Transmission, Distribution & Storage
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions Read More
Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel
Dec 2022
Publication
In this work first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength toughness and hydrogen embrittlement susceptibility is expected for application in large-scale hydrogen storage and transportation. To evaluate the property Read More
Comparative Study of Embrittlement of Quenched and Tempered Steels in Hydrogen Environments
Mar 2022
Publication
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different co Read More
Effects of Purity and Pressure on the Hydrogen Embrittlement of Steels and Other Metallic Materials
Sep 2009
Publication
A study of open literature was performed to determine the effects of high hydrogen purity and gas pressure (in the range of 700-1000 bar) on the hydrogen embrittlement of several metallic materials. A particular focus was given to carbon low-alloy and stainless steels but information on embrittlement of aluminum and copper was included in the study. Additionally the most common test methods were studied and results from similar tests are prese Read More
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acce Read More
Review and Assessment of the Effect of Hydrogen Gas Pressure on the Embrittlement of Steels in Gaseous Hydrogen Environment
Apr 2021
Publication
Hydrogen gas pressure is an important test parameter when considering materials for high-pressure hydrogen applications. A large set of data on the effect of hydrogen gas pressure on mechanical properties in gaseous hydrogen experiments was reviewed. The data were analyzed by converting pressures into fugacities (f) and by fitting the data using an f|n| power law. For 95% of the data sets |n| was smaller than 0.37 which was discussed in the context Read More
Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C
Aug 2019
Publication
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite achieving an extraordinary balance of mechanical properties and alloying cost. In the present work two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatmen Read More
Recent Progress in Hydrogen Storage
Nov 2008
Publication
The ever-increasing demand for energy coupled with dwindling fossil fuel resources make the establishment of a clean and sustainable energy system a compelling need. Hydrogen-based energy systems offer potential solutions. Although in the long-term the ultimate technological challenge is large-scale hydrogen production from renewable sources the pressing issue is how to store hydrogen efficiently on board hydrogen fuel-cell vehicles.
Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions
Mar 2021
Publication
Improving efficiency of hydrogen cooling in cryogenic conditions is important for the wider applications of hydrogen energy systems. The approach investigated in this study is based on a Ranque-Hilsch vortex tube (RHVT) that generates temperature separation in a working fluid. The simplicity of RHVT is also a valuable characteristic for cryogenic systems. In the present work novel shapes of RHVT are computationally investigated with the goal to r Read More
Metastable Metal Hydrides for Hydrogen Storage
Oct 2012
Publication
The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides off Read More
Hydrogen Diffusion in Coal: Implications for Hydrogen Geo-storage
Oct 2021
Publication
Hypothesis: Hydrogen geo-storage is considered as an option for large scale hydrogen storage in a full-scale hydrogen economy. Among different types of subsurface formations coal seams look to be one of the best suitable options as coal’s micro/nano pore structure can adsorb a huge amount of gas (e.g. hydrogen) which can be withdrawn again once needed. However literature lacks fundamental data regarding H2 diffusion in coal. Experiments: In Read More
The Effects of Electrochemical Hydrogen Charging on Room-Temperature Tensile Properties of T92/TP316H Dissimilar Weldments in Quenched-and-Tempered and Thermally-Aged Conditions
Aug 2019
Publication
The influence of isothermal aging at 620 °C in combination with subsequent electrochemical hydrogen charging at room-temperature was studied on quenched-and-tempered T92/TP316H martensitic/austenitic weldments in terms of their room-temperature tensile properties and fracture behavior. Hydrogen charging of the weldments did not significantly affect their strength properties; however it resulted in considerable deterioration of their Read More
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distributio Read More
HyUnder – Hydrogen Underground Storage at Large Scale: Case Study Spain
Aug 2015
Publication
Hydrogen as an energy carrier is understood as a system capable of storing energy for a later use in a controlled manner. Surplus electricity from renewable energy serves for green hydrogen generation via electrolysis. Once produced the hydrogen is stored for later consumption. This paper describes the Spanish Case Study of the HyUnder project which aims to evaluate the potential of underground hydrogen storage for large-scale energy storage along Eu Read More
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deforma Read More
Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities
Jun 2018
Publication
In this study electrochemical measurements immersion tests and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction especially the oxygen reduction reaction. Simultaneously hydrogen evolution reacti Read More
The Role of CCS in Meeting Climate Policy Targets
Oct 2017
Publication
Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat industrial processes and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies CCS is not without risks or uncertainties and there are various challenge Read More
Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
Jun 2018
Publication
A key issue in understanding and effectively managing hydrogen embrittlement in complex alloys is identifying and exploiting the critical role of the various defects involved. A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients in the material as well as microstructural trapping sites such as grain boundaries and dislocations. In particular the energetic parameters used in this coupled approach are Read More
Hydrogen Embrittlement: The Game Changing Factor in the Applicability of Nickel Alloys in Oilfield Technology
Jun 2017
Publication
Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE) as confirmed in documented failures of components in Read More
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Apr 2018
Publication
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However according to recent studies the hydrogen leads to the decline of the mechanical properties of steel which is known as hydrogen embrittlement is another reason for flake formation. In addition the phe Read More
No more items...