Transmission, Distribution & Storage
Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses
Jul 2021
Publication
Compact-tension (CT) specimens made of low alloy 30CrMo steels were hydrogen-charged and then subjected to the fracture toughness test. The experimental results revealed that the higher crack propagation and the lower crack growth resistance (CTOD-R curve) are significantly noticeable with increasing hydrogen embrittlement (HE) indexes. Moreover the transition in the microstructural fracture mechanism from ductile (microvoid coalescence (MVC)) without hydrogen to a mixed quasi-cleavage (QC) fracture and QC + intergranular (IG) fracture with hydrogen was observed. The hydrogen-enhanced decohesion (HEDE) mechanism was characterized as the dominant HE mechanism. According to the experimental testing the coupled problem of stress field and hydrogen diffusion field with cohesive zone stress analysis was employed to simulate hydrogen-assisted brittle fracture behavior by using ABAQUS software. The trapezoidal traction-separation law (TSL) was adopted and the initial TSL parameters from the best fit to the load-displacement and J-integral experimental curves without hydrogen were calibrated for the critical separation of 0.0393 mm and the cohesive strength of 2100 MPa. The HEDE was implemented through hydrogen influence in the TSL and to estimate the initial hydrogen concentration based on matching numerical and experimental load-line displacement curves with hydrogen. The simulation results show that the general trend of the computational CTOD-R curves corresponding to initial hydrogen concentration is almost the same as that obtained from the experimental data but in full agreement the computational CTOD values being slightly higher. Comparative analysis of numerical and experimental results shows that the coupled model can provide design and prediction to calculate hydrogen-assisted fracture behavior prior to extensive laboratory testing provided that the material properties and properly calibrated TSL parameters are known.
The Role of the Testing Rate on Small Punch Tests for the Estimation of Fracture Toughness in Hydrogen Embrittlement
Dec 2020
Publication
In this paper different techniques to test notched Small Punch (SPT) samples in fracture conditions in aggressive environments are studied based on the comparison of the micromechanisms at different rates. Pre-embrittled samples subsequently tested in air at rates conventionally employed (0.01 and 0.002 mm/s) are compared to embrittled ones tested in environment at the same rates (0.01 and 0.002 mm/s) and at a very slow rate (5E-5 mm/s). A set of samples tested in environment under a set of constant loads that produce very slow rates completes the experimental results. As a conclusion it is recommended to test SPT notched specimens in environment at very slow rates of around E-6 mm/s when characterizing in Hydrogen Embrittlement (HE) scenarios in order to allow the interaction material-environment to govern the process.
Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage
Sep 2021
Publication
The present work addresses the modelling control and simulation of a microgrid integrated wind power system with Doubly Fed Induction Generator (DFIG) using a hybrid energy storage system. In order to improve the quality of the waveforms (voltages and currents) supplied to the grid instead of a two level-inverter the rotor of the DFIG is supplied using a three-level inverter. A new adaptive algorithm based on combined Direct Reactive Power Control (DRPC) and fuzzy logic controls techniques is applied to the proposed topology. In this work two topologies are proposed. In the first one the active power injected into the grid is smoothened by using an economical hybrid battery and supercapacitor energy storage system. However in the second one the excess wind energy is used to produce and store the hydrogen and then a solid oxide fuel cell system (SOFC) is utilized to regenerate electricity by using the stored hydrogen when there is not enough wind energy. To avoid overcharging deep discharging of batteries to mitigate fluctuations due to wind speed variations and to fulfil the requirement of the load profile a power management algorithm is implemented. This algorithm ensures smooth output power in the first topology and service continuity in the second. The modelling and simulation results are presented and analysed using Matlab/Simulin.
A Quantitative Assessment of the Hydrogen Storage Capacity of the UK Continental Shelf
Nov 2020
Publication
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using data previously used to assess CO2 storage potential. We calculate a P50 value of 6900 TWh of working gas capacity in gas fields and 2200 TWh in saline aquifers on the UK continental shelf assuming a cushion gas requirement of 50%. Sensitivity analysis reveals low temperature storage sites with sealing rocks that can withstand high pressures are ideal sites. Gas fields in the Southern North Sea could utilise existing infrastructure and large offshore wind developments to develop large-scale offshore hydrogen production.
Hydrogen/Manganese Hybrid Redox Flow Battery
Dec 2018
Publication
Electrochemical energy storage is a key enabling technology for further integration of renewables sources. Redox flow batteries(RFBs) are promising candidates for such applications as a result of their durability efficiency and fast response. However deployment of existing RFBs is hindered by the relatively high cost of the (typically vanadium-based) electrolyte. Manganese is an earth-abundant and inexpensive element that is widely used in disposable alkaline batteries. However it has hitherto been little explored for RFBs due to the instability of Mn(III) leading to precipitation of MnO2 via a disproportionation reaction. Here we show that by combining the facile hydrogen negative electrode reaction with electrolytes that suppress Mn(III) disproportionation it is possible to construct a hydrogen/manganese hybrid RFB with high round trip energy efficiency (82%) and high power and energy density (1410 mW cm−2 33 Wh l−1 ) at an estimated 70% cost reduction compared to vanadium redox flow batteries.
Storage System of Renewable Energy Generated Hydrogen for Chemical Industry
Nov 2012
Publication
Chemical industry is the base of the value chains and has strong influence on the competitiveness of almost all branches in economics. To develop the technologies for sustainability and climate protection and at the same time to guarantee the supply of raw material is a big challenge for chemical industry. In the project CO2RRECT (CO2 - Reaction using Regenerative Energies and Catalytic Technologies) funded by the German federal ministry of Education and Research carbon dioxide is used as the source of carbon for chemical products with certain chemical processes. Hydrogen that is needed in these processes is produced by electrolyzing water with renewable energy. To store a large amount of hydrogen different storage systems are studied in this project including liquid hydrogen tanks/cryo tanks high pressure tanks pipelines and salt cavities. These systems are analyzed and compared considering their storage capacity system costs advantages and disadvantages. To analyze capital and operational expenditure of the hydrogen storage systems a calculation methodology is also developed in this work.
Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen
Jul 2021
Publication
Liquid hydrogen is the main fuel of large-scale low-temperature heavy-duty rockets and has become the key direction of energy development in China in recent years. As an important application carrier in the large-scale storage and transportation of liquid hydrogen liquid hydrogen cryogenic storage and transportation containers are the key equipment related to the national defense security of China’s aerospace and energy fields. Due to the low temperature of liquid hydrogen (20 K) special requirements have been put forward for the selection of materials for storage and transportation containers including the adaptability of materials in a liquid hydrogen environment hydrogen embrittlement characteristics mechanical properties and thermophysical properties of liquid hydrogen temperature which can all affect the safe and reliable design of storage and transportation containers. Therefore it is of great practical significance to systematically master the types and properties of cryogenic materials for the development of liquid hydrogen storage and transportation containers. With the wide application of liquid hydrogen in different occasions the requirements for storage and transportation container materials are not the same. In this paper the types and applications of cryogenic materials commonly used in liquid hydrogen storage and transportation containers are reviewed. The effects of low-temperature on the mechanical properties of different materials are introduced. The research progress of cryogenic materials and low-temperature performance data of materials is introduced. The shortcomings in the research and application of cryogenic materials for liquid hydrogen storage and transportation containers are summarized to provide guidance for the future development of container materials. Among them stainless steel is the most widely used cryogenic material for liquid hydrogen storage and transportation vessel but different grades of stainless steel also have different applications which usually need to be comprehensively considered in combination with its low temperature performance corrosion resistance welding performance and other aspects. However with the increasing demand for space liquid hydrogen storage and transportation the research on high specific strength cryogenic materials such as aluminum alloy titanium alloy or composite materials is also developing. Aluminum alloy liquid hydrogen storage and transportation containers are widely used in the space field while composite materials have significant advantages in being lightweight. Hydrogen permeation is the key bottleneck of composite storage and transportation containers. At present there are still many technical problems that have not been solved.
Mg-based Materials for Hydrogen Storage
Aug 2021
Publication
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities. This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties. Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
Planning, Optimisation and Evaluation of Small Power-to-Gas-to-Power Systems: Case Study of a German Dairy
May 2022
Publication
In the course of the energy transition distributed hybrid energy systems such as the combination of photovoltaic (PV) and battery storages is increasingly being used for economic and ecological reasons. However renewable electricity generation is highly volatile and storage capacity is usually limited. Nowadays a new storage component is emerging: the power-to-gas-to-power (PtGtP) technology which is able to store electricity in the form of hydrogen even over longer periods of time. Although this technology is technically well understood and developed there are hardly any evaluations and feasibility studies of its widespread integration into current distributed energy systems under realistic legal and economic market conditions. In order to be able to give such an assessment we develop a methodology and model that optimises the sizing and operation of a PtGtP system as part of a hybrid energy system under current German market conditions. The evaluation is based on a multi-criteria approach optimising for both costs and CO2 emissions. For this purpose a brute-force-based optimal design approach is used to determine optimal system sizes combined with the energy system simulation tool oemof.solph. In order to gain further insights into this technology and its future prospects a sensitivity analysis is carried out. The methodology is used to examine the case study of a German dairy and shows that PtGtP is not yet profitable but promising.
Hydrogen Supply Chain Scenarios for the Decarbonisation of a German Multi-modal Energy System
Sep 2021
Publication
Analysing hydrogen supply chains is of utmost importance to adequately understand future energy systems with a high degree of sector coupling. Here a multi-modal energy system model is set up as linear programme incorporating electricity natural gas as well as hydrogen transportation options for Germany in 2050. Further different hydrogen import routes and optimised inland electrolysis are included. In a sensitivity analysis hydrogen demands are varied to cover uncertainties and to provide scenarios for future requirements of a hydrogen supply and transportation infrastructure. 80% of the overall hydrogen demand of 150 TWh/a emerge in Northern Germany due to optimised electrolyser locations and imports which subsequently need to be transported southwards. Therefore a central hydrogen pipeline connection from Schleswig-Holstein to the region of Darmstadt evolves already for moderate demands and appears to be a no-regret investment. Furthermore a natural gas pipeline reassignment potential of 46% is identified.
Neutron Scattering and Hydrogen Storage
Nov 2009
Publication
Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.
Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen
Mar 2020
Publication
A 100% renewable energy-based stand-alone microgrid system can be developed by robust energy storage systems to stabilize the variable and intermittent renewable energy resources. Hydrogen as an energy carrier and energy storage medium has gained enormous interest globally in recent years. Its use in stand-alone or off-grid microgrids for both the urban and rural communities has commenced recently in some locations. Therefore this research evaluates the techno-economic feasibility of renewable energy-based systems using hydrogen as energy storage for a stand-alone/off-grid microgrid. Three case scenarios in a microgrid environment were identified and investigated in order to select an optimum solution for a remote community by considering the energy balance and techno-economic optimization. The “HOMER Pro” energy modelling and simulating software was used to compare the energy balance economics and environmental impact amongst the proposed scenarios. The simulation results showed that the hydrogen-battery hybrid energy storage system is the most cost-effective scenario though all developed scenarios are technically possible and economically comparable in the long run while each has different merits and challenges. It has been shown that the proposed hybrid energy systems have significant potentialities in electrifying remote communities with low energy generation costs as well as a contribution to the reduction of their carbon footprint and to ameliorating the energy crisis to achieve a sustainable future.
Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings
Jun 2020
Publication
The search for new fuels to supersede fossil fuels has been intensified these recent decades. Among these fuels hydrogen has attracted much interest due to its advantages mainly cleanliness and availability. It can be produced from various raw materials (e.g. water biomass) using many resources mainly water electrolysis and natural gas reforming. However water electrolysis combined with renewable energy sources is the cleanest way to produce hydrogen while reducing greenhouse gases. Besides hydrogen can be used by fuel cells for producing both electrical and thermal energy. The aim of this work was towards efficient integration of this system into energy efficient buildings. The system is comprised of a photovoltaic system hydrogen electrolyzer and proton exchange membrane fuel cell operating as a cogeneration system to provide the building with both electricity and thermal energy. The system’s modeling simulations and experimentations were first conducted over a short-run period to assess the system’s performance. Reported results show the models’ accuracy in analyzing the system’s performance. We then used the developed models for long-run testing of the hybrid system. Accordingly the system’s electrical efficiency was almost 32%. Its overall efficiency reached 64.5% when taking into account both produced electricity and thermal energy.
Potential Role of Natural Gas Infrastructure in China to Supply Low-carbon Gases During 2020–2050
Oct 2021
Publication
As natural gas (NG) demand increases in China the question arises how the NG infrastructure fit into a low greenhouse gas (GHG) emissions future towards 2050. Herein the potential role of the NG infrastructure in supplying low-carbon gases during 2020–2050 for China at a provincial resolution was analyzed for different scenarios. In total four low-carbon gases were considered in this study: biomethane bio-synthetic methane hydrogen and low-carbon synthetic methane. The results show that the total potential of low-carbon gas production can increase from 1.21 EJ to 5.25 EJ during 2020–2050 which can replace 20%–67% of the imported gas. In particular Yunnan and Inner Mongolia contribute 17% of China’s low-carbon gas production. As the deployment of NG infrastructure can be very different three scenarios replacing imported pipeline NG were found to reduce the expansion of gas infrastructure by 35%–42% while the three scenarios replacing LNG imports were found to increase infrastructure expansion by 31%–53% as compared to the base case. The cumulative avoided GHG emissions for the 6 analyzed scenarios were 6.0–8.3 Gt CO2. The GHG avoidance costs were highly influenced by the NG price. This study shows that the NG infrastructure has the potential to supply low-carbon gases in China thereby significantly reducing GHG emissions and increasing both China’s short- and long-term gas supply independence.
Operation of Metal Hydride Hydrogen Storage Systems for Hydrogen Compression Using Solar Thermal Energy
Mar 2016
Publication
By using a newly constructed bench-scale hydrogen energy system with renewable energy ‘Pure Hydrogen Energy System’ the present study demonstrates the operations of a metal hydride (MH) tank for hydrogen compression as implemented through the use solar thermal energy. Solar thermal energy is used to generate hot water as a heat source of the MH tank. Thus 70 kg of LaNi5 one of the most typical alloys used for hydrogen storage was placed in the MH tank. We present low and high hydrogen flow rate operations. Then the operations under winter conditions are discussed along with numerical simulations conducted from the thermal point of view. Results show that a large amount of heat (>100 MJ) is generated and the MH hydrogen compression is available.
A Mini-review on Recent Trends in Prospective Use of Porous 1D Nanomaterials for Hydrogen Storage
Nov 2021
Publication
The sustainable development of hydrogen energy is a priority task for a possible solution to 26 the global energy crisis. Hydrogen is a clean and renewable energy source that today is used 27 exclusively in the form of compressed gas or in liquefied form which prevents its widespread 28 use. Storing hydrogen in solid-state systems will not only increase the bulk density and 29 gravimetric capacity but will also have a positive impact on safety issues. From this point of 30 view the current review considers the latest research in the field of application of 1D 31 nanomaterials for solid-state hydrogen storage and also discusses the mechanisms of its 32 adsorption and desorption. Despite the high publication activity the use of 1D nanomaterials for 33 hydrogen storage has not been fully studied. In the current review modern developments in the 34 field of hydrogen storage using 1D nanomaterials and composites based on them are investigated 35 in detail and their problems and future prospects are discussed.
Resilience-oriented Schedule of Microgrids with Hybrid Energy Storage System using Model Predictive Control
Nov 2021
Publication
Microgrids can be regarded as a promising solution by which to increase the resilience of power systems in an energy paradigm based on renewable generation. Their main advantage is their ability to work as islanded systems under power grid outage conditions. Microgrids are usually integrated into electrical markets whose schedules are carried out according to economic aspects while resilience criteria are ignored. This paper shows the development of a resilience-oriented optimization for microgrids with hybrid Energy Storage System (ESS) which is validated via numerical simulations. A hybrid ESS composed of hydrogen and batteries is therefore considered with the objective of improving the autonomy of the microgrid while achieving a rapid transition response. The control problem is formulated using Stochastic Model Predictive Control (SMPC) techniques in order to take into account possible transitions between grid-connected and islanded modes at all the sample instants of the schedule horizon (SH). The control problem is developed by considering a healthy operation of the hybrid ESS thus avoiding degradation issues. The plant is modeled using the Mixed Logic Dynamic (MLD) framework owing to the presence of logic and dynamic control variables.
Metal Hydroborates: From Hydrogen Stores to Solid Electrolyte
Nov 2021
Publication
The last twenty years of an intense research on metal hydroborates as solid hydrogen stores and solid electrolytes are reviewed. It is shown that from the most promising application in hydrogen storage due to their high gravimetric and volumetric capacities the focus has moved to solid electrolytes due to high cation mobility in disordered structures with rotating or tumbling anions-hydroborate clusters. Various strategies of overcoming the strong covalent bonding of hydrogen in hydroborates for hydrogen storage and disordering their structures at room temperature for solid electrolytes are discussed. The important role of crystal chemistry and crystallography knowledge in material design can be read in the cited literature.
Two-dimensional Vanadium Carbide for Simultaneously Tailoring the Hydrogen Sorption Thermodynamics and Kinetics of Magnesium Hydride
May 2021
Publication
Magnesium hydride (MgH2) is a potential material for solid-state hydrogen storage. However the thermodynamic and kinetic properties are far from practical application in the current stage. In this work two-dimensional vanadium carbide (V2C) MXene with layer thickness of 50−100 nm was fist synthesized by selectively HF-etching the Al layers from V2AlC MAX phase and then introduced into MgH2 to improve the hydrogen sorption performances of MgH2. The onset hydrogen desorption temperature of MgH2 with V2C addition is significantly reduced from 318 °C for pure MgH2 to 190 °C with a 128 °C reduction of the onset temperature. The MgH2+ 10 wt% V2C composite can release 6.4 wt% of H2 within 10 min at 300 °C and does not loss any capacity for up to 10 cycles. The activation energy for the hydrogen desorption reaction of MgH2 with V2C addition was calculated to be 112 kJ mol−1 H2 by Arrhenius's equation and 87.6 kJ mol−1 H2 by Kissinger's equation. The hydrogen desorption reaction enthalpy of MgH2 + 10 wt% V2C was estimated by van't Hoff equation to be 73.6 kJ mol−1 H2 which is slightly lower than that of the pure MgH2 (77.9 kJ mol−1 H2). Microstructure studies by XPS TEM and SEM showed that V2C acts as an efficient catalyst for the hydrogen desorption reaction of MgH2. The first-principles density functional theory (DFT) calculations demonstrated that the bond length of Mg−H can be reduced from 1.71 Å for pure MgH2 to 2.14 Å for MgH2 with V2C addition which contributes to the destabilization of MgH2. This work provides a method to significantly and simultaneously tailor the hydrogen sorption thermodynamics and kinetics of MgH2 by two-dimensional MXene materials.
Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure
Dec 2021
Publication
In the research the corrosion and mechanical properties as well as susceptibility to hydrogen embrittlement of two casing pipe steels were investigated in order to assess their serviceability in corrosive and hydrogenating environments under operation in oil and gas wells. Two carbon steels with different microstructures were tested: the medium carbon steel (MCS) with bainitic microstructure and the medium-high carbon steel (MHCS) with ferrite–pearlite microstructure. The results showed that the corrosion resistance of the MHCS in CO2-containing acid chloride solution simulating formation water was significantly lower than that of the MCS which was associated with microstructure features. The higher strength MCS with the dispersed microstructure was less susceptible to hydrogen embrittlement under preliminary electrolytic hydrogenation than the lower strength MHCS with the coarse-grained microstructure. To estimate the embrittlement of steels the method of the FEM load simulation of the specimens with cracks was used. The constitutive relations of the true stress–strain of the tested steels were defined. The stress and strain dependences in the crack tip were calculated. It was found that the MHCS was characterized by the lower plasticity on the stage of the neck formation of the specimen and the lower fracture toughness than the other one. The obtained results demonstrating the limitations of the usage of casing pipes made of the MHCS with the coarse-grained ferrite/pearlite microstructure in corrosive and hydrogenating environments were discussed.
No more items...