Transmission, Distribution & Storage
OIES Podcast: Global Trade of Hydrogen: What is the Best Way to Transfer Hydrogen Over Long Distances?
Aug 2022
Publication
In this podcast David Ledesma talks with Rahmat Poudineh Senior Research Fellow and Aliaksei Patonia Research Fellow on issues and options with respect to long distance transportation of the hydrogen.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Advances in Hydrogen Storage Materials: Harnessing Innovative Technology, from Machine Learning to Computational Chemistry, for Energy Storage Solutions
Mar 2024
Publication
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels which currently dominate the energy sector contribute to greenhouse gas emissions and environmental degradation. In response to these challenges hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies emphasizing the importance of efficient storage for maximizing hydrogen’s potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carboncontaining substances. It also explores design considerations computational chemistry high-throughput screening and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands reducing greenhouse gas emissions and driving clean energy innovation.
Subsurface Porous Media Hydrogen Storage - Scenario Development and Simulation
Aug 2015
Publication
Subsurface porous media hydrogen storage could be a viable option to mitigate shortages in energy supply from renewable sources. In this work a scenario for such a storage is developed and the operation is simulated using a numerical model. A hypothetical storage site is developed based on an actual geological structure. The results of the simulations show that the storage can supply about 20 % of the average demand in electrical energy of the state of Schleswig-Holstein Germany for a week-long period.
Key Considerations for Evaluating Underground Hydrogen Storage (UHS) Potential in Five Contrasting Australian Basins
Apr 2024
Publication
Hydrogen gas can provide baseload energy as society decarbonizes through the energy transition. Underground Hydrogen Storage (UHS) will be secure convenient and scalable to accommodate excess hydrogen production or compensate temporary shortfalls in energy supply. Hydrogen is a gas under all viable subsurface conditions so is invasive mobile and low-density. Methane and CO2 are also stored underground but storage parameters differ for each affecting the balance of geological storage risks. UHS in Australia is most likely to utilise conventional sedimentary reservoir rocks bound by conventional trapping closures. Hydrogen energy density will affect the competitiveness of UHS against purpose-built surface storage or solution-mined salt cavities. This study presents an overview of key considerations when screening for UHS opportunities and evaluates them for five Australian sedimentary basins. A threshold storage depth mapped across them reveals that the most prospective UHS basins will have to function as integrated energy fluid resource systems.
Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers
Jul 2022
Publication
Depleting fossil fuel resources and anthropogenic climate changes are the reasons for the intensive development of new sustainable technologies based on renewable energy sources. One of the most promising strategies is the utilization of hydrogen as an energy vector. However the limiting issue for large-scale commercialization of hydrogen technologies is a safe efficient and economical method of gas storage. In industrial practice hydrogen compression and liquefaction are currently applied; however due to the required high pressure (30–70 MPa) and low temperature (−253 ◦C) both these methods are intensively energy consuming. Chemical hydrogen storage is a promising alternative as it offers safe storage of hydrogen-rich compounds under ambient conditions. Although many compounds serving as hydrogen carriers are considered some of them do not have realistic perspectives for large-scale commercialization. In this review the three most technologically advanced hydrogen carriers—dimethyl ether methanol and dibenzyltoluene—are discussed and compared. Their potential for industrial application in relation to the energy storage transport and mobility sectors is analyzed taking into account technological and environmental aspects.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Criteria and Proposals for EMC Tests on Ultrasonic Meters with Non-conventional Gases
Oct 2022
Publication
The NEWGASMET project has the overall objective to increase knowledge about the accuracy and durability of commercially available gas meters after exposure to renewable gases. This should lead to the improvement of existing meter designs and flow calibration standards. One of the recently released results is a proposal for a set of test gases to represent the range of non-conventional gases in the scope of the revision of the gas meter standards. In details these were proposed to be used in the CEN/TC237 standards and the OIML-R137:2014. During the project meetings concerns have been raised regarding the applicability of such test gases to EMC tests for static meters. Today such tests are performed in air but there is a clear agreement that the behaviour of the meter during EMC tests can be influenced by the renewable gas type. At least this agreement exists for the ultrasonic measurement technology while further discussion might be needed for the mass flow. However it is not simply possible to redesign the current EMC tests by replacing air with the defined gas mixtures as this would be quite impractical especially considering the explosive nature of the test gases.
Hydrogen Storage Assessment in Depleted Oil Reservoir and Saline Aquifer
Oct 2022
Publication
Hydrogen (H2 ) is an attractive energy carrier to move store and deliver energy in a form that can be easily used. Field proven technology for underground hydrogen storage (UHS) is essential for a successful hydrogen economy. Options for this are manmade caverns salt domes/caverns saline aquifers and depleted oil/gas fields where large quantities of gaseous hydrogen have been stored in caverns for many years. The key requirements intrinsic of a porous rock formation for seasonal storage of hydrogen are: adequate capacity ability to contain H2 capability to inject/extract high volumes of H2 and a reliable caprock to prevent leakage. We have carefully evaluated a commercial non-isothermal compositional gas reservoir simulator and its suitability for hydrogen storage and withdrawal from saline aquifers and depleted oil/gas reservoirs. We have successfully calibrated the gas equation of state model against published laboratory H2 density and viscosity data as a function of pressure and temperature. Comparisons between the H2 natural gas and CO2 storage in real field models were also performed. Our numerical models demonstrated more lateral spread of the H2 when compared to CO2 and natural gas with a need for special containment in H2 projects. It was also observed that the experience with CO2 and natural gas storage cannot be simply replicated with H2 .
Bayesian Inference and Uncertainty Quantification for Hydrogen-Enriched and Lean-Premixed Combustion Systems
May 2021
Publication
Development of probabilistic modelling tools to perform Bayesian inference and uncertainty quantification (UQ) is a challenging task for practical hydrogen-enriched and low-emission combustion systems due to the need to take into account simultaneously simulated fluid dynamics and detailed combustion chemistry. A large number of evaluations is required to calibrate models and estimate parameters using experimental data within the framework of Bayesian inference. This task is computationally prohibitive in high-fidelity and deterministic approaches such as large eddy simulation (LES) to design and optimize combustion systems. Therefore there is a need to develop methods that: (a) are suitable for Bayesian inference studies and (b) characterize a range of solutions based on the uncertainty of modelling parameters and input conditions. This paper aims to develop a computationally-efficient toolchain to address these issues for probabilistic modelling of NOx emission in hydrogen-enriched and lean-premixed combustion systems. A novel method is implemented into the toolchain using a chemical reactor network (CRN) model non-intrusive polynomial chaos expansion based on the point collocation method (NIPCE-PCM) and the Markov Chain Monte Carlo (MCMC) method. First a CRN model is generated for a combustion system burning hydrogen-enriched methane/air mixtures at high-pressure lean-premixed conditions to compute NOx emission. A set of metamodels is then developed using NIPCE-PCM as a computationally efficient alternative to the physics-based CRN model. These surrogate models and experimental data are then implemented in the MCMC method to perform a two-step Bayesian calibration to maximize the agreement between model predictions and measurements. The average standard deviations for the prediction of exit temperature and NOx emission are reduced by almost 90% using this method. The calibrated model then used with confidence for global sensitivity and reliability analysis studies which show that the volume of the main-flame zone is the most important parameter for NOx emission. The results show satisfactory performance for the developed toolchain to perform Bayesian inference and UQ studies enabling a robust and consistent process for designing and optimising low-emission combustion systems.
A Perspective on Hydrogen Investment, Deployment and Cost Competitiveness
Feb 2021
Publication
Deployment and investments in hydrogen have accelerated rapidly in response to government commitments to deep decarbonisation establishing hydrogen as a key component in the energy transition.
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The report offers a comprehensive perspective on market deployment around the world investment momentum as well as implications on cost competitiveness of hydrogen solutions.
The document can be downloaded from their website
Hydrogen Effects on Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo
Sep 2017
Publication
This paper reviews previous research by the author in the field of hydrogen effects on progressively cold-drawn pearlitic steels in terms of hydrogen degradation (HD) hydrogen embrittlement (HE) or at the micro-level hydrogen-assisted micro-damage (HAMD) thus affecting their microstructural integrity and compromising the (macro-)structural integrity of civil engineering structures such as prestressed concrete bridges. It is seen that hydrogen effects in pearlitic microstructure (either oriented or not) are produced at the finest micro-level by plastic tearing in the form in general of hydrogen damage topography (HDT) with different appearances depending of the cold drawing degree evolving from the so-called tearing topography surface (TTS) in hot-rolled (not cold-drawn at all) or slightly cold-drawn pearlitic steels to a sort of enlarged and oriented TTS (EOTTS) in heavily drawn steels (the pronounced enlargement and marked orientation being along the wire axis or cold drawing direction). Whereas the pure TTS mode (null or low degree of cold drawing) resembles the Michelangello stone sculpture texture (MSST) the EOTTS mode does the same in relation to the Donatello wooden sculpture texture (DWST).
Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels
Dec 2019
Publication
Structural integrity of reactor pressure vessel (RPV) in light water reactors (LWR) is of highest importance regarding operation safety and lifetime. The fracture behaviour of low-alloy RPV steels with different dynamic strain aging (DSA) & environmental assisted cracking (EAC) susceptibilities in simulated LWR environments was evaluated by elastic plastic fracture mechanics tests (EPFM) and by metallo- and fractographic post-test analysis. Exposure to high temperature water (HTW) environments at LWR temperatures revealed only moderated reductions in the fracture initiation and tearing resistance of low alloy RPV steels with high DSA or EAC susceptibility accompanied with a moderate but clear change in fracture morphology which indicates the potential synergies of hydrogen/HTW embrittlement with DSA and EAC under suitable conditions. The most pronounced degradation effects occurred in a) RPV steels with high DSA susceptibility where the fracture initiation and tearing resistance reduction increased with decreasing loading rate and were most pronounced in hydrogenated HTW and b) high sulphur steels with high EAC susceptibility in aggressive occluded crevice environment and with preceding fast EAC crack growth in oxygenated HTW. The moderate effects are due to the low hydrogen availability in HTW together with high density of fine-dispersed hydrogen traps in RPV steels. Stable ductile transgranular tearing by microvoid coalescence was the dominant failure mechanism in all environments with additional varying few % of secondary cracks macrovoids and quasi-cleavage in HTW. The observed behavior suggests a combination of plastic strain localisation by the Hydrogen-enhanced Local Plasticity (HELP) mechanism in synergy with DSA and Hydrogen-enhanced Strain-induced Vacancies (HESIV) mechanism with additional minor contributions of Hydrogen-enhanced Decohesion Embrittlement (HEDE) mechanism.
Emerging Electrochemical Energy Conversion and Storage Technologies
Sep 2014
Publication
Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management conservation and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost life time and performance leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells large format lithium-ion batteries electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi-billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies which will have substantial impact on the environment and the way we produce and utilize energy are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.
Hydrogen-assisted Fatigue Crack Growth: Pre-charging vs In-situ Testing in Gaseous Environments
Mar 2023
Publication
We investigate the implications of conducting hydrogen-assisted fatigue crack growth experiments in a hydrogen gas environment (in-situ hydrogen charging) or in air (following exposure to hydrogen gas). The study is conducted on welded 42CrMo4 steel a primary candidate for the future hydrogen transport infrastructure allowing us to additionally gain insight into the differences in behavior between the base steel and the coarse grain heat affected zone. The results reveal significant differences between the two testing approaches and the two weld regions. The differences are particularly remarkable for the comparison of testing methodologies with fatigue crack growth rates being more than one order of magnitude higher over relevant loading regimes when the samples are tested in a hydrogen-containing environment relative to the pre-charged samples. Aided by finite element modelling and microscopy analysis these differences are discussed and rationalized. Independent of the testing approach the heat affected zone showed a higher susceptibility to hydrogen embrittlement. Similar microstructural behavior is observed for both testing approaches with the base metal exhibiting martensite lath decohesion while the heat affected zone experienced both martensite lath decohesion and intergranular fracture.
Geological Hydrogen Storage: Geochemical Reactivity of Hydrogen with Sandstone Reservoirs
Jun 2022
Publication
The geological storage of hydrogen is necessary to enable the successful transition to a hydrogen economy and achieve net-zero emissions targets. Comprehensive investigations must be undertaken for each storage site to ensure their long-term suitability and functionality. As such the systematic infrastructure and potential risks of large-scale hydrogen storage must be established. Herein we conducted over 250 batch reaction experiments with different types of reservoir sandstones under conditions representative of the subsurface reflecting expected time scales for geological hydrogen storage to investigate potential reactions involving hydrogen. Each hydrogen experiment was paired with a hydrogen-free control under otherwise identical conditions to ensure that any observed reactions were due to the presence of hydrogen. The results conclusively reveal that there is no risk of hydrogen loss or reservoir integrity degradation due to abiotic geochemical reactions in sandstone reservoirs.
Evaluating the Opportunity to Repurpose Gas Transmission Assets for Hydrogen Transportation
Sep 2021
Publication
The UK National Transmission System (NTS) is a key enabler to decarbonise the gas network in Great Britain (GB) in order to meet the UK government’s target of net-zero emissions by 2050. FutureGrid is National Grid’s research programme assessing the capability of the transmission system to transport hydrogen. Our goal is to accelerate the decarbonisation of power industry and heat by delivering a safe supply of energy to all customers both during and after the energy transition. FutureGrid will lead to a better understanding of what the technical parameters are around the ultimate role of the NTS in the energy system and how the transition can be managed. Under FutureGrid National Grid will construct a NTS hydrogen test facility at DNV’s Spadeadam testing and research site. NTS assets due to be decommissioned in early RIIO2 will be reconstructed to create a test network that can be used to answer some of the fundamental questions around safety and operation of a converted network. Flows of hydrogen/natural gas blends including 100% hydrogen will be tested for the first time in GB at transmission pressures. This system will connect to the existing H21 distribution network test facility at Spadeadam to prove a complete beach-to-meter network can be decarbonised to develop a comprehensive programme for the hydrogen transition. The project will provide a transmission facility which is a key enabler for more advanced hydrogen testing on industrial equipment such as hydrogen separation technology hydrogen compressors and/or purification of hydrogen for transport. Our paper will detail the current position and aims of the project.
Does the United Kingdom Have Sufficient Geological Storage Capacity to Support a Hydrogen Economy? Estimating the Salt Cavern Storage Potential of Bedded Halite Formations
Jun 2022
Publication
Hydrogen can be used to enable decarbonisation of challenging applications such as provision of heat and as a fuel for heavy transport. The UK has set out a strategy for developing a new low carbon hydrogen sector by 2030. Underground storage will be a key component of any regional or national hydrogen network because of the variability of both supply and demand across different end-use applications. For storage of pure hydrogen salt caverns currently remain the only commercially proven subsurface storage technology implemented at scale. A new network of hydrogen storage caverns will therefore be required to service a low carbon hydrogen network. To facilitate planning for such systems this study presents a modelling approach used to evaluate the UK's theoretical hydrogen storage capacity in new salt caverns in bedded rock salt. The findings suggest an upper bound potential for hydrogen storage exceeding 64 million tonnes providing 2150 TWh of storage capacity distributed in three discrete salt basins in the UK. The modelled cavern capacity has been interrogated to identify the practical inter-seasonal storage capacity suitable for integration in a hydrogen transmission system. Depending on cavern spacing a peak load deliverability of between 957 and 1876 GW is technically possible with over 70% of the potential found in the East Yorkshire and Humber region. The range of geologic uncertainty affecting the estimates is approximately ±36%. In principle the peak domestic heating demand of approximately 170 GW across the UK can be met using the hydrogen withdrawn from caverns alone albeit in practice the storage potential is unevenly distributed. The analysis indicates that the availability of salt cavern storage potential does not present a limiting constraint for the development of a low-carbon hydrogen network in the UK. The general framework presented in this paper can be applied to other regions to estimate region-specific hydrogen storage potential in salt caverns.
Recent Development in Nanoconfined Hydrides for Energy Storage
Jun 2022
Publication
Hydrogen is the ultimate vector for a carbon-free sustainable green-energy. While being the most promising candidate to serve this purpose hydrogen inherits a series of characteristics making it particularly difficult to handle store transport and use in a safe manner. The researchers’ attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane tetrahydridoborates/borohydrides tetrahydridoaluminates/alanates or reactive hydride composites). Even then the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both) and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Mineral Reactions in the Geological Underground Induced by H2 and CO2 Injections
Dec 2014
Publication
The R&D project H2STORE is part of the German program to reduce environmental pollution by energy production and in saving fossil natural resources. Thereby physico-chemical processes in the CO2-H2 system by organic and inorganic reactions receive increasing attention. In H2STORE siliciclastic reservoirs and their caprocks from 25 well sites in Germany and Austria are investigated by different analytical methods before and after H2/CO2 batch experiments under sample specific reservoir conditions (p T XFluid). Mineral dissolution precipitation and their impact on reservoir quality (poro-perm fluid pathways) and on the generation of methane by microbial metabolism triggered by CO2/H2 exposure are studied.
Hydrogen Embrittlement of a Boiler Water Wall Tube in a District Heating System
Jul 2022
Publication
A district heating system is an eco-friendly power generation facility with high energy efficiency. The boiler water wall tube used in the district heating system is exposed to extremely harsh conditions and unexpected fractures often occur during operation. In this study a corrosion failure analysis of the boiler water wall tube was performed to elucidate the failure mechanisms. The study revealed that overheating by flames was the cause of the failure of the boiler water wall tube. With an increase in temperature in a localized region the microstructure not only changed from ferrite/pearlite to martensite/bainite which made it more susceptible to brittleness but it also developed tensile residual stresses in the water-facing side by generating cavities or microcracks along the grain boundaries inside the tube. High-temperature hydrogen embrittlement combined with stress corrosion cracking initiated many microcracks inside the tube and created an intergranular fracture.
Pore-scale Study of Microbial Hydrogen Consumption and Wettability Alteration During Underground Hydrogen Storage
Feb 2023
Publication
Hydrogen can be a renewable energy carrier and is suggested to store renewable energy and mitigate carbon dioxide emissions. Subsurface storage of hydrogen in salt caverns deep saline formations and depleted oil/gas reservoirs would help to overcome imbalances between supply and demand of renewable energy. Hydrogen however is one of the most important electron donors for many subsurface microbial processes including methanogenesis sulfate reduction and acetogenesis. These processes cause hydrogen loss and changes of reservoir properties during geological hydrogen storage operations. Here we report the results of a typical halophilic sulfate-reducing bacterium growing in a microfluidic pore network saturated with hydrogen gas at 35 bar and 37°C. Test duration is 9 days. We observed a significant loss of H2 from microbial consumption after 2 days following injection into a microfluidic device. The consumption rate decreased over time as the microbial activity declined in the pore network. The consumption rate is influenced profoundly by the surface area of H2 bubbles and microbial activity. Microbial growth in the silicon pore network was observed to change the surface wettability from a water-wet to a neutral-wet state. Due to the coupling effect of H2 consumption by microbes and wettability alteration the number of disconnected H2 bubbles in the pore network increased sharply over time. These results may have significant implications for hydrogen recovery and gas injectivity. First pore-scale experimental results reveal the impacts of subsurface microbial growth on H2 in storage which are useful to estimate rapidly the risk of microbial growth during subsurface H2 storage. Second microvisual experiments provide critical observations of bubble-liquid interfacial area and reaction rate that are essential to the modeling that is needed to make long-term predictions. Third results help us to improve the selection criteria for future storage sites.
No more items...