Transmission, Distribution & Storage
Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Capacities of Slit-shaped Pores, Nanotubes and Torusenes
Jan 2022
Publication
Grand Canonical Monte Carlo GCMC simulations are used to study the gravimetric and volumetric hydrogen storage capacities of different carbon nanopores shapes: Slit-shaped nanotubes and torusenes at room temperature 298.15 K and at pressures between 0.1 and 35 MPa and for pore diameter or width between 4 and 15 A. The influence of the pore shape or curvature on the storage capacities as a function of pressure temperature and pore diameter is investigated and analyzed. A large curvature of the pores means in general an increase of the storage capacities of the pores. While torusenes and nanotubes have surfaces with more curvature than the slit-shaped planar pores their capacities are lower than those of the slit-shaped pores according to the present GCMC simulations. Torusene a less studied carbon nanostructure has two radii or curvatures but their storage capacities are similar or lower than those of nanotubes which have only one radius or curvature. The goal is to obtain qualitative and quantitative relationships between the structure of porous materials and the hydrogen storage capacities in particular or especially the relationship between shape and width of the pores and the hydrogen storage capacities of carbon-based porous materials.
Experimental Study of Hydrogen Embrittlement in Maraging Steels
Feb 2018
Publication
This research activity aims at investigating the hydrogen embrittlement of Maraging steels in connection to real sudden failures of some of the suspension blades of the Virgo Project experimental apparatus. Some of them failed after 15 years of service in working conditions. Typically in the Virgo detector blades are loaded up to 50-60% of the material yield strength. For a deeper understanding of the failure the relationship between hydrogen concentration and mechanical properties of the material have been investigated with specimens prepared in order to simulate blade working conditions. A mechanical characterization of the material has been carried out by standard tensile testing in order to establish the effect of hydrogen content on the material strength. Further experimental activity was executed in order to characterize the fracture surface and to measure the hydrogen content. Finally some of the failed blades have been analyzed in DICI-UNIPI laboratory. The experimental results show that the blades failure can be related with the hydrogen embrittlement phenomenon.
Tracking Hydrogen Embrittlement Using Short Fatigue Crack Behavior of Metals
Dec 2018
Publication
Understanding hydrogen embrittlement phenomenon that leads to deterioration of mechanical properties of metallic components is vital for applications involving hydrogen environment. Among these understanding the influence of hydrogen on the fatigue behaviour of metals is of great interest. Total fatigue life of a material can be divided into fatigue crack initiation and fatigue crack growth phase. While fatigue crack initiation can be linked with the propagation of short fatigue cracks the size of which is of the order of grain size (few tens of microns) that are generally not detectable by conventional crack detection techniques applicable for the long fatigue crack growth behaviour using conventional CT specimens. Extensive literature is available on hydrogen effect on long fatigue crack growth behaviour of metals that leads to the change in crack growth rate and the threshold stress intensity factor range (ΔKth). However it is the short fatigue crack growth behaviour that provides the fundamental understanding and correlation of the metallic microstructure with hydrogen embrittlement phenomenon. Short fatigue crack growth behaviour is characteristically different from long crack growth behaviour showing high propagation rate at much lower values than threshold stress intensity factor range as well as a strong dependency on the microstructural features such as grain boundaries phase boundaries and inclusions. To this end a novel experimental framework is developed to investigate the short fatigue crack behaviour of hydrogen charged materials involving in-situ observation of propagating short cracks coupled with image processing to obtain their da/dN vs a curves. Various metallic materials ranging from austenitic stainless steel (AISI 316L) to reactor pressure vessel steel (SA508 Grade 3 Class I low alloy steel) and line pipe steels (API 5L X65 & X80) are studied in this work.
Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology
Jun 2021
Publication
The time-range of applicability of various energy-storage technologies are limited by self-discharge and other inevitable losses. While batteries and hydrogen are useful for storage in a time-span ranging from hours to several days or even weeks for seasonal or multi-seasonal storage only some traditional and quite costly methods can be used (like pumped-storage plants Compressed Air Energy Storage or energy tower). In this paper we aim to show that while the efficiency of energy recovery of Power-to-Methane technology is lower than for several other methods due to the low self-discharge and negligible standby losses it can be a suitable and cost-effective solution for seasonal and multi-seasonal energy storage.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
Microfluidics-based Analysis of Dynamic Contact Angles Relevant for Underground Hydrogen Storage
May 2022
Publication
Underground Hydrogen Storage (UHS) is an attractive technology for large-scale (TWh) renewable energy storage. To ensure the safety and efficiency of the UHS it is crucial to quantify the H2 interactions with the reservoir fluids and rocks across scales including the micro scale. This paper reports the experimental measurements of advancing and receding contact angles for different channel widths for a H2 /water system at P = 10 bar and T = 20 ◦C using a microfluidic chip. To analyse the characteristics of the H2 flow in straight pore throats the network is designed such that it holds several straight channels. More specifically the width of the microchannels range between 50 μm and 130 μm. For the drainage experiments H2 is injected into a fully water saturated system while for the imbibition tests water is injected into a fully H2 -saturated system. For both scenarios high-resolution images are captured starting the introduction of the new phase into the system allowing for fully-dynamic transport analyses. For better insights N2 /water and CO2 /water flows were also analysed and compared with H2 /water. Results indicate strong water-wet conditions with H2 /water advancing and receding contact angles of respectively 13◦–39◦ and 6◦–23◦ . It was found that the contact angles decrease with increasing channel widths. The receding contact angle measured in the 50 μm channel agrees well with the results presented in the literature by conducting a core-flood test for a sandstone rock. Furthermore the N2 /water and CO2 /water systems showed similar characteristics as the H2 /water system. In addition to the important characterization of the dynamic wettability the results are also crucially important for accurate construction of pore-scale simulators.
Metallic Materials for Hydrogen Storage—A Brief Overview
Nov 2022
Publication
The research and development of materials suitable for hydrogen storage has received a great deal of attention worldwide. Due to the safety risks involved in the conventional storage of hydrogen in its gaseous or liquid phase in containers and tanks development has focused on solid-phase hydrogen storage including metals. Light metal alloys and high-entropy alloys which have a high potential for hydrogen absorption/desorption at near-standard ambient conditions are receiving interest. For the development of these alloys due to the complexity of their compositions a computational approach using CALPHAD (Calculation of Phases Diagrams) and machine learning (ML) methods that exploit thermodynamic databases of already-known and experimentally verified systems are being increasingly applied. In order to increase the absorption capacity or to decrease the desorption temperature and to stabilize the phase composition specific material preparation methods (HEBM—high-energy milling HPT—high-pressure torsion) referred to as activation must be applied for some alloys.
Comparative Study on Ammonia and Liquid Hydrogen Transportation Costs in Comparison to LNG
Feb 2023
Publication
Since ammonia and liquid hydrogen are the optional future shipping cargo and fuels the applicability was crucial using the current technologies and expectations. Existing studies for the economic feasibility of the energies had limitations: empirical evaluation with assumptions and insufficiency related to causality. A distorted estimation can result in failure of decision-making or policy in terms of future energy. The present study aimed to evaluate the transportation costs of future energy including ammonia and liquid hydrogen in comparison to LNG for overcoming the limitations. An integrated mathematical model was applied to the investigation for economic feasibility. The transportation costs of the chosen energies were evaluated for the given transportation plan considering key factors: ship speed BOR and transportation plan. The transportation costs at the design speed for LNG and liquid hydrogen were approximately 55 % and 80 % of that for ammonia without considering the social cost due to CO2 emission. Although ammonia was the most expensive energy for transportation ammonia could be an effective alternative due to insensitivity to the transportation plan. If the social cost was taken into account liquid hydrogen already gained competitiveness in comparison to LNG. The advantage of liquid hydrogen was maximized for higher speed where more BOG was injected into main engines.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of the Renewable Gases on the Uncertainty Budgets of Gas Meters
Sep 2022
Publication
During the study of the CEN/TC 237 standards “Gas meters” in the European Metrology Programme for Innovation and Research (EMPIR) project named NEWGASMET the impact of the renewable gases (biogas biomethane hydrogen syngas and mixtures with natural gas) on the uncertainty on the gas meter was discussed and described in several recommendation reports. This report is on the activity A2.1.15 where the objective is “Using input from A2.1.2-A2.1.8 FORCE with support from Cesame CMI NEL PTB VSL and ISSI will write a report on the effects of renewable gases on the uncertainty budgets of gas meters.”
Underground Hydrogen Storage: Application of Geochemical Modelling in a Case Study in the Molasse Basin, Upper Austria
Feb 2019
Publication
Hydrogen storage in depleted gas fields is a promising option for the large-scale storage of excess renewable energy. In the framework of the hydrogen storage assessment for the “Underground Sun Storage” project we conduct a multi-step geochemical modelling approach to study fluid–rock interactions by means of equilibrium and kinetic batch simulations. With the equilibrium approach we estimate the long-term consequences of hydrogen storage whereas kinetic models are used to investigate the interactions between hydrogen and the formation on the time scales of typical storage cycles. The kinetic approach suggests that reactions of hydrogen with minerals become only relevant over timescales much longer than the considered storage cycles. The final kinetic model considers both mineral reactions and hydrogen dissolution to be kinetically controlled. Interactions among hydrogen and aqueous-phase components seem to be dominant within the storage-relevant time span. Additionally sensitivity analyses of hydrogen dissolution kinetics which we consider to be the controlling parameter of the overall reaction system were performed. Reliable data on the kinetic rates of mineral dissolution and precipitation reactions specifically in the presence of hydrogen are scarce and often not representative of the studied conditions. These uncertainties in the kinetic rates for minerals such as pyrite and pyrrhotite were investigated and are discussed in the present work. The proposed geochemical workflow provides valuable insight into controlling mechanisms and risk evaluation of hydrogen storage projects and may serve as a guideline for future investigations.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Report on the Impact of Renewable Gases, and Mixtures with Natural Gas, on the Accuracy, Cost and Lifetime of Gas Meters
May 2022
Publication
For the usage of domestic gas meters with combustible gases like hydrogen natural gas or mixtures of hydrogen and natural gas in public grids the metrological behaviour of the gas meters has to fulfil the requirements described in the Measuring Instrument Directive (MID). The MID requires also that a measuring instrument shall be suitable for the application. The tightness of a meter is required in order to obtain correct results in case of accuracy tests but also for an application in the grid or for durability tests to avoid risks such as explosive gas mixtures. Due to the different properties of renewable gases leak tightness to one gas mixtures does not necessarily imply leak tightness for other gases. Hydrogen molecules are smaller than those in conventional natural gas which can more easily result in a gas leakage. The EMPIR project NEWGASMET includes beside metrological investigations also a durability test with hydrogen. In order to carry out these activities but also for further hydrogen leakage investigations for instance the investigation of proper seal materials used in the gas meter installation a reliable gas tightness test was developed.
A Study on the Prediction of the Temperature and Mass of Hydrogen Gas inside a Tank during Fast Filling Process
Dec 2020
Publication
The hydrogen compression cycle system recycles hydrogen compressed by a compressor at high pressure and stores it in a high-pressure container. Thermal stress is generated due to increase in the pressure and temperature of hydrogen in the hydrogen storage tank during the fast filing process. For the sake of safety it is of great practical significance to predict and control the temperature change in the tank. The hydrogen charging process in the storage tank of the hydrogen charging station was studied by experimentation and simulation. In this paper a Computational Fluid Dynamics (CFD) model for non-adiabatic real filling of a 50 MPa hydrogen cylinder was presented. In addition a shear stress transport (k-ω) model and real gas model were used in order to account for thermo-fluid dynamics during the filling of hydrogen storage tanks (50 MPa 343 L). Compared to the simulation results with the experimental data carried out under the same conditions the temperatures calculated from the simulated non-adiabatic condition results were lower (by 5.3%) than those from the theoretical adiabatic condition calculation. The theoretical calculation was based on the experimentally measured pressure value. The calculated simulation mass was 8.23% higher than the theoretical result. The results of this study will be very useful in future hydrogen energy research and hydrogen charging station developments.
Aboveground Hydrogen Storage - Assessment of the Potential Market Releveance in a Carbon-Neutral European Energy System
Mar 2024
Publication
Hydrogen storage is expected to play a crucial role in the comprehensive defossilization of energy systems. In this context the focus is typically on underground hydrogen storage (e.g. in salt caverns). However aboveground storage which is independent of geological conditions and might offer other technical advantages could provide systemic benefits and thereby gain shares in the hydrogen storage market. Against this background this paper examines the market relevance of aboveground compared to underground hydrogen storage. Using the opensource energy system model and optimization framework of Europe PyPSA-Eur the influence of geological independence storage cost relations and technical storage characteristics (i.e. efficiencies) on mentioned market relevance of aboveground hydrogen storage are investigated. Further the expectable market relevance based on current cost projections for the future is assessed. The studies show that in terms of hydrogen capacities aboveground hydrogen storage plays a considerably smaller role compared to underground hydrogen storage. Even when assuming comparatively low aboveground storage cost it will not exceed 1.7% (1.9 TWhH2LHV) of total hydrogen storage capacities in a cost-optimal European energy system. Regarding the amounts of annually stored hydrogen aboveground storage could play a larger role reaching a maximum share of 32.5% (168 TWhH2 LHV a-1) of total stored hydrogen throughout Europe. However these shares are only achievable for low cost storage in particularly suited energy system supply configurations. For higher aboveground storage costs or lower efficiencies shares drop below 10% sharply. The analysis identifies some especially influential factors for achieving higher market relevance. Besides storage costs the demand-orientation of a particular aboveground storage system (e.g. hydrogen storage at demand pressure levels) plays an essential role in market relevance. Further overall efficiency can be a beneficial factor. Still current projections of future techno-economic characteristics show that aboveground hydrogen storage is too expensive or too inefficient compared to underground storage. Therefore to achieve notable market relevance rather drastic cost reductions beyond current expectations would be needed for all assessed aboveground hydrogen storage technologies.
Renaissance of Ammonia Synthesis for Sustainable Production of Energy and Fertilizers
Feb 2021
Publication
Green ammonia synthesis via the Haber–Bosch (HB) process has become a major field of research in the recent years for production of fertilizers and seasonal energy storage due to drastic drop in cost of renewable hydrogen. While the field of catalysis and engineering has worked on this subject for many years the current process of ammonia synthesis remains essentially unaltered. As a result current industrial developments on green ammonia are based on the HB process which can only be economical at exceptionally large scales limiting implementation on financially strained economies. For green ammonia to become an economic “equalizer” that supports the energy transition around the world it is essential to facilitate the downscalability and operational robustness of the process. This contribution briefly discusses the main scientific and engineering findings that have paved the way of low-temperature and pressure ammonia synthesis using heterogeneous catalysts.
Influence of Hydrogen Environment on Fatigue Fracture Morphology of X80 Pipeline Steel
Dec 2022
Publication
The rapid development of hydrogen energy requires the use of natural gas infrastructure for hydrogen transportation. It is very important to study hydrogen-added natural gas transportation technology which is a key way to rapidly develop coal-based gas and renewable energy. This study aims to study the influence of X80 pipeline steel's fatigue performance in hydrogen environment and perform fatigue tests on notched round rod specimens under different hydrogen concentration. The experimental results show that hydrogen seriously affects the fatigue life of pipeline steel. After reaching a certain hydrogen concentration as the hydrogen concentration continues to increase the fatigue life decreases gradually. Combined with SEM analysis of fracture morphology the decrease in the size and density of the dimples reduces the displacement amplitude while the increase in the planar area increases the displacement during fatigue fracture due to accelerated crack propagation. From this study we can know the influence of hydrogen concentration on the fracture morphology of pipeline steel which provides an understanding of the effect of hydrogen on fatigue fracture morphology and a broader safety analysis.
Mathematical Modeling of Unstable Transport in Underground Hydrogen Storage
Apr 2015
Publication
Within the framework of energy transition hydrogen has a great potential as a clean energy carrier. The conversion of electricity into hydrogen for storage and transport is an efficient technological solution capable of significantly reducing the problem of energy shortage. Underground hydrogen storage (UHS) is the best solution to store the large amount of excess electrical energy arising from the excessive over-production of electricity with the objective of balancing the irregular and intermittent energy production typical of renewable sources such as windmills or solar. Earlier studies have demonstrated that UHS should be qualitatively identical to the underground storage of natural gas. Much later however it was revealed that UHS is bound to incur peculiar difficulties as the stored hydrogen is likely to be used by the microorganisms present in the rocks for their metabolism which may cause significant losses of hydrogen. This paper demonstrates that besides microbial activities the hydrodynamic behavior of UHS is very unique and different from that of a natural gas storage.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Report on the Usable Technologies for Calibrating Gas Meters with Renewable Gases and Currently Available Flow Standards Suitable for Use with Methane, Crude Biogas, Hydrogen and Mixtures of these gases
Mar 2021
Publication
The main goal stated at the Paris agreement is to limit the global temperature rise well below 2 °C above pre-industrial levels. Limiting the increase of global average temperature to 1.5 °C is striven since risks and impacts of the climate change would be reduced drastically. To face these challenges the European Green Deal was invented by the European Commission. The “Green Deal” is a growth strategy which aims to transform the economy of the EU into a resource-efficient modern and competitive one [1-1 1-2]. Figure 1: The key elements of the European Green Deal [1-2] In this context the European Commission proposed that the amount of renewable energy within the EU’s overall energy mix should reach 20 % by 2020 and therefore producing energy by solar and wind plants become even more important. For example the cumulative installed wind farm capacity increased from 117.3 GW in 2013 to a total capacity of 182.163 GW in 2018 within the EU [1-4-1-6]. Due to the fluctuations in energy produced by wind farms storage of electricity is crucial. One possibility for storage is the production of hydrogen via electrolysis using renewable energy sources like wind farms. The hydrogen is then either directly added to the gas distribution grid or is converted to methane with external CO or CO2 which is then added to the gas distribution grid as a substitute [1-4]. Increasing the knowledge about the impact of renewable gases on available gas meters in terms of accuracy and durability is the main object of the EMPIR NEWGASMET project. Therefore in activity A3.1.1 a literature study was performed to provide information on which technologies can be used to calibrate gas meters when using renewable gases.
Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy
May 2023
Publication
Hydrogen barrier coatings are protective layers consisting of materials with a low intrinsic hydrogen diffusivity and solubility showing the potential to delay reduce or hinder hydrogen permeation. Hydrogen barrier coatings are expected to enable steels which are susceptible to hydrogen embrittlement specifically cost-effective low alloy-steels or light-weight high-strength steels for applications in a hydrogen economy. Predominantly ceramic coating materials have been investigated for this purpose including oxides nitrides and carbides. In this review the state of the art with respect to hydrogen permeation is discussed for a variety of coatings. Al2O3 TiAlN and TiC appear to be the most promising candidates from a large pool of ceramic materials. Coating methods are compared with respect to their ability to produce layers with suitable quality and their potential for scaling up for industrial use. Different setups for the characterisation of hydrogen permeability are discussed using both gaseous hydrogen and hydrogen originating from an electrochemical reaction. Finally possible pathways for improvement and optimisation of hydrogen barrier coatings are outlined.
Impact of Hydrogen Injection on Thermophysical Properties and Measurement Reliability in Natural Gas Networks
Oct 2021
Publication
In the context of the European decarbonization strategy hydrogen is a key energy carrier in the medium to long term. The main advantages deriving from a greater penetration of hydrogen into the energy mix consist in its intrinsic characteristics of flexibility and integrability with alternative technologies for the production and consumption of energy. In particular hydrogen allows to: i) decarbonise end uses since it is a zero-emission energy carrier and can be produced with processes characterized by the absence of greenhouse gases emissions (e.g. water electrolysis); ii) help to balancing electricity grid supporting the integration of non-programmable renewable energy sources; iii) exploit the natural gas transmission and distribution networks as storage systems in overproduction periods. However the hydrogen injection into the natural gas infrastructures directly influences thermophysical properties of the gas mixture itself such as density calorific value Wobbe index speed of sound etc [1]. The change of the thermophysical properties of gaseous mixture in turn directly affects the end use service in terms of efficiency and safety as well as the metrological performance and reliability of the volume and gas quality measurement systems. In this paper the authors present the results of a study about the impact of hydrogen injection on the properties of the natural gas mixture. In detail the changes of the thermodynamic properties of the gaseous mixtures with different hydrogen content have been analysed. Moreover the theoretical effects of the aforementioned variations on the accuracy of the compressibility factor measurement have been also assessed.
Hydrogen Storage for a Net-zero Carbon Future
Apr 2023
Publication
If a hydrogen economy is to become a reality along with efficient and decarbonized production and adequate transportation infrastructure deployment of suitable hydrogen storage facilities will be crucial. This is because due to various technical and economic reasons there is a serious possibility of an imbalance between hydrogen supply and demand. Hydrogen storage could also be pivotal in promoting renewable energy sources and facilitating the decarbonization process by providing long duration storage options which other forms of energy storage such as batteries with capacity limitations or pumped hydro with geographical limitations cannot meet. However hydrogen is not the easiest substance to store and handle. Under ambient conditions the extremely low volumetric energy density of hydrogen does not allow for its efficient and economic storage which means it needs to be compressed liquefied or converted into other substances that are easier to handle and store. Currently there are different hydrogen storage solutions at varying levels of technology market and commercial readiness with different applications depending on the circumstances. This paper evaluates the relative merits and techno-economic features of major types of hydrogen storage options: (i) pure hydrogen storage (ii) synthetic hydrocarbons (iii) chemical hydrides (iv) liquid organic hydrogen carriers (v) metal hydrides and (vi) porous materials. The paper also discusses the main barriers to investment in hydrogen storage and highlights key features of a viable business model in particular the policy and regulatory framework needed to address the primary risks to which potential hydrogen storage investors are exposed.
No more items...