Life-cycle Assessment of Hydrogen Produced through Chemical Looping Dry Reforming of Biogas
Abstract
Chemical looping dry reforming of methane (CLDRM) using perovskites as a catalyst is considered a promising option for producing hydrogen from biogas. In this work, the life-cycle performance of a system compiling a CLDRM unit paired with a water gas shift unit, a pressure swing adsorption unit, and a combined cycle scheme to provide steam and electricity was assessed. The main data needed to reflect the behavior of the reforming reaction was obtained experimentally and implemented in an Aspen Plus® simulation. Inventory data was obtained through process simulation and used to assess the environmental performance of the process in terms of carbon footprint, acidification, freshwater eutrophication, ozone depletion, photochemical ozone formation, and depletion of minerals and metals. Overall, the environmental viability of the production of green hydrogen from biogas was found to be heavily dependent on the biogas leakage in anaerobic digestion plants. The CLDRM system was benchmarked against a conventional DRM implementation for the same feedstock. While the conventional DRM plant environmentally outperformed the perovskite-based CLDRM, the latter might present advantages from an implementation point of view.