Transmission, Distribution & Storage
A Panoramic Analysis of Hydrogen Utilization Systems Using an Input-output Table for Next Generation Energy Systems
Apr 2017
Publication
The objective of this study is to analyze a government proposal from a panoramic perspective concerning the economic and environmental effects associated with the construction and operation of hydrogen utilization systems by the year 2030. We focused on a marine transport system for hydrogen produced offshore hydrogen gas turbine power generation fuel cell vehicles (FCVs) and hydrogen stations as well as residential fuel cell systems ( Read More
Parametric Studies on LaNi4.7Al0.3 Based Hydrogen Storage Reactor with Embedded Cooling Tubes
Mar 2019
Publication
This study reports the investigative conclusions of parametric studies conducted to understand the effect of operating parameters on absorption and desorption characteristics of LaNi4.7Al0.3 metal hydride system for thermal management applications. Reactor with improved design containing 55 embedded cooling tubes is fabricated and filled with 4 kg of metal hydride alloy. Using water as heat transfer fluid (HTF) effects of supply pressure Read More
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatt Read More
Recent Studies of Hydrogen Embrittlement in Structural Materials
Dec 2018
Publication
Mechanical properties of metals and their alloys are most often determined by interstitial atoms. Hydrogen as one common interstitial element is often found to degrade the fracture behavior and lead to premature or catastrophic failure in a wide range of materials known as hydrogen embrittlement. This topic has been studied for more than a century yet the basic mechanisms of such degradation remain in dispute for many metallic systems. This work atte Read More
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for us Read More
Technologies and Infrastructures Underpinning Future CO2 Value Chains: A Comprehensive Review and Comparative Analysis
Feb 2018
Publication
In addition to carbon capture and storage efforts are also being focussed on using captured CO2 both directly as a working fluid and in chemical conversion processes as a key strategy for mitigating climate change and achieving resource efficiency. These processes require large amounts of energy which should come from sustainable and ideally renewable sources. A strong value chain is required to support the production of valuable products from CO2 . Read More
A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids
Apr 2022
Publication
Hydrogen technologies have been rapidly developing in the past few decades pushed by governments’ road maps for sustainability and supported by a widespread need to decarbonize the global energy sector. Recent scientific progress has led to better performances and higher efficiencies of hydrogen-related technologies so much so that their future economic viability is now rarely called into question. This article intends to study the integration Read More
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers wit Read More
Flexible Power and Hydrogen Production: Finding Synergy Between CCS and Variable Renewables
Dec 2019
Publication
The expansion of wind and solar power is creating a growing need for power system flexibility. Dispatchable power plants with CO2 capture and storage (CCS) offer flexibility with low CO2 emissions but these plants become uneconomical at the low running hours implied by renewables-based power systems. To address this challenge the novel gas switching reforming (GSR) plant was recently proposed. GSR can alternate between electricity and hydrogen Read More
The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-based Alloys Prepared by Suspended Droplet Alloying
Jun 2020
Publication
The influence of the addition of refractory metals (molybdenum and tantalum) on the hydrogenation properties of FeTi intermetallic phase-based alloys was investigated. The suspended droplet alloying technique was applied to fabricate FeTiTa-based and FeTiMo-based alloys. The phase composition and hydrogen storage properties of the samples were investigated. The samples modified with the refractory metals exhibited lower plateau pressures and lowe Read More
Investigation of Mechanical Tests for Hydrogen Embrittlement in Automotive PHS Steels
Aug 2019
Publication
The problem of hydrogen embrittlement in ultra-high-strength steels is well known. In this study slow strain rate four-point bending and permeation tests were performed with the aim of characterizing innovative materials with an ultimate tensile strength higher than 1000 MPa. Hydrogen uptake in the case of automotive components can take place in many phases of the manufacturing process: during hot stamping due to the presence of moisture in the Read More
Mechanical Properties of Gas Main Steels after Long-Term Operation and Peculiarities of Their Fracture Surface Morphology
Feb 2019
Publication
Regularities of steel structure degradation of the “Novopskov-Aksay-Mozdok” gas main pipelines (Nevinnomysskaya CS) as well as the “Gorky-Center” pipelines (Gavrilovskaya CS) were studied. The revealed peculiarities of their degradation after long-term operation are suggested to be treated as a particular case of the damage accumulation classification (scheme) proposed by prof. H.M. Nykyforchyn. It is shown that the fracture surface cons Read More
Hydrogen Diffusion Mechanism around a Crack Tip in Type 304L Austenite Stainless Steel Considering the Influence of the Volume Expansion of Strain-Induced Martensite Transformation
Sep 2019
Publication
Strain-induced martensite transformation (SIMT) commonly exists around a crack tip of metastable austenite stainless steels. The influence of the volume expansion of the SIMT on the hydrogen diffusion was investigated by hydrogen diffusion modelling around a crack tip in type 304L austenite stainless steel. The volume expansion changed the tensile stress state into pressure stress state at the crack tip resulting in a large stress gradient along the crac Read More
H21- Leeds City Gate Project Report
Jul 2016
Publication
The H21 Leeds City Gate project is a study with the aim of determining the feasibility from both a technical and economic viewpoint of converting the existing natural gas network in Leeds one of the largest UK cities to 100% hydrogen. The project has been designed to minimise disruption for existing customers and to deliver heat at the same cost as current natural gas to customers. The project has shown that:The gas network has the correct capacity for suc Read More
Analysis of the Hydrogen Induced Cracking by Means of the Small Punch Test: Effect of the Specimen Geometry and the Hydrogen Pre-Charge Mode
Nov 2018
Publication
This paper presents a simplified procedure to analyse the Hydrogen Induced Cracking (HIC) of structural steels by means of the Small Punch Test (SPT). Two types of notched specimens were used: one with through-thickness lateral notch and another with surface longitudinal notch. The results for conventional specimens were compared with those for hydrogen pre-charged specimens. For this purpose two different methods to introduce hydrogen in the s Read More
Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel
Dec 2018
Publication
The effects of hot stamping (HS) and tempering on the hydrogen embrittlement (HE) behavior of a low-carbon boron-alloyed steel were studied by using slow strain rate tensile (SSRT) tests on notched sheet specimens. It was found that an additional significant hydrogen desorption peak at round 65–80 °C appeared after hydrogen-charging the corresponding hydrogen concentration (CHr) of the HS specimen was higher than that of the directed quenched (DQ) Read More
Nonlinear Model Predictive Control of an Autonomous Power System Based on Hydrocarbon Reforming and High Temperature Fuel Cell
Mar 2021
Publication
The integration and control of energy systems for power generation consists of multiple heterogeneous subsystems such as chemical electrochemical and thermal and contains challenges that arise from the multi-way interactions due to complex dynamic responses among the involved subsystems. The main motivation of this work is to design the control system for an autonomous automated and sustainable system that meets a certain power demand Read More
Hydrogen Embrittlement Susceptibility of R4 and R5 High-Strength Mooring Steels in Cold and Warm Seawater
Sep 2018
Publication
Hydrogen embrittlement susceptibility ratios calculated from slow strain rate tensile tests have been employed to study the response of three high-strength mooring steels in cold and warm synthetic seawater. The selected nominal testing temperatures have been 3 °C and 23 °C in order to resemble sea sites of offshore platform installation interest such as the North Sea and the Gulf of Mexico respectively. Three scenarios have been studied for each temp Read More
Carbon Capture, Usage and Storage: An Update on Business Models for Carbon Capture, Usage and Storage
Dec 2020
Publication
An update on the proposed commercial frameworks for transport and storage power and industrial carbon capture business models.
Hydrogen Trapping Behavior in Vanadium Microalloyed TRIP-Assisted Annealed Martensitic Steel
Jun 2019
Publication
Transformation induced plasticity (TRIP)-assisted annealed martensitic (TAM) steel combines higher tensile strength and elogangtion and has been increasingly used but appears to bemore prone to hydrogen embrittlement (HE). In this paper the hydrogen trapping behavior and HE of TRIP-assisted annealed martensitic steels with different vanadium additions had been investigated by means of hydrogen charging and slow strain rate tensile t Read More
No more items...