Transmission, Distribution & Storage
Derivation and Validation of a Reference Data-based Real Gas Model for Hydrogen
Mar 2023
Publication
Hydrogen plays an important role for the decarbonization of the energy sector. In its gaseous form it is stored at pressures of up to 1000 bar at which real gas effects become relevant. To capture these effects in numerical simulations accurate real gas models are required. In this work new correlation equations for relevant hydrogen properties are developed based on the Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). Within the regarded temperature (150e400 K) and pressure (0.1e1000 bar) range this approach yields a substantially improved accuracy compared to other databased correlations. Furthermore the developed equations are validated in a numerical simulation of a critical flow Venturi nozzle. The results are in much better accordance with experimental data compared to a cubic equation of state model. In addition the simulation is even slightly faster.
Life Cycle Assessment of Hydrogen Transportation Pathways via Pipelines and Truck Trailers: Implications as a Low Carbon Fuel
Sep 2022
Publication
Hydrogen fuel cells have the potential to play a significant role in the decarbonization of the transportation sector globally and especially in California given the strong regulatory and policy focus. Nevertheless numerous questions arise regarding the environmental impact of the hydrogen supply chain. Hydrogen is usually delivered on trucks in gaseous form but can also be transported via pipelines as gas or via trucks in liquid form. This study is a comparative attributional life cycle analysis of three hydrogen production methods alongside truck and pipeline transportation in gaseous form. Impacts assessed include global warming potential (GWP) nitrogen oxide volatile organic compounds and particulate matter 2.5 (PM2.5). In terms of GWP the truck transportation pathway is more energy and ecologically intensive than pipeline transportation despite gaseous truck transport being more economical. A sensitivity analysis of pipeline transportation and life cycle inventories (LCI) attribution is included. Results are compared across multiple scenarios of the production and transportation pathways to discover the strongest candidates for minimizing the environmental footprint of hydrogen production and transportation. The results indicate the less ecologically intensive pathway is solar electrolysis through pipelines. For 1 percent pipeline attribution the total CO2eq produced per consuming 1 MJ of hydrogen in a fuel cell pickup truck along this pathway is 50.29 g.
Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent
Apr 2023
Publication
There exists no single optimal way for transporting hydrogen and other hydrogen carriers from one port to the other globally. Its delivery depends on several factors such as the quantity distance economics and the availability of the required infrastructure for its transportation. Europe has a strategy to invest in the production of green hydrogen in Africa to meet its needs. This study assessed the economic viability of shipping liquefied hydrogen (LH2 ) and hydrogen carriers to Germany from six African countries that have been identified as countries with great potential in the production of hydrogen. The results obtained suggest that the shipping of LH2 to Europe (Germany) will cost between 0.47 and 1.55 USD/kg H2 depending on the distance of travel for the ship. Similarly the transportation of hydrogen carriers could range from 0.19 to 0.55 USD/kg H2 for ammonia 0.25 to 0.77 USD/kg H2 for LNG 0.24 to 0.73 USD/kg H2 for methanol and 0.43 to 1.28 USD/kg H2 for liquid organic hydrogen carriers (LOHCs). Ammonia was found to be the ideal hydrogen carrier since it recorded the least transportation cost. A sensitivity analysis conducted indicates that an increase in the economic life by 5 years could averagely decrease the cost of LNG by some 13.9% NH3 by 13.2% methanol by 7.9% LOHC by 8.03% and LH2 by 12.41% under a constant distance of 6470 nautical miles. The study concludes with a suggestion that if both foreign and local participation in the development of the hydrogen market is increased in Africa the continent could supply LH2 and other hydrogen carriers to Europe at a cheaper price using clean fuel.
Numerical Simulation of Hydrogen Diffusion in Cement Sheath of Wells Used for Underground Hydrogen Storage
Jul 2023
Publication
The negative environmental impact of carbon emissions from fossil fuels has promoted hydrogen utilization and storage in underground structures. Hydrogen leakage from storage structures through wells is a major concern due to the small hydrogen molecules that diffuse fast in the porous well cement sheath. The second-order parabolic partial differential equation describing the hydrogen diffusion in well cement was solved numerically using the finite difference method (FDM). The numerical model was verified with an analytical solution for an ideal case where the matrix and fluid have invariant properties. Sensitivity analyses with the model revealed several possibilities. Based on simulation studies and underlying assumptions such as non-dissolvable hydrogen gas in water present in the cement pore spaces constant hydrogen diffusion coefficient cement properties such as porosity and saturation etc. hydrogen should take about 7.5 days to fully penetrate a 35 cm cement sheath under expected well conditions. The relatively short duration for hydrogen breakthrough in the cement sheath is mainly due to the small molecule size and high hydrogen diffusivity. If the hydrogen reaches a vertical channel behind the casing a hydrogen leak from the well is soon expected. Also the simulation result reveals that hydrogen migration along the axial direction of the cement column from a storage reservoir to the top of a 50 m caprock is likely to occur in 500 years. Hydrogen diffusion into cement sheaths increases with increased cement porosity and diffusion coefficient and decreases with water saturation (and increases with hydrogen saturation). Hence cement with a low water-to-cement ratio to reduce water content and low cement porosity is desirable for completing hydrogen storage wells.
Evaluation of Hydrogen Transportation Networks - A Case Study on the German Energy System
May 2023
Publication
Not only due to the energy crisis European policymakers are exploring options to substitute natural gas with renewable hydrogen. A condition for the application of hydrogen is a functioning transportation infrastructure. However the most efficient transport of large hydrogen quantities is still unclear and deeper analyses are missing. A promising option is converting the existing gas infrastructure. This study presents a novel approach to develop hydrogen networks by applying the Steiner tree algorithm to derive candidates and evaluate their costs. This method uses the existing grid (brownfield) and is compared to a newly built grid (Greenfield). The goal is the technical and economic evaluation and comparison of hydrogen network candidates. The methodology is applied to the German gas grid and demand and supply scenarios covering the industry heavy-duty transport power and heating sector imports and domestic production. Five brownfield candidates are compared to a greenfield candidate. The candidates differ by network length and pipeline diameters to consider the transported volume of hydrogen. The economic evaluation concludes that most brownfield candidates’ cost is significantly lower than those of the greenfield candidate. The candidates can serve as starting points for flow simulations and policymakers can estimate the cost based on the results.
Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities
Apr 2022
Publication
Hydrogen is emerging as one of the most promising energy carriers for a decarbonised global energy system. Transportation and storage of hydrogen are critical to its large-scale adoption and to these ends liquid hydrogen is being widely considered. The liquefaction and storage processes must however be both safe and efficient for liquid hydrogen to be viable as an energy carrier. Identifying the most promising liquefaction processes and associated transport and storage technologies is therefore crucial; these need to be considered in terms of a range of interconnected parameters ranging from energy consumption and appropriate materials usage to considerations of unique liquid-hydrogen physics (in the form of ortho–para hydrogen conversion) and boil-off gas handling. This study presents the current state of liquid hydrogen technology across the entire value chain whilst detailing both the relevant underpinning science (e.g. the quantum behaviour of hydrogen at cryogenic temperatures) and current liquefaction process routes including relevant unit operation design and efficiency. Cognisant of the challenges associated with a projected hydrogen liquefaction plant capacity scale-up from the current 32 tonnes per day to greater than 100 tonnes per day to meet projected hydrogen demand this study also reflects on the next-generation of liquid-hydrogen technologies and the scientific research and development priorities needed to enable them.
Perspectives and Prospects of Underground Hydrogen Storage and Natural Hydrogen
Jun 2022
Publication
Hydrogen is considered the fuel of the future due to its cleaner nature compared to methane and gasoline. Therefore renewable hydrogen production technologies and long-term affordable and safe storage have recently attracted significant research interest. However natural underground hydrogen production and storage have received scant attention in the literature despite its great potential. As such the associated formation mechanisms geological locations and future applications remain relatively under-explored thereby requiring further investigation. In this review the global natural hydrogen formation along with reaction mechanisms (i.e. metamorphic processes pyritization and serpentinization reactions) as well as the suitable geological locations (i.e. ophiolites organic-rich sediments fault zones igneous rocks crystalline basements salt bearing strata and hydrocarbon-bearing basins) are discussed. Moreover the underground hydrogen storage mechanisms are detailed and compared with underground natural gas and CO2 storage. Techno-economic analyses of large-scale underground hydrogen storage are presented along with the current challenges and future directions.
An Insight into Underground Hydrogen Storage in Italy
Apr 2023
Publication
Hydrogen is a key energy carrier that could play a crucial role in the transition to a low-carbon economy. Hydrogen-related technologies are considered flexible solutions to support the large-scale implementation of intermittent energy supply from renewable sources by using renewable energy to generate green hydrogen during periods of low demand. Therefore a short-term increase in demand for hydrogen as an energy carrier and an increase in hydrogen production are expected to drive demand for large-scale storage facilities to ensure continuous availability. Owing to the large potential available storage space underground hydrogen storage offers a viable solution for the long-term storage of large amounts of energy. This study presents the results of a survey of potential underground hydrogen storage sites in Italy carried out within the H2020 EU Hystories “Hydrogen Storage In European Subsurface” project. The objective of this work was to clarify the feasibility of the implementation of large-scale storage of green hydrogen in depleted hydrocarbon fields and saline aquifers. By analysing publicly available data mainly well stratigraphy and logs we were able to identify onshore and offshore storage sites in Italy. The hydrogen storage capacity in depleted gas fields currently used for natural gas storage was estimated to be around 69.2 TWh.
Research on Multi-market Strategies for Virtual Power Plants with Hydrogen Energy Storage
Oct 2023
Publication
As the main body of resource aggregation Virtual Power Plant (VPP) not only needs to participate in the external energy market but also needs to optimize the management of internal resources. Different from other energy storage hydrogen energy storage systems can participate in the hydrogen market in addition to assuming the backup supplementary function of electric energy. For the Virtual Power Plant Operator (VPPO) it needs to optimize the scheduling of internal resources and formulate bidding strategies for the electric-hydrogen market based on external market information. In this study a two-stage model is constructed considering the internal and external interaction mechanism. The first stage model optimizes the operation of renewable energy flexible load extraction storage and hydrogen energy storage system based on the complementary characteristics of internal resources; the second stage model optimizes the bidding strategy to maximize the total revenue of the electricity energy market auxiliary service market and hydrogen market. Finally a typical scenario is constructed and the rationality and effectiveness of the strategy are verified. The results show that the hybrid VPP with hydrogen storage has better economic benefits resource benefits and reliability.
Energy Storage in Urban Areas: The Role of Energy Storage Facilities, a Review
Feb 2024
Publication
Positive Energy Districts can be defined as connected urban areas or energy-efficient and flexible buildings which emit zero greenhouse gases and manage surpluses of renewable energy production. Energy storage is crucial for providing flexibility and supporting renewable energy integration into the energy system. It can balance centralized and distributed energy generation while contributing to energy security. Energy storage can respond to supplement demand provide flexible generation and complement grid development. Photovoltaics and wind turbines together with solar thermal systems and biomass are widely used to generate electricity and heating respectively coupled with energy system storage facilities for electricity (i.e. batteries) or heat storage using latent or sensible heat. Energy storage technologies are crucial in modern grids and able to avoid peak charges by ensuring the reliability and efficiency of energy supply while supporting a growing transition to nondepletable power sources. This work aims to broaden the scientific and practical understanding of energy storage in urban areas in order to explore the flexibility potential in adopting feasible solutions at district scale where exploiting the space and resource-saving systems. The main objective is to present and critically discuss the available options for energy storage that can be used in urban areas to collect and distribute stored energy. The concerns regarding the installation and use of Energy Storage Systems are analyzed by referring to regulations and technical and environmental requirements as part of broader distribution systems or as separate parts. Electricity heat energy and hydrogen are the most favorable types of storage. However most of them need new regulations technological improvement and dissemination of knowledge to all people with the aim of better understanding the benefits provided.
Hydrogenization of Underground Storage of Natural Gas
Aug 2015
Publication
The intermittent production of the renewable energy imposes the necessity to temporarily store it. Large amounts of exceeding electricity can be stored in geological strata in the form of hydrogen. The conversion of hydrogen to electricity and vice versa can be performed in electrolyzers and fuel elements by chemical methods. The nowadays technical solution accepted by the European industry consists of injecting small concentrations of hydrogen in the existing storages of natural gas. The progressive development of this technology will finally lead to the creation of underground storages of pure hydrogen. Due to the low viscosity and low density of hydrogen it is expected that the problem of an unstable displacement including viscous fingering and gravity overriding will be more pronounced. Additionally the injection of hydrogen in geological strata could encounter chemical reactivity induced by various species of microorganisms that consume hydrogen for their metabolism. One of the products of such reactions is methane produced from Sabatier reaction between H2 and CO2. Other hydrogenotrophic reactions could be caused by acetogenic archaea sulfate-reducing bacteria and iron-reducing bacteria. In the present paper a mathematical model is presented which is capable to reflect the coupled hydrodynamic and bio-chemical processes in UHS. The model has been numerically implemented by using the open source code DuMuX developed by the University of Stuttgart. The obtained bio-chemical version of DuMuX was used to model the evolution of a hypothetical underground storage of hydrogen. We have revealed that the behavior of an underground hydrogen storage is different than that of a natural gas storage. Both the hydrodynamic and the bio-chemical effects contribute to the different characteristics.
Recent Developments in Materials for Physical Hydrogen Storage: A Review
Jan 2024
Publication
The depletion of reliable energy sources and the environmental and climatic repercussions of polluting energy sources have become global challenges. Hence many countries have adopted various renewable energy sources including hydrogen. Hydrogen is a future energy carrier in the global energy system and has the potential to produce zero carbon emissions. For the non-fossil energy sources hydrogen and electricity are considered the dominant energy carriers for providing end-user services because they can satisfy most of the consumer requirements. Hence the development of both hydrogen production and storage is necessary to meet the standards of a “hydrogen economy”. The physical and chemical absorption of hydrogen in solid storage materials is a promising hydrogen storage method because of the high storage and transportation performance. In this paper physical hydrogen storage materials such as hollow spheres carbon-based materials zeolites and metal– organic frameworks are reviewed. We summarize and discuss the properties hydrogen storage densities at different temperatures and pressures and the fabrication and modification methods of these materials. The challenges associated with these physical hydrogen storage materials are also discussed.
Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis
Aug 2023
Publication
Hydrogen carriers are one of the keys to the success of using hydrogen as an energy vector. Indeed sustainable hydrogen production exploits the excess of renewable energy sources after which temporary storage is required. The conventional approaches to hydrogen storage and transport are compressed hydrogen (CH2 ) and liquefied hydrogen (LH2 ) which require severe operating conditions related to pressure (300–700 bar) and temperature (T < −252 ◦C) respectively. To overcome these issues which have hindered market penetration several alternatives have been proposed in the last few decades. In this review the most promising hydrogen carriers (ammonia methanol liquid organic hydrogen carriers and metal hydrides) have been considered and the main stages of their supply chain (production storage transportation H2 release and their recyclability) have been described and critically analyzed focusing on the latest results available in the literature the highlighting of which is our current concern. The last section reviews recent techno-economic analyses to drive the selection of hydrogen carrier systems and the main constraints that must be considered. The analyzed results show how the selection of H2 carriers is a multiparametric function and it depends on technological factors as well as international policies and regulations.
Roles of Bioenergy and Green Hydrogen in Large Scale Energy Storage for Carbon Neutrality
Aug 2023
Publication
A new technical route to incorporate excess electricity (via green hydrogen generation by electrolysis) into a biorefinery to produce modern bioenergy (advanced biofuels) is proposed as a promising alternative. This new route involves storing hydrogen for mobile and stationary applications and can be a three-bird-one-stone solution for the storage of excess electrical energy storage of green hydrogen and high-value utilization of biomass.
A Comparative Study on Energy Efficiency of the Maritime Supply Chains for Liquefied Hydrogen, Ammonia, Methanol and Natural Gas
Jun 2023
Publication
To cope with climate change emerging fuels- hydrogen ammonia and methanol- have been proposed as promising energy carriers that will replace part of the liquefied natural gas (LNG) in future maritime scenarios. Energy efficiency is an important indicator for evaluating the system but the maritime supply system for emerging fuels has yet to be revealed. In this study the energy efficiency of the maritime supply chain of hydrogen ammonia methanol and natural gas is investigated considering processes including production storage loading transport and unloading. A sensitivity analysis of parameters such as ambient temperature storage time pipeline length and sailing time is also carried out. The results show that hydrogen (2.366%) has the highest daily boil-off gas (BOG) rate and wastes more energy than LNG (0.413%) with ammonia and methanol both being lower than LNG. The recycling of BOG is of great importance to the hydrogen supply chain. When produced from renewable energy sources methanol (98.02%) is the most energy efficient followed by ammonia with hydrogen being the least (89.10%). This assessment shows from an energy efficiency perspective that ammonia and methanol have the potential to replace LNG as the energy carrier of the future and that hydrogen requires efficient BOG handling systems to increase competitiveness. This study provides some inspirations for the design of global maritime supply systems for emerging fuels.
Thermal Sprayed Protective Coatings for Bipolar Plates of Hydrogen Fuel Cells and Water Electrolysis Cells
Mar 2024
Publication
As one core component in hydrogen fuel cells and water electrolysis cells bipolar plates (BPs) perform multiple important functions such as separating the fuel and oxidant flow providing mechanical support conducting electricity and heat connecting the cell units into a stack etc. On the path toward commercialization the manufacturing costs of bipolar plates have to be substantially reduced by adopting low-cost and easy-to-process metallic materials (e.g. stainless steel aluminum or copper). However these materials are susceptible to electrochemical corrosion under harsh operating conditions resulting in long-term performance degradation. By means of advanced thermal spraying technologies protective coatings can be prepared on bipolar plates so as to inhibit oxidation and corrosion. This paper reviews several typical thermal spraying technologies including atmospheric plasma spraying (APS) vacuum plasma spraying (VPS) and high-velocity oxygen fuel (HVOF) spraying for preparing coatings of bipolar plates particularly emphasizing the effect of spraying processes on coating effectiveness. The performance of coatings relies not only on the materials as selected or designed but also on the composition and microstructure practically obtained in the spraying process. The temperature and velocity of in-flight particles have a significant impact on coating quality; therefore precise control over these factors is demanded.
Underground Hydrogen Storage (UHS) in Natural Storage Sites: A Perspective of Subsurface Characterization and Monitoring
Jan 2024
Publication
With the long-standing efforts of green transition in our society underground hydrogen storage (UHS) has emerged as a viable solution to buffering seasonal fluctuations of renewable energy supplies and demands. Like operations in hydrocarbon production and geological CO2 storage a successful UHS project requires a good understanding of subsurface formations while having different operational objectives and practical challenges. Similar to the situations in hydrocarbon production and geological CO2 storage in UHS problems the information of subsurface formations at the field level cannot be obtained through direct measurements due to the resulting high costs. As such there is a need for subsurface characterization and monitoring at the field scale which uses a certain history matching algorithm to calibrate a numerical subsurface model based on available field data. Whereas subsurface characterization and monitoring have been widely used in hydrocarbon production activities for a better understanding of hydrocarbon reservoirs to the best of our knowledge at present it appears to be a relatively less touched area in UHS problems. This work aims to narrow this noticed gap and investigates the use of an ensemble-based workflow for subsurface characterization and monitoring in a 3D UHS case study. Numerical results in this case study indicate that the ensemble-based workflow works reasonably well while also identifying some particular challenges that would be relevant to real-world problems.
Geomechanics of Hydrogen Storage in a Depleted Gas Field
Feb 2024
Publication
We perform a simulation study of hydrogen injection in a depleted gas reservoir to assess the geomechanical impact of hydrogen storage relative to other commonly injected gases (methane CO2). A key finding is that the differences in hydrogen density compressibility viscosity and thermal properties compared to the other gases result in significantly less thermal perturbation at reservoir level. The risks of fault reactivation and wellbore fractures due to thermally-induced stress changes are significantly lower when storing hydrogen compared to results observed in CO2 scenarios. This implies that hydrogen injection and production has a much smaller geomechanical footprint with benefits for operational safety. We also find that use of nitrogen cushion gas ensures efficient deliverability and phase separation in the reservoir. However in this study a large fraction of cushion gas was back-produced in each cycle demonstrating the need for further studies of the surface processing requirements and economic implications.
Mechanistic Evaluation of the Reservoir Engineering Performance for the Underground Hydrogen Storage in a Deep North Sea Aquifer
Jul 2023
Publication
Underground hydrogen storage (UHS) in aquifers salt caverns and depleted hydrocarbon reservoirs allows for the storage of larger volumes of H2 compared to surface storage in vessels. In this work we investigate the impact of aquifer-related mechanisms and parameters on the performance of UHS in an associated North Sea aquifer using 3D numerical compositional simulations. Simulation results revealed that the aquifer's permeability heterogeneity has a significant impact on the H2 recovery efficiency where a more homogenous rock would lead to improved H2 productivity. The inclusion of relative permeability hysteresis resulted in a drop in the H2 injectivity and recovery due to H2 discontinuity inside the aquifer which leads to residual H2 during the withdrawal periods. In contrast the effects of hydrogen solubility and hydrogen diffusion were negligible when studied each in isolation from other factors. Hence it is essential to properly account for hysteresis and heterogeneity when evaluating UHS in aquifers.
Evaluation of the Technical Condition of Pipes during the Transportation of Hydrogen Mixtures According to the Energy Approach
Jun 2024
Publication
In this study a theoretical–experimental methodology for determining the stress–strain state in pipeline systems taking into account the hydrogen environment was developed. A complex of theoretical and experimental studies was conducted to determine the specific energy of destruction as an invariant characteristic of the material’s resistance to strain at different hydrogen concentrations. The technique is based on the construction of complete diagrams of the destruction of the material based on the determination of true strains and stresses in the local volume using the method involving the optical–digital correlation of speckle images. A complex of research was carried out and true diagrams of material destruction were constructed depending on the previous elastic–plastic strain and the action of the hydrogen environment. The change in the concentration of hydrogen absorbed by the material was estimated depending on the value of the specific energy of destruction. A study was conducted on tubular samples and the degree of damage to the material of the inner wall under the action of hydrogen and stress from the internal pressure was evaluated according to the change in specific energy depending on the value of the true strain established with the help of an optical–digital correlator on the outer surface and the degree of damage was determined. It has been established that the specific fracture energy of 17G1S steel decreases by 70–90% under the influence of hydrogen. The effect of the change in the amount of strain energy on the thickness of the pipe wall is illustrated.
No more items...