Skip to content
1900

Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid

Abstract

The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless, the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However, stoichiometric methanation will lead to a significant presence of carbon dioxide, limited in gas networks, and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.

Countries: Italy ; Spain
Loading

Article metrics loading...

/content/journal2982
2022-01-10
2024-11-21
/content/journal2982
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error