Transmission, Distribution & Storage
Critical Parameters Controlling Wettability in Hydrogen Underground Storage - An Analytical Study
Sep 2022
Publication
Hypothesis.<br/>The large-scale implementation of hydrogen economy requires immense storage spaces to facilitate the periodic storage/production cycles. Extensive modelling of hydrogen transport in porous media is required to comprehend the hydrogen-induced complexities prior to storage to avoid energy loss. Wettability of hydrogen-brine-rock systems influence flow properties (e.g. capillary pressure and relative permeability curves) and the residual saturations which are all essential for subsurface hydrogen systems.<br/>Model.<br/>This study aims to understand which parameters critically control the contact angle for hydrogen-brine-rock systems using the surface force analysis following the DLVO theory and sensitivity analysis. Furthermore the effect of roughness is studied using the Cassie-Baxter model.<br/>Findings.<br/>Our results reveal no considerable difference between H2 and other gases such as N2. Besides the inclusion of roughness highly affects the observed apparent contact angles and even lead to water-repelling features. It was observed that contact angle does not vary significantly with variations of surface charge and density at high salinity which is representative for reservoir conditions. Based on the analysis it is speculated that the influence of roughness on contact angle becomes significant at low water saturation (i.e. high capillary pressure).
Feasibility of Hydrogen Storage in Depleted Hydrocarbon Chalk Reservoirs: Assessment of Biochemical and Chemical Effects
Jul 2022
Publication
Hydrogen storage is one of the energy storage methods that can help realization of an emission free future by saving surplus renewable energy for energy deficit periods. Utilization of depleted hydrocarbon reservoirs for large-scale hydrogen storage may be associated with the risk of chemical/biochemical reactions. In the specific case of chalk reservoirs the principal reactions are abiotic calcite dissolution acetogenesis methanogenesis and biological souring. Here we use PHREEQC to evaluate the dynamics and the extent of hydrogen loss by each of these reactions in hydrogen storage scenarios for various Danish North Sea chalk hydrocarbon reservoirs. We find that: (i) Abiotic calcite dissolution does not occur in the temperature range of 40-180◦ C. (ii) If methanogens and acetogens grow as slow as the slowest growing methanogens and acetogens reported in the literature methanogenesis and acetogenesis cannot cause a hydrogen loss more than 0.6% per year. However (iii) if they proceed as fast as the fastest growing methanogens and acetogens reported in the literature a complete loss of all injected hydrogen in less than five years is possible. (iv) Co-injection of CO2 can be employed to inhibit calcite dissolution and keep the produced methane due to methanogenesis carbon neutral. (v) Biological sulfate reduction does not cause significant hydrogen loss during 10 years but it can lead to high hydrogen sulfide concentrations (1015 ppm). Biological sulfate reduction is expected to impact hydrogen storage only in early stages if the only source of sulfur substrates are the dissolved species in the brine and not rock minerals. Considering these findings we suggest that depleted chalk reservoirs may not possess chemical/biochemical risks and be good candidates for large-scale underground hydrogen storage.
Baking Effect on Desorption of Diffusible Hydrogen and Hydrogen Embrittlement on Hot-Stamped Boron Martensitic Steel
Jun 2019
Publication
Recently hot stamping technology has been increasingly used in automotive structural parts with ultrahigh strength to meet the standards of both high fuel efficiency and crashworthiness. However one issue of concern regarding these martensitic steels which are fabricated using a hot stamping procedure is that the steel is highly vulnerable to hydrogen delayed cracking caused by the diffusible hydrogen flow through the surface reaction of the coating in a furnace atmosphere. One way to make progress in understanding hydrogen delayed fractures is to elucidate an interaction for desorption with diffusible hydrogen behavior. The role of diffusible hydrogen on delayed fractures was studied for different baking times and temperatures in a range of automotive processes for hot-stamped martensitic steel with aluminum- and silicon-coated surfaces. It was clear that the release of diffusible hydrogen is effective at higher temperatures and longer times making the steel less susceptible to hydrogen delayed fractures. Using thermal desorption spectroscopy the phenomenon of the hydrogen delayed fracture was attributed to reversible hydrogen in microstructure sites with low trapping energy.
Indentation and Hydride Orientation in Zr-2.5%Nb Pressure Tube Material
Jun 2019
Publication
In this study indentations were made on Zr-2.5%Nb pressure tube material to induce multi-axial stress field. An I-shaped punch mark was indented on the Pressure tube material with predefined punch load. Later material was charged with 50 wppm of hydrogen. The samples near the punch mark were metallographically examined for hydrides orientation. It was observed that hydrides exhibited preferentially circumferential orientation far away from the indent to mixed orientation containing both circumferential and radial hydrides near the indent. This is probably as a result of stress field generated by indentation. Extent of radial hydride formation was observed to be varying with indentation load.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Charpy Impact Properties of Hydrogen-Exposed 316L Stainless Steel at Ambient and Cryogenic Temperatures
May 2019
Publication
316L stainless steel is a promising material candidate for a hydrogen containment system. However when in contact with hydrogen the material could be degraded by hydrogen embrittlement (HE). Moreover the mechanism and the effect of HE on 316L stainless steel have not been clearly studied. This study investigated the effect of hydrogen exposure on the impact toughness of 316L stainless steel to understand the relation between hydrogen charging time and fracture toughness at ambient and cryogenic temperatures. In this study 316L stainless steel specimens were exposed to hydrogen in different durations. Charpy V-notch (CVN) impact tests were conducted at ambient and low temperatures to study the effect of HE on the impact properties and fracture toughness of 316L stainless steel under the tested temperatures. Hydrogen analysis and scanning electron microscopy (SEM) were conducted to find the effect of charging time on the hydrogen concentration and surface morphology respectively. The result indicated that exposure to hydrogen decreased the absorbed energy and ductility of 316L stainless steel at all tested temperatures but not much difference was found among the pre-charging times. Another academic insight is that low temperatures diminished the absorbed energy by lowering the ductility of 316L stainless steel
Combined Soft Templating with Thermal Exfoliation Toward Synthesis of Porous g-C3N4 Nanosheets for Improved Photocatalytic Hydrogen Evolution
Apr 2021
Publication
Insufficient active sites and fast charge carrier recombination are detrimental to photocatalytic activity of graphitic carbon nitride (g-C3N4). In this work a combination of pore creating with thermal exfoliation was employed to prepare porous g-C3N4 nanosheets for photocatalytic water splitting into hydrogen. Hexadecyl trimethyl ammonium chloride (CTAC) as the soft template promoted the formation of porous g-C3N4 during the thermal condensation of melamine. On further post-synthesis calcination the porous g-C3N4 aggregates were exfoliated into discrete nanosheets accompanied by an increase in specific surface area and defects. Optimal porous g-C3N4 nanosheets achieved 3.6 times the photocatalytic hydrogen evolution rate for bulk counterpart. The enhanced photocatalytic activity may be ascribed to TCN-1%CTAC has larger specific surface area stronger optical absorption intensity and higher photogenerated electron–hole separation efficiency. The external quantum efficiency of TCN-1%CTAC was measured to be 3.4% at 420 nm. This work provides a simple combinatorial strategy for the preparation of porous g-C3N4 nanosheets with low cost environmental friendliness and enhanced photocatalytic activity.
Effects of Thermomechanical Processing on Hydrogen Embrittlement Properties of Ultrahigh-Strength TRIP-Aided Bainitic Ferrite Steels
Jan 2022
Publication
The effects of thermomechanical processing on the microstructure and hydrogen embrittlement properties of ultrahigh-strength low-alloy transformation-induced plasticity (TRIP)-aided bainitic ferrite (TBF) steels were investigated to apply to automobile forging parts such as engine and drivetrain parts. The hydrogen embrittlement properties were evaluated by conducting conventional tensile tests after hydrogen charging and constant load four-point bending tests with hydrogen charging. The 0.4 mass%C-TBF steel achieved refinement of the microstructure improved retained austenite characteristics and strengthening owing to thermomechanical processing. This might be attributed to dynamic and static recrystallizations during thermomechanical processing in TBF steels. Moreover the hydrogen embrittlement resistances were improved by the thermomechanical processing in TBF steels. This might be caused by the refinement of the microstructure an increase in the stability of the retained austenite and low hydrogen absorption of the thermomechanically processed TBF steels.
Analysis of Samples Cleaning Methods Prior to Hydrogen Content Determination in Steel
May 2020
Publication
There are multiple references to sample cleaning methods prior to hydrogen content determination or hydrogen spectroscopy analysis but there is still no unified criteria; different authors use their own “know-how” to perform this task. The aim of this paper is to solve or at least clarify this issue. In this work the most commonly used sample cleaning methods are compared. Then five different methodologies are applied on certified hydrogen content calibration pins and on high strength steel concrete-prestressing strands and the three main situations regarding hydrogen content in the microstructural net (non-charged charged and charged and uncharged) are studied. It was concluded that the HCl solution C-3.5 cleaning method recommended by ASTM G1 introduces large amounts of hydrogen in the samples; but can be useful for eliminating superficial oxides if necessary. The rest of the methods had similar results; but the more complete ones that involve ultrasounds and last longer than 8 min are not appropriated when important diffusion may occur on the samples during their application. Simple methods that involve acetone or trichloroethylene and last around 1 min are preferable for almost all situations as these are faster easier and cheaper. As a final recommendation as trichloroethylene is toxic the simple acetone method is in general the most convenient one for regular hydrogen content analysis.
TM-doped Mg12O12 Nano-cages for Hydrogen Storage Applications: Theoretical Study
Feb 2022
Publication
DFT calculations at B3LYP/6-31g(dp) with the D3 version of Grimme’s dispersion are performed to investigate the application of TM-encapsulated Mg12O12 nano-cages (TM= Mn Fe and Co) as a hydrogen storage material. The molecular dynamic (MD) calculations are utilized to examine the stability of the considered structures. TD-DFT method reveals that the TM-encapsulation converts the Mg12O12 from an ultraviolet into a visible optical active material. The adsorption energy values indicate that the Mn and Fe atoms encapsulation enhances the adsorption of H2 molecules on the Mg12O12 nano-cage. The pristine Mg12O12 and CoMg12O12 do not meet the requirements for hydrogen storage materials while the MnMg12O12 and FeMg12O12 obey the requirements. MnMg12O12 and FeMg12O12 can carry up to twelve and nine H2 molecules respectively. The hydrogen adsorption causes a redshift for the λmax value of the UV-Vis. spectra of the MnMg12O12 and FeMg12O12 nano-cages. The thermodynamic calculations show that the hydrogen storage reaction for MnMg12O12 nano-cage is a spontaneous reaction while for FeMg12O12 nano-cage is not spontaneous. The results suggested that the MnMg12O12 nano-cage may be a promising material for hydrogen storage applications.
Hybrid Hydrogen Home Storage for Decentralized Energy Autonomy
May 2021
Publication
As the share of distributed renewable power generation increases high electricity prices and low feed-in tariff rates encourage the generation of electricity for personal use. In the building sector this has led to growing interest in energy self-sufficient buildings that feature battery and hydrogen storage capacities. In this study we compare potential technology pathways for residential energy storage in terms of their economic performance by means of a temporal optimization model of the fully self-sufficient energy system of a single-family building taking into account its residential occupancy patterns and thermal equipment. We show for the first time how heat integration with reversible solid oxide cells (rSOCs) and liquid organic hydrogen carriers (LOHCs) in high-efficiency single-family buildings could by 2030 enable the self-sufficient supply of electricity and heat at a yearly premium of 52% against electricity supplied by the grid. Compared to lithium-ion battery systems the total annualized cost of a self-sufficient energy supply can be reduced by 80% through the thermal integration of LOHC reactors and rSOC systems.
Ab Initio Study of the Combined Effects of Alloying Elements and H on Grain Boundary Cohesion in Ferritic Steels
Mar 2019
Publication
Hydrogen enhanced decohesion is expected to play a major role in ferritic steels especially at grain boundaries. Here we address the effects of some common alloying elements C V Cr and Mn on the H segregation behaviour and the decohesion mechanism at a Σ5(310)[001] 36.9∘ grain boundary in bcc Fe using spin polarized density functional theory calculations. We find that V Cr and Mn enhance grain boundary cohesion. Furthermore all elements have an influence on the segregation energies of the interstitial elements as well as on these elements’ impact on grain boundary cohesion. V slightly promotes segregation of the cohesion enhancing element C. However none of the elements increase the cohesion enhancing effect of C and reduce the detrimental effect of H on interfacial cohesion at the same time. At an interface which is co-segregated with C H and a substitutional element C and H show only weak interaction and the highest work of separation is obtained when the substitute is Mn.
The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium
Dec 2020
Publication
Hydrogen is recognized as the “future fuel” and the most promising alternative of fossil fuels due to its remarkable properties including exceptionally high energy content per unit mass (142 MJ/kg) low mass density and massive environmental and economical upsides. A wide spectrum of methods in H2 production especially carbon-free approaches H2purification and H2storage have been investigated to bring this energy source closer to the technological deployment. Hydrogen hydrates are among the most intriguing material paradigms for H2storage due to their appealing properties such as low energy consumption for charge and discharge safety cost-effectiveness and favorable environmental features. Here we comprehensively discuss the progress in understanding of hydrogen clathrate hydrates with an emphasis on charging/discharging rate of H2 (i.e. hydrate formation and dissociation rates) and the storage capacity. A thorough understanding on phase equilibrium of the hydrates and its variation through different materials is provided. The path toward ambient temperature and pressure hydrogen batteries with high storage capacity is elucidated. We suggest that the charging rate of H2 in this storage medium and long cyclic performance are more immediate challenges than storage capacity for technological translation of this storage medium. This review and provided outlook establish a groundwork for further innovation on hydrogen hydrate systems for promising future of hydrogen fuel.
Graphene Oxide/metal Nanocrystal Multilaminates as the Atomic Limit for Safe and Selective Hydrogen Storage
Mar 2016
Publication
Interest in hydrogen fuel is growing for automotive applications; however safe dense solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material protected from oxygen and moisture by the rGO layers exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin this approach minimizes inactive mass in the composite while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.
Dynamic Operation of Fischer-Tropsch Reactors for Power-to-liquid Concepts: A Review
Apr 2022
Publication
The Fischer-Tropsch synthesis (FTS) is considered as a power-to-X (PtX) storage concept for converting temporally available excess energy to fuels or chemical compounds without the need of fossil resources. Fluctuating energy supplies demand a load-flexible energy system and a dynamically operating FTS reactor might be beneficial compared to traditional steady-state operations which rely on expensive upstream buffer capacities. This review provides an overview of recent experimental and simulation studies dealing with dynamic FTS operation and summarizes the main findings. The results are presented the two categories process intensification and PtX application. The review further discusses the experimentally difficult task of wide-ranging product characterization with a high temporal resolution. While dynamic reactor operation is often related to a complicated process control which challenges a save and efficient reactor performance the literature findings indicate that for dynamic FTS operation such concerns might not be as critical as assumed at least within well-known boundaries. Researchers further agree that dynamic operation might be a tool for process intensification. Especially hydrogen pulsing seems to be a potentially beneficial operating technique to remove accumulated liquid products restore initial catalyst activity and increase diesel-range productivity. The main challenge in this context is the prevention of high methane selectivity. A lucid future engineering goal seems to be the combination of the two applications: a robust and reliable FTS reactor in a PtX scenario that not only handles a fluctuating feed but uses such variations for process enhancement.
Quantitative Risk Analysis of a Hazardous Jet Fire Event for Hydrogen Transport in Natural Gas Transmission Pipelines
Jan 2021
Publication
With the advent of large-scale application of hydrogen transportation becomes crucial. Reusing the existing natural gas transmission system could serve as catalyst for the future hydrogen economy. However a risk analysis of hydrogen transmission in existing pipelines is essential for the deployment of the new energy carrier. This paper focuses on the individual risk (IR) associated with a hazardous hydrogen jet fire and compares it with the natural gas case. The risk analysis adopts a detailed flame model and state of the art computational software to provide an enhanced physical description of flame characteristics.<br/>This analysis concludes that hydrogen jet fires yield lower lethality levels that decrease faster with distance than natural gas jet fires. Consequently for large pipelines hydrogen transmission is accompanied by significant lower IR. Howbeit ignition effects increasingly dominate the IR for decreasing pipeline diameters and cause hydrogen transmission to yield increased IR in the vicinity of the pipeline when compared to natural gas.
A Probabilistic Framework for the Techno-economic Assessment of Smart Energy Hubs for Electric Vehicle Charging
Apr 2022
Publication
Smart energy hubs (Smart Hubs) equipped with Vehicle-to-Grid (V2G) charging photovoltaic (PV) energy generation and hydrogen storage capabilities are an emerging technology with potential to alleviate the impact of electric vehicles (EV) on the electricity grid. Their operation however is characterised by intermittent PV energy generation as well as uncertainties in EV traffic and driver preference. These uncertainties when combined with the need to maximise their financial return while guaranteeing driver satisfaction yields a challenging decision-making problem. This paper presents a novel Monte-Carlo-based modelling and computational framework for simulating the operation of Smart Hubs — providing a means for a holistic assessment of their technical and financial viability. The framework utilises a compact and representative mathematical model accounting for power losses PV module degradation variability in EV uptake price inflation driver preference and diversity in charge points and EVs. It provides a comprehensive approach for dealing with uncertainties and dependencies in EV data while being built on an energy management algorithm that maximises revenue generation ensures driver satisfaction and preserves battery life. The energy management problem is formulated as a mixed-integer linear programming problem constituting a business case that includes an adequate V2G reward model for drivers. To demonstrate its applicability the framework was used to assess the financial viability of a fleet management site for various caps on vehicle stay at the site. From the assessment controlled charging was found to be more financially rewarding in all cases yielding between 1.7% and 3.1% more revenue than uncontrolled charging. The self-consumption of the site was found to be nearly 100% due mainly to local load shifting and dispatchable hydrogen generation. V2G injection was however negligible — suggesting its unattractiveness for sites that do not participate in the demand side response market. Overall the numerical results obtained validate the applicability of the proposed framework as a decision-support tool in the sustainable design and operation of Smart Hubs for EV charging.
Techno-economic Feasibility of Road Transport of Hydrogen Using Liquid Organic Hydrogen Carriers
Sep 2020
Publication
The cost of storing and transporting hydrogen have been one of the main challenges for the realization of the hydrogen economy. Liquid organic hydrogen carriers (LOHC) are a promising novel solution to tackle these challenges. In this paper we compare the LOHC concept to compressed gas truck delivery and on-site production of hydrogen via water electrolysis. As a case study we consider transportation of by-product hydrogen from chlor-alkali and chlorate plants to a single industrial customer which was considered to have the greatest potential for the LOHC technology to enter the markets. The results show that the LOHC delivery chain could significantly improve the economics of long distance road transport. For economic feasibility the most critical parameters identified are the heat supply method for releasing hydrogen at the end-user site and the investment costs for LOHC reactors.
Hydrogen Production from Offshore Wind Parks: Current Situation and Future Perspectives
Jun 2021
Publication
With the increase in renewable energy connected to the grid new challenges arise due to its variable supply of power. Therefore it is crucial to develop new methods of storing energy. Hydrogen can fulfil the role of energy storage and even act as an energy carrier since it has a much higher energetic density than batteries and can be easily stored. Considering that the offshore wind sector is facing significant growth and technical advances hydrogen has the potential to be combined with offshore wind energy to aid in overcoming disadvantages such as the high installation cost of electrical transmission systems and transmission losses. This paper aims to outline and discuss the main features of the integration of hydrogen solutions in offshore wind power and to offer a literature review of the current state of hydrogen production from offshore wind. The paper provides a summary of the technologies involved in hydrogen production along with an analysis of two possible hydrogen producing systems from offshore wind energy. The analysis covers the system components including hydrogen storage the system configuration (i.e. offshore vs. onshore electrolyzer) and the potential uses of hydrogen e.g. Power to Mobility Power to Power and Power to Gas.
Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts
Aug 2017
Publication
Fischer-Tropsch synthesis (FTS) is an increasingly important approach for producing liquid fuels and chemicals via syngas—that is synthesis gas a mixture of carbon monoxide and hydrogen—generated from coal natural gas or biomass. In FTS dispersed transition metal nanoparticles are used to catalyze the reactions underlying the formation of carbon-carbon bonds. Catalytic activity and selectivity are strongly correlated with the electronic and geometric structure of the nanoparticles which depend on the particle size morphology and crystallographic phase of the nanoparticles. In this article we review recent works dealing with the aspects of bulk and surface sensitivity of the FTS reaction. Understanding the different catalytic behavior in more detail as a function of these parameters may guide the design of more active selective and stable FTS catalysts.
No more items...