Transmission, Distribution & Storage
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quantities of contained solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
A Numerical and Graphical Review of Energy Storage Technologies
Dec 2014
Publication
More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage namely: mechanical chemical electromagnetic and thermal storage are compared on the basis of energy/power density specific energy/power efficiency lifespan cycle life self-discharge rates capital energy/power costs scale application technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.
Material-based Hydrogen Storage Projection
Sep 2021
Publication
Massive consumption of fossil fuel leads to shortage problems as well as various global environmental issues. Due to the global climatic problem in the world techniques to supply energy demand change from conventional methods that use fossil fuel as the energy source to clean and renewable sources such as solar and wind. However these renewable energy sources are not permanent. Energy storage methods can ensure to supply the energy demand in need if the energy is stored when the renewable source is available. Hydrogen is considered a promising alternative feedstock owing to has unique properties such as clean energy high energy density absence of toxic materials and carbon-free nature. Hydrogen is used main fuel source in fuel cells and hydrogen can be produced with various methods such as wind or electrolysis of water systems that supply electricity from renewable sources. However the safe effective and economical storage of hydrogen is still a challenge that limits the spread of the usage of hydrogen energy. High pressed hydrogen gas and cryogenic hydrogen liquid are two applied storage pathways although they do not meet the above-mentioned requirement. To overcome these drawbacks materials-based hydrogen storage materials have been mostly investigated research field recently. The aim of the study is that exhibiting various material-based hydrogen storage systems and development of these techniques worldwide. Additionally past and current status of the technology are explained and future perspective is discussed.
Effects of Hydrogen Addition on Design, Maintenance and Surveillance of Gas Networks
Jul 2021
Publication
Hydrogen when is blended with natural gas over time degrades the materials used for pipe transport. Degradation is dependent on the proportion of hydrogen added to the natural gas. The assessment is made according to hydrogen permeation risk to the integrity of structures adaptation of surveillance and maintenance of equipment. The paper gives a survey of HE and its consequence on the design and maintenance. It is presented in a logical sequence: the design before use; the hydrogen embrittlement (HE) effects on Maximum Allowable Operating Pressure (MAOP); maintenance and surveillance during use of smooth and damaged pipes; and particularly for crack-like defects corrosion defects and dents.
Mapping Geological Hydrogen Storage Capacity and Regional Heating Demands: An Applied UK Case Study
Feb 2021
Publication
Hydrogen is considered as a low-carbon substitute for natural gas in the otherwise difficult to decarbonise domestic heating sector. This study presents for the first time a globally applicable source to sink methodology and analysis that matches geological storage capacity with energy demand. As a case study it is applied to the domestic heating system in the UK with a focus on maintaining the existing gas distribution network. To balance the significant annual cyclicity in energy demand for heating hydrogen could be stored in gas fields offshore and transported via offshore pipelines to the existing gas terminals into the gas network. The hydrogen energy storage demand in the UK is estimated to be ~77.9 terawatt-hour (TWh) which is approximately 25 % of the total energy from natural gas used for domestic heating. The total estimated storage capacity of the gas fields included in this study is 2661.9 TWh. The study reveals that only a few offshore gas fields are required to store enough energy as hydrogen to balance the entire seasonal demand for UK domestic heating. It also demonstrates that as so few fields are required hydrogen storage will not compete for the subsurface space required for other low-carbon subsurface applications such as carbon storage or compressed air energy storage.
Hydrogen-based Systems for Integration of Renewable Energy in Power Systems: Achievements and Perspectives
Jul 2021
Publication
This paper is a critical review of selected real-world energy storage systems based on hydrogen ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with short-term energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system.<br/>Therefore control systems and energy management strategies are important factors to achieve optimal results both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems new hybrid energy systems could be tailored to fit each situation and to reduce energy losses.
Vacuum vs Argon Technology for Hydrogen Measurement
Dec 2018
Publication
Within the framework of this paper we review the development of the problem of hydrogen diagnostic for metals. Metal sample enrichment techniques based on hydrogen vacuum extraction method used for a long time. Development of the industrial control technologies has led to the almost complete replacement of vacuum techniques with “atmospheric” ones. As a result systematic errors have occurred. These errors lead to multiple differences between certified and measured hydrogen concentration values for standard samples.<br/>In this paper we analyze reasons of systematic errors genesis observed for hydrogen measurements while applying the thermal conductivity cell technique. As a result we demonstrated that measurements resulting from samples heating and melting in the inert gas flow depend on its heat capacity and surface temperature of the melting pot. Due to this reason one can obtain multiple errors and even negative values for measurements of a low hydrogen concentration."
Comparative Study of Battery Storage and Hydrogen Storage to Increase Photovoltaic Self-sufficiency in a Residential Building of Sweden
Dec 2016
Publication
Photovoltaic (PV) is promising to supply power for residential buildings. Battery is the most widely employed storage method to mitigate the intermittence of PV and to overcome the mismatch between production and load. Hydrogen storage is another promising method that it is suitable for long-term storage. This study focuses on the comparison of self-sufficiency ratio and cost performance between battery storage and hydrogen storage for a residential building in Sweden. The results show that battery storage is superior to the hydrogen storage in the studied case. Sensitivity study of the component cost within the hydrogen storage system is also carried out. Electrolyzer cost is the most sensitive factor for improving system performance. A hybrid battery and hydrogen storage system which can harness the advantages of both battery and hydrogen storages is proposed in the last place.
Catalytic Hydrogen Production, Storage and Application
Jul 2021
Publication
Hydrogen is a clean fuel for transportation and energy storage. It has several attractive features including a higher energy content by weight use in fuel cells that produces only water as a by-product storage in small and large quantities by various methods and established transportation and infrastructures. A hydrogen economy consists of three steps i.e. hydrogen production storage and applications. All three steps involved in a hydrogen economy can be divided into catalytic and non-catalytic approaches. For catalytic processes the efficiency highly depends on the type and physico-chemical characteristics of the catalysts. Therefore for the improvement of these catalytic processes the development of highly efficient and stable catalysts is highly required.
Reliable Off-grid Power Supply Utilizing Green Hydrogen
Jun 2021
Publication
Green hydrogen produced from wind solar or hydro power is a suitable electricity storage medium. Hydrogen is typically employed as mid- to long-term energy storage whereas batteries cover short-term energy storage. Green hydrogen can be produced by any available electrolyser technology [alkaline electrolysis cell (AEC) polymer electrolyte membrane (PEM) anion exchange membrane (AEM) solid oxide electrolysis cell (SOEC)] if the electrolysis is fed by renewable electricity. If the electrolysis operates under elevated pressure the simplest way to store the gaseous hydrogen is to feed it directly into an ordinary pressure vessel without any external compression. The most efficient way to generate electricity from hydrogen is by utilizing a fuel cell. PEM fuel cells seem to be the most favourable way to do so. To increase the capacity factor of fuel cells and electrolysers both functionalities can be integrated into one device by using the same stack. Within this article different reversible technologies as well as their advantages and readiness levels are presented and their potential limitations are also discussed.
Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study
Sep 2021
Publication
As renewable energy sources are spreading the problems of energy usage transport and storage arise more frequently. In order that the performance of energy producing units from renewable sources which have a relatively low efficiency should not be decreased further and to promote sustainable energy consumption solutions a living lab conception was elaborated in this project. At the pilot site the produced energy (by PV panels gas turbines/engines) is stored in numerous ways including hydrogen production. The following uses of hydrogen are explored: (i) feeding it into the national natural gas network; (ii) selling it at a H-CNG (compressed natural gas) filling station; (iii) using it in fuel cells to produce electricity. This article introduces the overall implementation plan which can serve as a model for the hybrid energy communities to be established in the future.
Renewable Hydrogen Implementations for Combined Energy Storage, Transportation and Stationary Applications
Dec 2019
Publication
The purpose of this paper is to discuss the potential of hydrogen obtained from renewable sources for energy generation and storage systems. The first part of analysis will address such issues as various methods of green hydrogen production storage and transportation. The review of hydrogen generation methods will be followed by the critical analysis and the selection of production method. This selection is justified by the results of the comparative research on alternative green hydrogen generation technologies with focus on their environmental impacts and costs. The comparative analysis includes the biomass-based methods as well as water splitting and photo-catalysis methods while water electrolysis is taken as a benchmark. Hydrogen storage and transportation issues will be further discussed in purpose to form the list of recommended solutions. In the second part of the paper the technology readiness and technical feasibility for joint hydrogen applications will be analysed. This will include the energy storage and production systems based on renewable hydrogen in combination with hydrogen usage in mobility systems as well as the stationary applications in buildings such as combined heat and power (CHP) plants or fuel cell electric generators. Based on the analysis of the selected case studies the author will discuss the role of hydrogen for the carbon emission reduction with the stress on the real value of carbon footprint of hydrogen depending on the gas source storage transportation and applications.
Increasing the Energy Efficiency of Gas Boosters for Hydrogen Storage and for Refueling Stations
Feb 2023
Publication
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrogen vehicles. In such applications the overall energy count is of significance and must include the efficiency of the compression stage. The proposed system uses an electric motor instead of the pneumatic actuator and increases the total efficiency of the compression process. Two mechanical principles are studied for the transformation of the rotational motion of the motor to the linear displacement of the compressor pistons. The strongly fluctuating power of the compressor is smoothed by an active capacitive auxiliary storage device connected to the DC circuit of the power converter. The proposed system has been verified by numeric simulation including the thermodynamic phenomena the kinetics of the new compressor drive and the the operation of the circuits of the power smoothing system.
Residual Tensile Properties of Carbon Fiber Reinforced Epoxy Resin Composites at Elevated Temperatures
Sep 2021
Publication
Carbon fiber reinforced epoxy resin composites have attracted great attention in high pressure hydrogen storage for its light weight and excellent mechanical properties. The degradation of residual mechanical properties at elevated temperature from 20 °C to 450 °C were studied experimentally. The effects of temperature on the tensile strength and failure mode of the composite specimens with stacking sequences of 0° 90° and ±45° (labeled as CF0 CF90 and CF 45) were systematically analyzed followed by the fracture surfaces examination. Results show that the tensile strength residual ratios of the three kinds of specimens decrease significantly with heating temperature increasing. In particular the decomposing temperature of the resin matrix exerts the largest effects on the degradation of tensile strength of CF0 specimen within 450 °C. While the loss of tensile strength of CF90 and CF45 specimens is dependent on the thermal softening of epoxy resin which has closely related to the glass transition temperature. Furthermore the debonding and fiber softening appeared in the CF0 specimens when the temperature reached 450 °C. For CF90 specimens the degradation of bonding strength of epoxy could be found at 150 °C and regarding CF45 specimens delamination cracking between plies occurred extensively when the temperature above 125 °C.
Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control
Aug 2022
Publication
Smooth power injection is one of the possible services that modern wind farms could provide in the not-so-far future for which energy storage is required. Indeed this is one among the three possible operations identified by the International Energy Agency (IEA)-Hydrogen Implementing Agreement (HIA) within the Task 24 final report that may promote their integration into the main grid in particular when paired to hydrogen-based energy storages. In general energy storage can mitigate the inherent unpredictability of wind generation providing that they are deployed with appropriate control algorithms. On the contrary in the case of no storage wind farm operations would be strongly affected as well as their economic performances since the penalty fees wind farm owners/operators incur in case of mismatches between the contracted power and that actually delivered. This paper proposes a Model Predictive Control (MPC) algorithm that operates a Hydrogen-based Energy Storage System (HESS) consisting of one electrolyzer one fuel cell and one tank paired to a wind farm committed to smooth power injection into the grid. The MPC relies on Mixed-Logic Dynamic (MLD) models of the electrolyzer and the fuel cell in order to leverage their advanced features and handles appropriate cost functions in order to account for the operating costs the potential value of hydrogen as a fuel and the penalty fee mechanism that may negatively affect the expected profits generated by the injection of smooth power. Numerical simulations are conducted by considering wind generation profiles from a real wind farm in the center-south of Italy and spot prices according to the corresponding market zone. The results show the impact of each cost term on the performances of the controller and how they can be effectively combined in order to achieve some reasonable trade-off. In particular it is highlighted that a static choice of the corresponding weights can lead to not very effective handling of the effects given by the combination of the system conditions with the various exogenous’ while a dynamic choice may suit the purpose instead. Moreover the simulations show that the developed models and the set-up mathematical program can be fruitfully leveraged for inferring indications on the devices’ sizing.
New Liquid Chemical Hydrogen Storage Technology
Aug 2022
Publication
The liquid chemical hydrogen storage technology has great potentials for high-density hydrogen storage and transportation at ambient temperature and pressure. However its commercial applications highly rely on the high-performance heterogeneous dehydrogenation catalysts owing to the dehydrogenation difficulty of chemical hydrogen storage materials. In recent years the chemists and materials scientists found that the supported metal nanoparticles (MNPs) can exhibit high catalytic activity selectivity and stability for the dehydrogenation of chemical hydrogen storage materials which will clear the way for the commercial application of liquid chemical hydrogen storage technology. This review has summarized the recent important research progress in the MNP-catalyzed liquid chemical hydrogen storage technology including formic acid dehydrogenation hydrazine hydrate dehydrogenation and ammonia borane dehydrogenation discussed the urgent challenges in the key field and pointed out the future research trends.
Large-scale Long-distance Land-based Hydrogen Transportation Systems: A Comparative Techno-economic and Greenhouse Gas Emission Assessment
Aug 2022
Publication
Interest in hydrogen as an energy carrier is growing as countries look to reduce greenhouse gas (GHG) emissions in hard-to-abate sectors. Previous works have focused on hydrogen production well-to-wheel analysis of fuel cell vehicles and vehicle refuelling costs and emissions. These studies use high-level estimates for the hydrogen transportation systems that lack sufficient granularity for techno-economic and GHG emissions analysis. In this work we assess and compare the unit costs and emission footprints (direct and indirect) of 32 systems for hydrogen transportation. Process-based models were used to examine the transportation of pure hydrogen (hydrogen pipeline and truck transport of gaseous and liquified hydrogen) hydrogen-natural gas blends (pipeline) ammonia (pipeline) and liquid organic hydrogen carriers (pipeline and rail). We used sensitivity and uncertainty analyses to determine the parameters impacting the cost and emission estimates. At 1000 km the pure hydrogen pipelines have a levelized cost of $0.66/kg H2 and a GHG footprint of 595 gCO2eq/kg H2. At 1000 km ammonia liquid organic hydrogen carrier and truck transport scenarios are more than twice as expensive as pure hydrogen pipeline and hythane and more than 1.5 times as expensive at 3000 km. The GHG emission footprints of pure hydrogen pipeline transport and ammonia transport are comparable whereas all other transport systems are more than twice as high. These results may be informative for government agencies developing policies around clean hydrogen internationally.
Optimal Design of Multi-energy Systems with Seasonal Storage
Oct 2017
Publication
Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by the complexity of the optimization problem. Indeed the description of seasonal cycles requires a year-long time horizon while the system operation calls for hourly resolution; this turns into a large number of decision variables including binary variables when large systems are analyzed. This work presents novel mixed integer linear program methodologies that allow considering a year time horizon with hour resolution while significantly reducing the complexity of the optimization problem. First the validity of the proposed techniques is tested by considering a simple system that can be solved in a reasonable computational time without resorting to design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale optimization thus allowing to correctly size the energy storage and to operate the system with a long-term policy while significantly simplifying the optimization problem. Furthermore the developed methodology is adopted to design a multi-energy system based on a neighborhood in Zurich Switzerland which is optimized in terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub along the Pareto sets.
Research on the Sealing Mechanism of Split-Liner High-Pressure Hydrogen Storage Cylinders
Mar 2024
Publication
Hydrogen storage is a crucial factor that limits the development of hydrogen energy. This paper proposes using a split liner for the inner structure of a hydrogen storage cylinder. A self-tightening seal is employed to address the sealing problem between the head and the barrel. The feasibility of this structure is demonstrated through hydraulic pressure experiments. The influence laws of the O-ring compression rate the distance from the straight edge section of the head to the sealing groove and the thickness of the head on the sealing performance of gas cylinders in this sealing structure are revealed using finite elements analysis. The results show that when the gas cylinder is subjected to medium internal pressure the maximum contact stress on the O-ring extrusion deformation sealing surface is greater than the medium pressure. There is sufficient contact width that is the arc length of the part where the stress on the O-ring contact surface is greater than the medium pressure so that it can form a good sealing condition. At the same time increasing the compression ratio of the O-ring and the head’s thickness will help improve the sealing performance and reducing the distance from the straight edge section of the head to the sealing groove will also improve the sealing performance.
Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia
Aug 2022
Publication
A significant contribution to the reduction of carbon emissions will be enabled through the transition from a centralised fossil fuel system to a decentralised renewable electricity system. However due to the intermittent nature of renewable energy storage is required to provide a suitable response to dynamic loads and manage the excess generated electricity with utilisation during periods of low generation. This paper investigates the use of stationary hydrogen-based energy storage systems for microgrids and distributed energy resource systems. An exploratory study was conducted in Australia based on a mixed methodology. Ten Australian industry experts were interviewed to determine use cases for hydrogen-based energy storage systems’ requirements barriers methods and recommendations. This study suggests that the current cost of the electrolyser fuel cell and storage medium and the current low round-trip efficiency are the main elements inhibiting hydrogen-based energy storage systems. Limited industry and practical experience are barriers to the implementation of hydrogen storage systems. Government support could help scale hydrogen-based energy storage systems among early adopters and enablers. Furthermore collaboration and knowledge sharing could reduce risks allowing the involvement of more stakeholders. Competition and innovation could ultimately reduce the costs increasing the uptake of hydrogen storage systems.
No more items...