Transmission, Distribution & Storage
Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying
Apr 2018
Publication
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and good tempering resistance. Recent developments of ultra-high strength steel grades such as fully martensitic steel can be optimized by using beneficial metallurgical effects of niobium and molybdenum. The paper details the metallurgical principles of both elements in such steel and the achievable improvement of properties. Particularly the underlying mechanisms of improving toughness and reducing the sensitivity towards hydrogen embrittlement by a suitable combination of molybdenum and niobium alloying will be discussed.
Evaluation of Hydrogen Permeation Characteristics in Rubbery Polymers
Oct 2020
Publication
To find suitable sealing material with low permeability against hydrogen the elaborated evaluation techniques for hydrogen transport properties are necessary. We developed two techniques determining the permeability of hydrogen including software for diffusion behavior analysis. The techniques contain gas chromatography and volumetric collection of hydrogen gas. By measuring the hydrogen released from polymer samples with respect to the elapsed time after being decompressed from the high pressure total amount of adsorption and diffusivity (D) of hydrogen are evaluated with self-developed program of Fick's diffusion equation specified to a sample shape. The solubility (S) and permeability (P) of the polymers are determined through Henry's law and a relation of P=SD respectively. Developed techniques were applied to three kinds of spherical-shaped sealing rubbers NBR EPDM and FKM. The D S and P have been measured as function of pressure. The permeability obtained by both methods are discussed with Comsol simulation.
Hydrogen Embrittlement Susceptibility of R4 and R5 High-Strength Mooring Steels in Cold and Warm Seawater
Sep 2018
Publication
Hydrogen embrittlement susceptibility ratios calculated from slow strain rate tensile tests have been employed to study the response of three high-strength mooring steels in cold and warm synthetic seawater. The selected nominal testing temperatures have been 3 °C and 23 °C in order to resemble sea sites of offshore platform installation interest such as the North Sea and the Gulf of Mexico respectively. Three scenarios have been studied for each temperature: free corrosion cathodic protection and overprotection. An improvement on the hydrogen embrittlement tendency of the steels has been observed when working in cold conditions. This provides a new insight on the relevance of the seawater temperature as a characteristic to be taken into account for mooring line design in terms of hydrogen embrittlement assessment.
Effect of Cementite on the Hydrogen Diffusion/Trap Characteristics of 2.25Cr-1Mo-0.25V Steel with and without Annealing
May 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that affects the reliability of hydrogenation reactors. The hydrogen diffusivity/trap characteristics of 2.25Cr-1Mo-0.25V steel are important parameters mainly used to study the HE mechanism of steel alloys. In this work the hydrogen diffusivity/trap characteristics of heat-treated (annealed) and untreated 2.25Cr-1Mo-0.25V steel were studied using an electrochemical permeation method. The microstructures of both 2.25Cr-1Mo-0.25V steels were investigated by metallurgical microscopy. The effect of cementite on the hydrogen diffusivity/trap mechanisms was studied using thermodynamics-based and Lennard–Jones potential theories. The results revealed that the cementite located at the grain boundaries and at the interfaces of lath ferrite served as a kind of hydrogen trap (i.e. an irreversible hydrogen trap). In addition hydrogen was transported from ferrite to cementite via up-hill diffusion thereby supporting the hypothesis of cementite acting as a hydrogen trap.
Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test
Jun 2017
Publication
The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve) divided by the maximum load (Fm) of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp) which corresponded to the ductile-brittle transition temperature of the Charpy impact test. The results indicated that the ratio of Esp/Fm could better represent the energy of transition in SPT compared with Esp. The ductile-to-brittle transition temperature of the four different types of materials was measured using the hydrogen charging test by SPT. These four types of materials included the base metal and the weld metal in the as-received state and the base metal and the weld metal in the de-embrittled state. The results showed that there was a degree of temper embrittlement in the base metal and the weld metal after ten years of service at 390 °C. The specimens became slightly more brittle but this was not obvious after hydrogen charging. Because the toughness of the material of the hydrogenation reactor was very good the flat samples of SPT could not characterize the energy transition temperature within the liquid nitrogen temperature. Additionally there was no synergetic effect of temper embrittlement and hydrogen embrittlement found in 3Cr1Mo1/4V steel.
From Coal Ashes to Solid Sorbents for Hydrogen Storage
Jun 2020
Publication
The purpose of this work is the literature review in the field of hydrogen storage in solid sorbents. The best solid sorbents for hydrogen storage were selected with the possibility of synthesis them from coal fly ash. In addition the on-board hydrogen storage analysis was carried out. The review method consists of two parts. The first part based on research questions included types of the best sorbents for hydrogen storage the possibility to obtain them from coal fly ash and practical use in hydrogen storage system on-board. The second part was the selection of publications from The Web of Science and Elsevier Scopus databases and the analysis as well as available reports on the websites at this scope. After searching the relevant articles in the databases abstracts were analysed in terms of the questions asked. The links between references and research were checked. The search procedure was repeated several times. Finally articles with high Impact Factor index published by authors recognized on a global scale were selected for the presented review. The collected information proved that carbon materials are suited to hydrogen storage because of their high porosity large specific surface area and thermal stability. Besides solid sorbents such as zeolites metal-organic frameworks activated carbons or zeolite template carbons can be obtained from coal fly ash. Thanks to silicon aluminium and unburned carbon content fly ash is a good material for the synthesis of hydrogen sorbents. Under cryogenic conditions and high pressure it is possible to adsorb as much as 8.5 wt% of hydrogen. Although the Department of Energy (DOE) requirements for the hydrogen storage system on-board vehicles are not met the review of scientific publications shows that research in this area is developing and better parameters are being obtained.
Hydrogen-assisted Cracking Paths in Oriented Pearlitic Microstructures: Resembling Donatello Wooden Sculpture Texture (DWST) & Mantegna’s Dead Christ Perspective (MDCP)
Jun 2020
Publication
Progressive cold drawing in eutectoid steel produces a preferential orientation of pearlitic colonies and ferrite/cementite lamellae thus inducing strength anisotropy in the steel and mixed mode propagation. While in the hot rolled steel (not cold drawn) the pearlitic microstructure is randomly oriented and the crack progresses in hydrogen by breaking the ferrite/cementite lamellae in heavily drawn steels the pearlitic microstructure is fully oriented and the predominant mechanism of hydrogen assisted cracking is the delamination (or decohesion) at the ferrite/cementite interface.
Analysis of Environmentally Assisted Cracking Processes in Notched Steels Using the Point Method
Sep 2019
Publication
This paper proposes the use of the Point Method (PM) to analyse Environmentally Assisted Cracking (EAC) processes in steels containing U-shaped notches. The PM a methodology included within the Theory of Critical Distances (TCD) has been extensively validated by many authors for the analysis of fracture and fatigue phenomena of different types of materials containing notches. However it has never been applied to other critical or subcritical cracking processes such as EAC or creep crack propagation.<br/>This work provides a PM-based analysis of EAC emanating from notches which is validated by testing CT notched specimens of X80 and S420 steels subjected to aggressive environments under hydrogen embrittlement conditions.<br/>The results reveal that the PM accurately predicts the crack propagation onset condition as well as the evolution of the material’s apparent EAC resistance.
Hydrogen in the Gas Distribution Networks: A Kickstart Project as an Input into the Development of a National Hydrogen Strategy for Australia
Nov 2019
Publication
The report investigates a kickstart project that allows up to 10% hydrogen into gas distribution networks. It reviews the technical impacts and standards to identify barriers and develop recommendations.
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
You can see the full report on the Australian Government website here
This report is developed in support of Australia's National Hydrogen Strategy
Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept
Oct 2021
Publication
Germany’s energy transition known as ‘Energiewende’ was always very progressive. However it came technically to a halt at the question of large-scale seasonal energy storage for wind and solar which was not available. At the end of the 2000s we combined our knowledge of both electrical and process engineering imitated nature by copying photosynthesis and developed Power-to-Gas by combining water electrolysis with CO2 -methanation to convert water and CO2 together with wind and solar power to synthetic natural gas. Storing green energy by coupling the electricity with the gas sector using its vast TWh-scale storage facility was the solution for the biggest energy problem of our time. This was the first concept that created the term ‘sector coupling’ or ‘sectoral integration’. We first implemented demo sites presented our work in research industry and ministries and applied it in many macroeconomic studies. It was an initial idea that inspired others to rethink electricity as well as eFuels as an energy source and energy carrier. We developed the concept further to include Power-to-Liquid Power-to-Chemicals and other ways to ‘convert’ electricity into molecules and climate-neutral feedstocks and named it ‘Power-to-X’ at the beginning of the 2010s.
Assessment of Operability and Inspection, Maintenance and Repair Requirements for Transmission Pipelines and Installations in Hydrogen Service
Apr 2021
Publication
This report has been prepared for Hytechnical work programme to support the technical strategy for repurposing existing transmission pipelines and installations for the transportation and distribution of hydrogen and natural gas / hydrogen blends. The aim of the Hytechnical work programme is to support the implementation of the IGEM supplements to the standards TD/1 TD/13 TD/3 and TD/4.<br/>The report covers a desk study into the requirements for the inspection maintenance operation and repair of above 7 bar natural gas pipelines and installations designed and operated in accordance with the standards existing IGEM/TD/1 and IGEM/TD/13 which are repurposed for hydrogen service.
Production Costs for Synthetic Methane in 2030 and 2050 of an Optimized Power-to-Gas Plant with Intermediate Hydrogen Storage
Aug 2019
Publication
The publication gives an overview of the production costs of synthetic methane in a Power-to-Gas process. The production costs depend in particularly on the electricity price and the full load hours of the plant sub-systems electrolysis and methanation. The full-load hours of electrolysis are given by the electricity supply concept. In order to increase the full-load hours of methanation the size of the intermediate hydrogen storage tank and the size of the methanation are optimised on the basis of the availability of hydrogen. The calculation of the production costs for synthetic methane are done with economics for 2030 and 2050 and the expenditures are calculated for one year of operation. The sources of volume of purchased electricity are the short-term market long-term contracts direct-coupled renewable energy sources or seasonal use of surpluses. Gas sales are either traded on the short-term market or guaranteed by long-term contracts. The calculations show that an intermediate storage tank for hydrogen adjustment of the methanation size and operating electrolysis and methanation separately increase the workload of the sub-system methanation. The gas production costs can be significantly reduced. With the future expected development of capital expenditures operational expenditure electricity prices gas costs and efficiencies an economic production of synthetic natural gas for the years 2030 especially for 2050 is feasible. The results show that Power-to-Gas is an option for long-term large-scale seasonal storage of renewable energy. Especially the cases with high operating hours for the sub-system methanation and low electricity prices show gas production costs below the expected market prices for synthetic gas and biogas.
Optimal Design of Stand-alone Solutions Based on RES + Hydrogen Storage Feeding Off-grid Communities
Apr 2021
Publication
Concerning off-grid areas diesel engines still dominate the scene of local electricity generation despite the related pollution concerns and high operating costs. There is thus a huge global potential in remote areas for exploiting local renewable energy sources (RES) in place of fossil generation. Energy storage systems become hence essential for off-grid communities to cope with the issue of RES intermittency allowing them to rely on locally harvested RES. In this work we analysed different typologies of off-grid renewable power systems involving batteries and hydrogen as means to store energy to find out which is the most cost-effective configuration in remote areas. Both Li-ion and lead-acid batteries were included in the analysis and both alkaline and PEM electrolysis technologies were considered for the production of hydrogen. Starting from single cell electrochemical models the performance curves of the electrolyser and fuel cell devices were derived for a more detailed techno-economic assessment. Lifetimes of batteries and H2-based components were also computed based on how the power-to-power (P2P) system operates along the reference year. The particle swarm optimization (PSO) algorithm was employed to find the component sizes that allow minimizing the levelized cost of energy (LCOE) while keeping the off-grid area energy autonomous. As a case study the Ginostra village on the island of Stromboli (North of Sicily Southern Italy) was analysed since it is well representative of small insular locations in the Mediterranean area. The renewable P2P solution (0.51 €/kWh for the cheapest configuration) was found to be economically preferable than the current existing power system relying on diesel generators (0.86 €/kWh). Hydrogen in particular can prevent the oversizing of both battery and PV systems thus reducing the final cost of electricity delivered by the P2P system. Moreover unlike diesel generators the RES-based configuration allows avoiding the production of local air pollutants and GHG emissions during its operation.
Current Research Progress in Magnesium Borohydride for Hydrogen Storage (A review)
Nov 2021
Publication
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 wt% and 145–147 kg cm3 ). However the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 C–580 C) sluggish kinetics and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done mainly including: additives or catalysts doping nanoconfining Mg(BH4)2 in nanoporous hosts forming reactive hydrides systems multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride including: synthesis methods crystal structures decomposition behaviors as well as emphasized performance improvements for hydrogen storage.
First Solar Hydrogen Storage in a Private Building in Western Switzerland: Building energy Analysis and Schematic Design
Sep 2019
Publication
Self-sufficiency of buildings with carbon emission reduction can be obtained thanks to the introduction of Photovoltaics systems coupled with Hydrogen seasonal storage. To be self-sufficient over the year the electricity converted to hydrogen by electrolysis during the sunny season can be re-used with the help of fuel cells during the winter season. This article is dealing with the dimensioning methodology of a solar PV hydrogen-electrochemical system for self-sufficient buildings. We introduce the case study of the first private building in western Switzerland that will be equipped with solar hydrogen storage. Calculation results of the dimensioning of the PV system with storage will be presented. The life cycle assessment and the calculations of the environmental indicators GWP and CED will be introduced.
Conversion of the UK Gas System to Transport Hydrogen
May 2013
Publication
One option to decarbonise residential heat in the UK is to convert the existing natural gas networks to deliver hydrogen. We review the technical feasibility of this option using semistructured interviews underpinned by a literature review and we assess the potential economic benefits using the UK MARKAL energy systems model. We conclude that hydrogen can be transported safely in the low-pressure pipes but we identify concerns over the reduced capacity of the system and the much lower linepack storage compared to natural gas. New hydrogen meters and sensors would have to be fitted to every building in a hydrogen conversion program and appliances would have to be converted unless the government was to legislate to make them hydrogen-ready in advance. Converting the gas networks to hydrogen is a lower-cost residential decarbonisation pathway for the UK than those identified previously. The cost-optimal share of hydrogen is sensitive to the conversion cost and to variations in the capital costs of heat pumps and micro-CHP fuel cells. With such small cost differentials between technologies the decision to convert the networks will also depend on non-economic factors including the relative performance of technologies and the willingness of the government to organise a conversion program.
Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems
May 2018
Publication
From an environment perspective the increased penetration of wind and solar generation in power systems is remarkable. However as the intermittent renewable generation briskly grows electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.
Impact Assessment of Hydrogen on Transmission Pipeline BPDs in IGEM/TD/1
Jul 2021
Publication
As part of the LTS Futures HyTechnical project IGEM requested that DNV GL undertake an assessment of the possible impact of hydrogen transmission on BPDs to support the development of supplements to the existing suite of natural gas standards to accommodate the possible future use of hydrogen. The current state of knowledge of the behaviour of large scale high pressure hydrogen releases is limited in comparison with the considerable body of data from research and operational experience of natural gas but is adequate to undertake an impact assessment to take account of the different gas outflow and fire characteristics of 100% hydrogen vs. natural gas.<br/>Calculations of the BPDs for 100% hydrogen pipeline fires on an equivalent basis to those in IGEM/TD/1 for natural gas have been performed with a degree of confidence in the results and demonstrated that the equivalent BPDs for 100% hydrogen are approximately 10% smaller than for natural gas. The results are presented graphically in this report.<br/>However hydrogen introduces the potential for substantially higher overpressures than natural gas due to the higher flame speed and wider flammable limits if delayed ignition is a credible event. The overpressure estimates presented in this report are intended to be scoping calculations to put the likely overpressures into context. The results suggest that significant overpressures are possible at the BPDs but there is a lack of evidence to support the estimation of the overpressures following delayed ignition of a large turbulent hydrogen release in the open (in contrast to explosions in confined or congested regions) and there is a high degree of uncertainty in the predictions presented here. It is therefore recommended that large scale pipeline rupture experiments are performed similar to those undertaken previously for hydrogen natural gas and natural gas/hydrogen mixtures but with ignition engineered to take place after a short delay in order to measure the overpressures and provide the means to validate or refine the predictions made.<br/>The analysis has highlighted limitations in the original method of calculating BPDs in IGEM/TD/1 which reflects the techniques available at the time approximately 40 years ago. Since then understanding of the hazards from pipeline failures and the ability to model the consequences and predict the associated risks to people in the surrounding area have advanced very considerably facilitated by software tools and documented in standards such as IGEM/TD/2. These methods allow the highly transient nature of a high pressure gas pipeline rupture release to be modelled more accurately and for the thermal effects of fires on people and buildings to be calculated taking account of the time-varying thermal dose.<br/>For these reasons a simple comparison of the possible overpressure effects of delayed ignition of a 100% hydrogen release at the BPDs can be misleading and implies that the overpressure hazards could be more severe than those for fires which may not be the case. Example calculations have been performed for a representative pipeline case which indicate that using current methods the predicted thermal hazard distances for 100% hydrogen pipeline fires (house burning and escape for people) are substantially greater than those estimated for overpressures following delayed ignition for similar levels of vulnerability. This report addresses buried pipelines only – the potential for more severe explosion overpressure effects for hydrogen releases may be more significant for Above Ground Installations (AGIs) especially where congestion or confinement may be present. It is recommended that similar studies are conducted to quantify the effect of hydrogen conversion on the consequences and risks associated with hydrogen releases at AGIs.<br/>Finally it is stressed that the analysis in this report does not consider the relative risks for 100% hydrogen and the equivalent natural gas pipelines. There remain uncertainties in the failure frequencies for steel pipelines transporting hydrogen and particularly the probability of immediate and delayed ignition. The likelihood of delayed ignition of a large turbulent high pressure hydrogen gas pipeline rupture release may be very low due to the wider flammability limits and lower minimum ignition energy for hydrogen compared with natural gas. Additional research is currently ongoing or planned to address the gaps in knowledge for 100% hydrogen which should allow more robust comparisons of the relative risks to be made in the future.
Formation Criterion of Hydrogen-Induced Cracking in Steel Based on Fracture Mechanics
Nov 2018
Publication
A new criterion for hydrogen-induced cracking (HIC) that includes both the embrittlement effect and the loading effect of hydrogen was obtained theoretically. The surface cohesive energy and plastic deformation energy are reduced by hydrogen atoms at the interface; thus the fracture toughness is reduced according to fracture mechanics theory. Both the pressure effect and the embrittlement effect mitigate the critical condition required for crack instability extension. During the crack instability expansion the hydrogen in the material can be divided into two categories: hydrogen atoms surrounding the crack and hydrogen molecules in the crack cavity. The loading effect of hydrogen was verified by experiments and the characterization methods for the stress intensity factor under hydrogen pressure in a linear elastic model and an elastoplastic model were analyzed using the finite-element simulation method. The hydrogen pressure due to the aggregation of hydrogen molecules inside the crack cavity regularly contributed to the stress intensity factor. The embrittlement of hydrogen was verified by electrolytic charging hydrogen experiments. According to the change in the atomic distribution during crack propagation in a molecular dynamics simulation the transition from ductile to brittle fracture and the reduction in the fracture toughness were due to the formation of crack tip dislocation regions suppressed by hydrogen. The HIC formation mechanism is both the driving force of crack propagation due to the hydrogen gas pressure and the resisting force reduced by hydrogen atoms.
Carbon Capture, Usage and Storage: An Update on Business Models for Carbon Capture, Usage and Storage
Dec 2020
Publication
An update on the proposed commercial frameworks for transport and storage power and industrial carbon capture business models.
No more items...