce greenhouse gas emissions and improve its capabilities. To achieve this a multi-criteria decision-making method will be used to determine the most viable fuel option. The data provided by the officers of the Spanish Navy is of great importance thanks to their long careers in front of the ships. The analysis revealed that hydrogen was the most suitable fuel with the highest priority ahead of LNG and scored the highest in most of the sections of the officials’ ratings. These fuels are less polluting and would allow a significant reduction in emissions during the navigation of ships. However a further study would also have to be carried out on the costs of adapting to their use and the safety of their use.
Steam Electrolysis for Green Hydrogen Generation. State of the Art and Research Perspective
Jul 2024
Publication
With renewable energy sources projected to become the dominant source of electricity hydrogen has emerged as a crucial energy carrier to mitigate their intermittency issues. Water electrolysis is the most developed alternative to generate green hydrogen so far. However in the past two decades steam electrolysis has attracted increasing interest and aims to become a key player in the portfolio of electrolytic hydrogen. In practice steam electrolysis follows two distinct operational approaches: Solid Oxide Electrolysis Cell (SOEC) and Proton Exchange Membrane (PEM) at high temperature. For both technologies this work analyses critical cell components outlining material characteristics and degradation issues. The influence of operational conditions on the performance and cell durability of both technologies is thoroughly reviewed. The analytical comparison of the two electrolysis alternatives underscores their distinct advantages and drawbacks highlighting their niche of applications: SOECs thrive in high temperature industries like steel production and nuclear power plants whereas PEM steam electrolysis suits lower temperature applications such as textile and paper. Being PEM steam electrolysis less explored this work ends up by suggesting research lines in the domain of i) cell components (membranes catalysts and gas diffusion layers) to optimize and scale the technology ii) integration strategies with renewable energies and iii) use of seawater as feedstock for green hydrogen production.
Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen
Nov 2023
Publication
Offshore electricity production mainly by wind turbines and eventually floating PV is expected to increase renewable energy generation and their dispatchability. In this sense a significant part of this offshore electricity would be directly used for hydrogen generation. The integration of offshore energy production into the hydrogen economy is of paramount importance for both the techno-economic viability of offshore energy generation and the hydrogen economy. An analysis of this integration is presented. The analysis includes a discussion about the current state of the art of hydrogen pipelines and subsea cables as well as the storage and bunkering system that is needed on shore to deliver hydrogen and derivatives. This analysis extends the scope of most of the previous works that consider port-to-port transport while we report offshore to port. Such storage and bunkering will allow access to local and continental energy networks as well as to integrate offshore facilities for the delivery of decarbonized fuel for the maritime sector. The results of such state of the art suggest that the main options for the transport of offshore energy for the production of hydrogen and hydrogenated vectors are through direct electricity transport by subsea cables to produce hydrogen onshore or hydrogen transport by subsea pipeline. A parametric analysis of both alternatives focused on cost estimates of each infrastructure (cable/pipeline) and shipping has been carried out versus the total amount of energy to transport and distance to shore. For low capacity (100 GWh/y) an electric subsea cable is the best option. For high-capacity renewable offshore plants (TWh/y) pipelines start to be competitive for distances above approx. 750 km. Cost is highly dependent on the distance to land ranging from 35 to 200 USD/MWh.
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
Empowering Fuel Cell Electric Vehicles Towards Sustainable Transportation: An Analytical Assessment, Emerging Energy Management, Key Issues, and Future Research Opportunities
Oct 2024
Publication
Fuel cell electric vehicles (FCEVs) have received significant attention in recent times due to various advantageous features such as high energy efficiency zero emissions and extended driving range. However FCEVs have some drawbacks including high production costs; limited hydrogen refueling infrastructure; and the complexity of converters controllers and method execution. To address these challenges smart energy management involving appropriate converters controllers intelligent algorithms and optimizations is essential for enhancing the effectiveness of FCEVs towards sustainable transportation. Therefore this paper presents emerging energy management strategies for FCEVs to improve energy efficiency system reliability and overall performance. In this context a comprehensive analytical assessment is conducted to examine several factors including research trends types of publications citation analysis keyword occurrences collaborations influential authors and the countries conducting research in this area. Moreover emerging energy management schemes are investigated with a focus on intelligent algorithms optimization techniques and control strategies highlighting contributions key findings issues and research gaps. Furthermore the state-of-the-art research domains of FCEVs are thoroughly discussed in order to explore various research domains relevant outcomes and existing challenges. Additionally this paper addresses open issues and challenges and offers valuable future research opportunities for advancing FCEVs emphasizing the importance of suitable algorithms controllers and optimization techniques to enhance their performance. The outcomes and key findings of this review will be helpful for researchers and automotive engineers in developing advanced methods control schemes and optimization strategies for FCEVs towards greener transportation.
Green Hydrogen Integration in Aluminium Recycling: Techno-economic Analysis Towards Sustainability Transition in the Expanding Aluminium Market
Feb 2024
Publication
The use of aluminum-based products is widespread and growing particularly in industries such as automotive food packaging and construction. Obtaining aluminum is expensive and energy-intensive making the recycling of existing products essential for economic and environmental viability. This work explores the potential of using green hydrogen as a replacement for natural gas in the smelting and refining furnaces in aluminum recycling facilities. The adoption of green hydrogen has the potential to curtail approximately 4.54 Ktons/year of CO2 emissions rendering it a sustainable and economically advantageous solution. The work evaluates the economic viability of a case study through assessing the Net Present Value (NPV) and the Internal Rate of Return (IRR). Furthermore it is employed single- and multi-parameter sensitivity analyses to obtain insight on the most relevant conditions to achieve economic viability. Results demonstrate that integrating on-site green hydrogen generation yields a favorable NPV of €57370 an IRR of 9.83% and a 19.63-year payback period. The primary factors influencing NPV are the initial electricity consumption stack and the H2 price.
Life-cycle Assessment of Hydrogen Produced through Chemical Looping Dry Reforming of Biogas
Jun 2024
Publication
Chemical looping dry reforming of methane (CLDRM) using perovskites as a catalyst is considered a promising option for producing hydrogen from biogas. In this work the life-cycle performance of a system compiling a CLDRM unit paired with a water gas shift unit a pressure swing adsorption unit and a combined cycle scheme to provide steam and electricity was assessed. The main data needed to reflect the behavior of the reforming reaction was obtained experimentally and implemented in an Aspen Plus® simulation. Inventory data was obtained through process simulation and used to assess the environmental performance of the process in terms of carbon footprint acidification freshwater eutrophication ozone depletion photochemical ozone formation and depletion of minerals and metals. Overall the environmental viability of the production of green hydrogen from biogas was found to be heavily dependent on the biogas leakage in anaerobic digestion plants. The CLDRM system was benchmarked against a conventional DRM implementation for the same feedstock. While the conventional DRM plant environmentally outperformed the perovskite-based CLDRM the latter might present advantages from an implementation point of view.
Intensification of Hydrogen Production: Pd–Ag Membrane on Tailored Hastelloy-X Filter for Membrane-Assisted Steam Methane Reforming
Dec 2023
Publication
H2 production via membrane-assisted steam methane reforming (MA-SMR) can ensure higher energy efficiency and lower emissions compared to conventional reforming processes (SMR). Ceramic-supported Pd–Ag membranes have been extensively investigated for membrane-assisted steam methane reforming applications with outstanding performance. However costs sealings for integration in the reactor structure and resistance to solicitations remain challenging issues. In this work the surface quality of a low-cost porous Hastelloy-X filter is improved by asymmetric filling with α-Al2O3 of decreasing size and deposition of γ-Al2O3 as an interdiffusion barrier. On the modified support a thin Pd–Ag layer was deposited via electroless plating (ELP) resulting in a membrane with H2/N2 selectivity >10000. The permeation characteristics of the membrane were studied followed by testing for membrane-assisted methane steam reforming. The results showed the ability of the membrane reactor to overcome thermodynamic conversion of the conventional process for all explored operating conditions as well as ensuring 99.3% H2 purity in the permeate stream at 500 ◦C and 4 bar.
Comparison of Methane Reforming Routes for Hydrogen Production using Dielectric Barrier Discharge Plasma-catalysis
Feb 2024
Publication
Methane reforming is an interesting resource for obtaining hydrogen. DBD plasma-catalysis allows a direct use of electricity for methane reforming reactions such as direct methane reforming (MR) dry methane reforming (DMR) and steam methane reforming (SMR). In this work the first comprehensive comparison of these three routes for hydrogen production is experimentally and systematically investigated using dielectric barrier discharge (DBD) plasma and various catalyst formulations. Among the three routes SMR is the most effective achieving significantly higher methane conversion rates (24 %) and hydrogen content (80 %). DMR produces predominantly syngas mixture whereas MR yields hydrogen along with other light carbon compounds. In SMR route the favorable textural properties of Ni/Al2O3 are responsible for its high methane conversion rates while Ni/CeO2 increases hydrogen content since it favors the water-gas shift reaction especially at high power inputs. Therefore SMR using a suitable catalyst stands out as the most feasible reforming route for hydrogen production.
Implementation of a Decision-making Approach for a Hydrogen-based Multi-energy System Considering EVs and FCEVs Availability
Aug 2024
Publication
Innovative green vehicle concepts have become increasingly prevailing in consumer purchasing habits as technology evolves. The global transition towards sustainable transportation indicates an increase in new-generation vehicles including both fuel-cell electric vehicles (FCEVs) and plug-in electric vehicles (PEVs) that will take on roads in the future. This change requires new-generation stations to support electrification. This study introduced a prominent multi-energy system concept with a hydrogen refueling station. The proposed multi-energy system (MES) consists of green hydrogen production a hydrogen refueling station for FCEVs hydrogen injection into natural gas (NG) and a charging station for PEVs. An on-site renewable system projected at the station and a polymer electrolyte membrane electrolyzer (PEM) to produce hydrogen for two significant consumers support MES. In addition the MES offers the ability to conduct two-way trade with the grid if renewable energy systems are insufficient. This study develops a comprehensive multi-energy system with an economically optimized energy management model using a mixed-integer linear programming (MILP) approach. The determinative datasets of vehicles are generated in a Python environment using Gauss distribution. The fleet of FCEVs and PEVs are currently available on the market. The study includes fleets of the most common models from well-known brands. The results indicate that profits increase when the storage capacity of the hydrogen tank is higher and natural gas injections are limitless. Optimization results for all cases tend to choose higher-priced natural gas injections over hydrogen refueling because of the difference in costs of refueling and injection expenses. The analyses reveal the highest hydrogen sales to the natural gas (NG) grid by consuming 2214.31 kg generating a revenue of $6966 and in contrast the lowest hydrogen sales to the natural gas grid at 1045.38 kg resulting in a revenue of $3286. Regarding electricity the highest sales represent revenue of $7701 and $2375 for distribution system consumption and electric vehicles (EV) respectively. Conversely Cases 1 and 2 have achieved sales to EV of $2286 and $2349 respectively but do not have any sales to distribution system consumption regarding the constraints. Overall the optimization results show that the solution is optimal for a multi-energy system operator to achieve higher profits and that all end-user parties are satisfied.
Different Strategies in an Integrated Thermal Management System of a Fuel Cell Electric Bus Under Real Driving Cycles in Winter
May 2023
Publication
Due to the climate crisis and the restriction measures taken in the last decade electric buses are gaining popularity in the transport sector. However one of the most significant disadvantages of this type of vehicle is its low autonomy. Many electric buses with proton-exchange membrane fuel cells (PEMFC) systems have been developed to solve this problem in recent years. These have an advantage over battery-electric buses because the autonomy depends on the capacity of the hydrogen tanks. As with batteries thermal management is crucial for fuel cells to achieve good performance and prolong service life. For this reason it is necessary to investigate different strategies or configurations of a fuel cell electric bus’s integral thermal management system (ITMS). In the present work a novel global model of a fuel cell electric bus (FCEB) has been developed which includes the thermal models of the essential components. This model was used to evaluate different strategies in the FCEB integrated thermal management system simulating driving cycles of the public transport system of Valencia Spain under winter weather conditions. The first strategy was to use the heat generated by the fuel cell to heat the vehicle’s cabin achieving savings of up to 7%. The second strategy was to use the waste heat from the fuel cells to preheat the batteries. It was found that under conditions where a high-power demand is placed on the fuel cell it is advisable to use the residual heat to preheat the battery resulting in an energy saving of 4%. Finally a hybrid solution was proposed in which the residual heat from fuel cells is used to heat both the cabin and the battery resulting in an energy saving of 10%.
Can an Energy Only Market Enable Resource Adequacy in a Decarbonized Power System? A Co-simulation with Two Agent-based-models
Feb 2024
Publication
Future power systems in which generation will come almost entirely from variable Renewable Energy Sources (vRES) will be characterized by weather-driven supply and flexible demand. In a simulation of the future Dutch power system we analyze whether there are sufficient incentives for market-driven investors to provide a sufficient level of security of supply considering the profit-seeking and myopic behavior of investors. We cosimulate two agent-based models (ABM) one for generation expansion and one for the operational time scale. The results suggest that in a system with a high share of vRES and flexibility prices will be set predominantly by the demand’s willingness to pay particularly by the opportunity cost of flexible hydrogen electrolyzers. The demand for electric heating could double the price of electricity in winter compared to summer and in years with low vRES could cause shortages. Simulations with stochastic weather profiles increase the year-to-year variability of cost recovery by more than threefold and the year-to-year price variability by more than tenfold compared to a scenario with no weather uncertainty. Dispatchable technologies have the most volatile annual returns due to high scarcity rents during years of low vRES production and diminished returns during years with high vRES production. We conclude that in a highly renewable EOM investors would not have sufficient incentives to ensure the reliability of the system. If they invested in such a way to ensure that demand could be met in a year with the lowest vRES yield they would not recover their fixed costs in the majority of years.
Processes Supervision System for Green Hydrogen Production: Experimental Characterization and Data Acquisition of PEM Electrolyzer
May 2022
Publication
Green hydrogen is the term used to reflect the fact that hydrogen is generated from renewable energies. This process is commonly performed by means of water electrolysis decomposing water molecules into oxygen and hydrogen in a zero emissions process. Proton exchange membrane (PEM) electrolyzers are applied for such a purpose. These devices are complex systems with nonlinear behavior which impose the measurement and control of several magnitudes for an effective and safe operation. In this context the modern paradigm of Digital Twin (DT) is applied to represent and even predict the electrolyzer behavior under different operating conditions. To build this cyber replica a paramount previous stage consists of characterizing the device by means of the curves that relate current voltage and hydrogen flow. To this aim this paper presents a processes supervision system focused on the characterization of a experimental PEM electrolyzer. This device is integrated in a microgrid for production of green hydrogen using photovoltaic energy. Three main functions must be performed by the supervision system: measurement of the process magnitudes data acquisition and storage and real-time visualization. To accomplish these tasks firstly a set of sensors measure the process variables. In second place a programmable logic controller is responsible of acquiring the signals provided by the sensors. Finally LabVIEW implements the user interface as well as data storage functions. The process evolution is observed in real-time through the user interface composed by graphical charts and numeric indicators. The deployed process supervision system is reported together with experimental results to prove its suitability.
Laboratory Studies on Underground H2 Storage: Bibliometric Analysis and Review of Current Knowledge
Dec 2024
Publication
: The global demand for energy and the need to mitigate climate change require a shift from traditional fossil fuels to sustainable and renewable energy alternatives. Hydrogen is recognized as a significant component for achieving a carbon-neutral economy. This comprehensive review examines the underground hydrogen storage and particularly laboratory-scale studies related to rock– hydrogen interaction exploring current knowledge. Using bibliometric analysis of data from the Scopus and Web of Science databases this study reveals an exponential increase in scientific publications post-2015 which accounts for approximately 85.26% of total research output in this field and the relevance of laboratory experiments to understand the physicochemical interactions of hydrogen with geological formations. Processes in underground hydrogen storage are controlled by a set of multi-scale parameters including solid properties (permeability porosity composition and geomechanical properties) and fluid properties (liquid and gas density viscosity etc.) together with fluid–fluid and solid–fluid interactions (controlled by solubility wettability chemical reactions etc.). Laboratory experiments aim to characterize these parameters and their evolution simulating real-world storage conditions to enhance the reliability and applicability of findings. The review emphasizes the need to expand research efforts globally to comprehensively address the currently existing issues and knowledge gaps.
Green Hydrogen Techno-economic Assessments from Simulated and Measured Solar Photovoltaic Power Profiles
Nov 2024
Publication
Studies estimating the production cost of hydrogen-based fuels known as e-fuels often use renewable power profile time series obtained from open-source simulation tools that rely on meteorological reanalysis and satellite data such as Renewables.ninja or PVGIS. These simulated time series contain errors compared to real on-site measured data which are reflected in e-fuels cost estimates plant design and operational performance increasing the risk of inaccurate plant design and business models. Focusing on solar-powered e-fuels this study aims to quantify these errors using high-quality on-site power production data. A state-of-the-art optimization techno-economic model was used to estimate e-fuel production costs by utilizing either simulated or high-quality measured PV power profiles across four sites with different climates. The results indicate that in cloudy climates relying on simulated data instead of measured data can lead to an underestimation of the fuel production costs by 36 % for a hydrogen user requiring a constant supply considering an original error of 1.2 % in the annual average capacity factor. The cost underestimation can reach 25 % for a hydrogen user operating between 40 % and 100 % load and 17.5 % for a fully flexible user. For comparison cost differences around 20 % could also result from increasing the electrolyser or PV plant costs by around 55 % which highlights the importance of using high-quality renewable power profiles. To support this an open-source collaborative repository was developed to facilitate the sharing of measured renewable power profiles and provide tools for both time series analysis and green hydrogen techno-economic assessments.
Hydrogen Production by Wastewater Alkaline Electro-Oxidation
Aug 2024
Publication
The current work presents the electro-oxidation of olive mill and biodiesel wastewaters in an alkaline medium with the aim of hydrogen production and simultaneous reduction in the organic pollution content. The process is performed at laboratory scale in an own-design single cavity electrolyzer with graphite electrodes and no membrane. The system and the procedures to generate hydrogen under ambient conditions are described. The gas flow generated is analyzed through gas chromatography. The wastewater balance in the liquid electrolyte shows a reduction in the chemical oxygen demand (COD) pointing to a decrease in the organic content. The experimental results confirm the production of hydrogen with different purity levels and the simultaneous reduction in organic contaminants. This wastewater treatment appears as a feasible process to obtain hydrogen at ambient conditions powered with renewable energy sources resulting in a more competitive hydrogen cost.
Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review
Oct 2021
Publication
The global economic growth the increase in thepopulation and advances in technology lead to an increment in theglobal primary energy demand. Considering that most of thisenergy is currently supplied by fossil fuels a considerable amountof greenhouse gases are emitted contributing to climate changewhich is the reason why the next European Union bindingagreement is focused on reducing carbon emissions usinghydrogen. This study reviews different technologies for hydrogenproduction using renewable and non-renewable resources.Furthermore a comparative analysis is performed on renewable-based technologies to evaluate which technologies are economically and energetically more promising. The results show howbiomass-based technologies allow for a similar hydrogen yield compared to those obtained with water-based technologies but withhigher energy efficiencies and lower operational costs. More specifically biomass gasification and steam reforming obtained a properbalance between the studied parameters with gasification being the technique that allows for higher hydrogen yields while steamreforming is more energy-efficient. Nevertheless the application of hydrogen as the energy vector of the future requires both the useof renewable feedstocks with a sustainable energy source. This combination would potentially produce green hydrogen whilereducing carbon dioxide emissions limiting global climate change and thus achieving the so-called hydrogen economy.
Green Hydrogen Production—Fidelity in Simulation Models for Technical–Economic Analysis
Nov 2024
Publication
Green hydrogen production is a sustainable energy solution with great potential offering advantages such as adaptability storage capacity and ease of transport. However there are challenges such as high energy consumption production costs demand and regulation which hinder its largescale adoption. This study explores the role of simulation models in optimizing the technical and economic aspects of green hydrogen production. The proposed system which integrates photovoltaic and energy storage technologies significantly reduces the grid dependency of the electrolyzer achieving an energy self-consumption of 64 kWh per kilogram of hydrogen produced. By replacing the high-fidelity model of the electrolyzer with a reduced-order model it is possible to minimize the computational effort and simulation times for different step configurations. These findings offer relevant information to improve the economic viability and energy efficiency in green hydrogen production. This facilitates decision-making at a local level by implementing strategies to achieve a sustainable energy transition.
Environmental Assessment of a Hydrogen Supply Chain Using LOHC System with Novel Low-PGM Catalysts: A Life Cycle Approach
Nov 2024
Publication
Hydrogen has emerged as a key element in the transition to a sustainable energy model. Among hydrogen storage and transport technologies liquid organic hydrogen carriers (LOHCs) stand out as a promising alternative for large-scale long-term use. Catalysts essential in these systems are usually composed of platinum group metals (PGMs) over alumina known for their high cost and scarcity. This study analyzes the overall environmental impact of the LOHC benzyltoluene/perhydro-benzyltoluene-based hydrogen supply chain by means of the life cycle assessment (LCA) focusing on the synthesis processes of novel low-PGM catalysts which remain under explored in existing literature. The results identify dehydrogenation as the most impactful step due to significant heat consumption and highlight the substantial environmental footprint associated with the use of platinum in catalyst production. This research provides crucial insights into the environmental implications of LOHC systems particularly the role of novel low-PGM catalysts and offers guidance for their future large-scale applications.
Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives
Feb 2022
Publication
The recovery of energy and valuable compounds from exhaust gases in the iron and steel industry deserves specialattention due to the large power consumption and CO 2 emissions of the sector. In this sense the hydrogen content of coke oven gas(COG) has positioned it as a promising source toward a hydrogen-based economy which could lead to economic and environmentalbenefits in the iron and steel industry. COG is presently used for heating purposes in coke batteries or furnaces while in highproduction rate periods surplus COG is burnt in flares and discharged into the atmosphere. Thus the recovery of the valuablecompounds of surplus COG with a special focus on hydrogen will increase the efficiency in the iron and steel industry compared tothe conventional thermal use of COG. Different routes have been explored for the recovery of hydrogen from COG so far: i)separation/purification processes with pressure swing adsorption or membrane technology ii) conversion routes that provideadditional hydrogen from the chemical transformation of the methane contained in COG and iii) direct use of COG as fuel forinternal combustion engines or gas turbines with the aim of power generation. In this study the strengths and bottlenecks of themain hydrogen recovery routes from COG are reviewed and discussed.
Reducing the Environmental Impact of International Aviationg through Sustainable Aviation Fuel with Integrated Carbon Capture and Storage
Feb 2024
Publication
Sustainable aviation fuels (SAFs) represent the short-term solution to reduce fossil carbon emissions from aviation. The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) was globally adopted to foster and make SAFs production economically competitive. Fischer-Tropsch synthetic paraffinic kerosene (FTSPK) produced from forest residue is a promising CORSIA-eligible fuel. FT conversion pathway permits the integration of carbon capture and storage (CCS) technology which provides additional carbon offsetting ca pacities. The FT-SPK with CCS process was modelled to conduct a comprehensive analysis of the conversion pathway. Life-cycle assessment (LCA) with a well-to-wake approach was performed to quantify the SAF’s carbon footprint considering both biogenic and fossil carbon dynamics. Results showed that 0.09 kg FT-SPK per kg of dry biomass could be produced together with other hydrocarbon products. Well-to-wake fossil emissions scored 21.6 gCO2e per MJ of FT-SPK utilised. When considering fossil and biogenic carbon dynamics a negative carbon flux (-20.0 gCO2eMJ− 1 ) from the atmosphere to permanent storage was generated. However FT-SPK is limited to a 50 %mass blend with conventional Jet A/A1 fuel. Using the certified blend reduced Jet A/A1 fossil emissions in a 37 % and the net carbon flux resulted positive (30.9 gCO2eMJ− 1 ). Sensitivity to variations in process as sumptions was investigated. The lifecycle fossil-emissions reported in this study resulted 49 % higher than the CORSIA default value for FT-SPK. In a UK framework only 0.7 % of aviation fuel demand could be covered using national resources but the emission reduction goal in aviation targeted for 2037 could be satisfied when considering CCS.
Design of a Hydrogen Refueling Station with Hydrogen Production by Electrolysis, Storage and Dispensing for a Bus Fleet in the City of Valencia
Jul 2024
Publication
Hydrogen technologies are evolving to decarbonise the transport sector. The present work focuses on the technical design of a Hydrogen Refueling Station to supply hydrogen to five buses in the city of Valencia Spain. The study deals with the technical selection of the components from production to consumption setting an efficient standardisation method. Different calculation are used to size the storage systems for 70.8 kg of hydrogen produced by the elecrolyser daily. For the high-pressure storage system massive and cascade methods are proposed being the last one more efficient (1577.53 Nm3 non usable volume compared to 9948.95 Nm3 of the massive method).
Coupling Wastewater Treatment with Fuel Cells and Hydrogen Technology
Apr 2024
Publication
Fuel cells (FCs) and hydrogen technologies are emerging renewable energy sources with promising results when applied to wastewater treatment (WWT). These devices serve not only for power generation but some specific FCs can be employed for degradation of pollutants and synthesis of intermediates needed in WWT. Microbial FCs are potent devices for WWT even containing refractory pollutants. Despite being a nascent technology with high capital expenses the use of cost-effective materials reduction of operational cost and increased generation of energy and value-added chemicals such as hydrogen will facilitate the market penetration through selected niches and hybridization with alternative WWT technologies.
Impact of Medium-pressure Direct Injection Engine Fueled by Hydrogen
Dec 2023
Publication
In the automotive sector hydrogen is being increasingly explored as an alternative fuel to replace conventional carbon-based fuels. Its combustion characteristics make it well-suited for adaptation to internal combustion engines. The wide flammability range of hydrogen allows for higher dilution conditions resulting in enhanced combustion efficiency. When combined with lean combustion strategies hydrogen significantly reduces environmental impact virtually eliminating carbon dioxide and nitrogen oxide emissions while maintaining high thermal efficiency. This paper aims to assess the potential of using an outwardly opening poppet valve hydrogen direct injection (DI) system in a small engine for light-duty applications. To achieve this a comparison of performance emission levels and combustion parameters is conducted on a single-cylinder spark-ignition (SI) research engine fueled by hydrogen using both port fuel injection (PFI) and this new direct injection system. Two different engine loads are measured at multiple air dilution and injection timing conditions. The results demonstrate notable efficiency improvements ranging from 0.6% to 1.1% when transitioning from PFI to DI. Accurate control of injection timing is essential for achieving optimal performance and low emissions. Delaying the start of injection results in a 7.6% reduction in compression work at low load and a 3.9% reduction at high load. This results in a 3.1-3.2% improvement in ISFC in both load conditions considered.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
A Unified European Hydrogen Infrastructure Planning to Support the Rapid Scale-up of Hydrogen Production
Jun 2024
Publication
Hydrogen will become a key player in transitioning toward a net-zero energy system. However a clear pathway toward a unified European hydrogen infrastructure to support the rapid scale-up of hydrogen production is still under discussion. This study explores plausible pathways using a fully sector-coupled energy system model. Here we assess the emergence of hydrogen infrastructure build-outs connecting neighboring European nations through hydrogen import and domestic production centers with Western and Central European demands via four distinct hydrogen corridors. We identify a potential lock-in effect of blue hydrogen in the medium term highlighting the risk of longterm dependence on methane. In contrast we show that a self-sufficient Europe relying on domestic green hydrogen by 2050 would increase yearly expenses by around 3% and require 518 gigawatts of electrolysis capacity. This study emphasizes the importance of rapidly scaling up electrolysis capacity building hydrogen networks and storage facilities deploying renewable electricity generation and ensuring coherent coordination across European nations.
Sustainability Assessment of Green Ammonia Production to Promote Industrial Decarbonization in Spain
Oct 2023
Publication
This article investigates the economic and environmental implications of implementing green ammonia production plants in Spain. To this end one business-as-usual scenario for gray ammonia production was compared with three green ammonia scenarios powered with different renewable energy sources (i.e. solar photovoltaic (PV) wind and a combination of solar PV and wind). The results illustrated that green ammonia scenarios reduced the environmental impacts in global warming stratospheric ozone depletion and fossil resource scarcity when compared with conventional gray ammonia scenario. Conversely green ammonia implementation increased the environmental impacts in the categories of land use mineral resource scarcity freshwater eutrophication and terrestrial acidification. The techno-economic analysis revealed that the conventional gray ammonia scenario featured lower costs than green ammonia scenarios when considering a moderate natural gas cost. However green ammonia implementation became the most economically favorable option when the natural gas cost and carbon prices increased. Finally the results showed that developing efficient ammonia-fueled systems is important to make green ammonia a relevant energy vector when considering the entire supply chain (production/transportation). Overall the results of this research demonstrate that green ammonia could play an important role in future decarbonization scenarios.
Analysis of Hydrogen Value Chain Events: Implications for Hydrogen Refueling Stations’ Safety
Apr 2024
Publication
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport in addition to fuel cell vehicles it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The characteristics and properties of hydrogen make ensuring the safe operation of these facilities a crucial element for their successful deployment and implementation. This paper shows the outcomes of an analysis of hydrogen incidents and accidents considering their potential application to HRSs. For this purpose the HIAD 2.0 was reviewed and a total of 224 events that could be repeated in any of the major industrial processes related to hydrogen refueling stations were analyzed. This analysis was carried out using a mixed methodology of quantitative and qualitative techniques considering the following hydrogen value chain: production storage delivery and industrial use. The results provide general information segmented by event frequency damage classes and failure typology. The analysis shows the main processes of the value chain allow the identification of key aspects for the safety management of refueling facilities.
A Thermodynamically Consistent Methodology to Develop Predictive Simplified Kinetics for Detonation Simulations
Sep 2023
Publication
The number of species and elementary reactions needed for describing the oxidation of fuels increases with the size of the molecule and in turn the complexity of detailed mechanisms. Although the kinetics for conventional fuels (H2 CH4 C3H8...) are somewhat well-established chemical integration in detonation applications remains a major challenge. Significant efforts have been made to develop reduction techniques that aim to keep the predictive capabilities of detailed mechanisms intact while minimizing the number of species and reactions required. However as their starting point of development is based on homogeneous reactors or ZND profiles reduced mechanisms comprising a few species and reactions are not predictive. The methodology presented here relies on defining virtual chemical species such that the thermodynamic equilibrium of the ZND structure is properly recovered thereby circumventing the need to account for minor intermediate species. A classical asymptotic expression relating the ignition delay time with the reaction rate constant is then used to fit the Arrhenius coefficients targeting computations carried out with detailed kinetics. The methodology was extended to develop a three-step mechanism in which the Arrhenius coefficients were optimized to accurately reproduce the one-dimensional laminar ZND structure and the D−κ curves for slightly-curved quasi-steady detonation waves. Two-dimensional simulations performed with the three-step mechanism successfully reproduce the spectrum of length scales present in soot foils computed with detailed kinetics (i.e. cell regularity and size). Results attest for the robustness of the proposed methodology/approximation and its flexibility to be adapted to different configurations.
Thermo-economic Analysis of Green Hydrogen Production Onboard LNG Carriers through Solid Oxide Electrolysis Powered by Organic Rankine Cycles
Nov 2024
Publication
LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H2 production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles coupled separately with a solid oxide electrolysis (SOEC) have been simulated and compared. The hydrogen (H2) produced is then compressed at 150 bar for subsequent use as required. According to the results the 2P-ORC generates 14.79 % more power compared to ORC allowing for an increased energy supply to the SOEC; hence producing more H2 (34.47 kg/h compared to 31.14 kg/h). Including the 2P-ORC in the H2 production plant results in a cheaper H2 cost by 0.04 $/kgH2 compared to ORC a 1.13 %LHV higher system efficiency when leveraging all the available waste heat. The plant including 2P-ORC exploits more than 86 % of the of the available waste compared to 70 % when using ORC. Excluding the compression system decreases the capital cost by almost the half regardless of the WH recovery system used yet it plays in favour of the plant with ORC making the cost of H2 cheaper by 0.29 $/kgH2 in this case. Onboard H2 production is a versatile process independent from the propulsion system ensuring the ship's safety and availability throughout a sea journey.
No more items...