Safety
Attained Temperature During Gas Fuelling and Defueling Cycles of Compressed Hydrogen Tanks for FCV
Sep 2011
Publication
In this study we conducted hydrogen gas filling and discharging cycling tests to examine the thermal behaviour in hydrogen storage tanks under actual use conditions. As a result it was confirmed that the gas temperature in the tank varied depending on the initial test conditions such as the ambient temperature of the tank and the filling gas temperature and that the gas temperature tended to stabilize after several gas filling and discharging cycles.
Analysis of the Parametric-Acoustic Instability for Safety Assessment of Hydrogen-Air Mixtures in Closed Volumes
Sep 2011
Publication
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. Two approaches for the investigation of the problem have been considered. The simplified analytical model proposed by Bychkov was selected initially. Its range of applicability resulted to be very restricted and therefore numerical solutions of the problem were taken into account. The results obtained were used to study the existence of spontaneous transition from the acoustic to the parametric instability for different fuel concentrations. Finally the growth rate of the instabilities was numerically calculated for a set of typical mixtures for hydrogen safety.
Influence of Initial Pressure in Hydrogen/Air flame Acceleration During Severe Accident in Nuclear Power Plant
Sep 2017
Publication
Flame acceleration (FA) and explosion of hydrogen/air mixtures remain key issues for severe accident management in nuclear power plants. Empirical criteria were developed in the early 2000s by Dorofeev and colleagues providing effective tools to discern possible FA or DDT (Deflagration-to-Detonation Transition) scenarios. A large experimental database composed mainly of middle-scale experiments in obstacle-laden ducts at atmospheric pressure condition has been used to validate these criteria. However during a severe accident the high release rate of steam and non-condensable gases into the containment can result in pressure increase up to 5 bar abs. In the present work the influence of the unburnt gas initial pressure on flame propagation mechanisms was experimentally investigated. Premixed hydrogen/air mixtures with hydrogen concentration close to 11% and 15% were considered. From the literature we know that these flames are supposed to accelerate up to Chapman-Jouguet deflagration velocity in long obstacle-laden tubes at initial atmospheric conditions. Varying the pressure in the fresh gas in the range 0.6–4 bar no effects on the flame acceleration phase were observed. However as the initial pressure was increased we observed a decrease in the flame velocity close to the end of the tube. The pressure increase due to the combustion reaction was found to be proportional to the initial pressure according to adiabatic isochoric complete combustion.
Flame Acceleration and Transition from Deflagration to Detonation in Hydrogen Explosions
Sep 2011
Publication
Computational Fluid Dynamics solvers are developed for explosion modelling and hazards analysis in Hydrogen air mixtures. The work is presented in two parts. These include firstly a numerical approach to simulate flame acceleration and deflagration to detonation transition (DDT) in hydrogen–air mixture and the second part presents comparisons between two approaches to detonation modelling. The detonation models are coded and the predictions in identical scenarios are compared. The DDT model which is presented here solves fully compressible multidimensional transient reactive Navier–Stokes equations with a chemical reaction mechanism for different stages of flame propagation and acceleration from a laminar flame to a highly turbulent flame and subsequent transition from deflagration to detonation. The model has been used to simulate flame acceleration (FA) and DDT in a 2-D symmetric rectangular channel with 0.04 m height and 1 m length which is filled with obstacles. Comparison has been made between the predictions using a 21-step detailed chemistry as well as a single step reaction mechanism. The effect of initial temperature on the run-up distances to DDT has also been investigated. Comparative study has also been carried out for two detonation solvers. one detonation solver is developed based on the solution of the reactive Euler equations while the other solver has a simpler approach based on Chapman–Jouguet model and the programmed CJ burn method. Comparison has shown that the relatively simple CJ burn approach is unable to capture some very important features of detonation when there are obstacles present in the cloud.
Hydrogen-Air Explosive Envelope Behaviour in Confined Space at Different Leak Velocities
Sep 2009
Publication
The report summarizes experimental results on the mechanisms and kinetics of hydrogen-air flammable gas cloud formation and evolution due to foreseeable (less than 10-3 kg/sec) hydrogen leaks into confined spaces with different shapes sizes and boundary conditions. The goals were - 1) to obtain qualitative information on the basic gas-dynamic patterns of flammable cloud formation at different leak velocities (between 935 and 905 m/sec) for a fixed leak flowrate and 2) to collect quantitative data on spatial and temporal characteristics of the revealed patterns. Data acquisition was performed using a spatially distributed reconfigurable net of 24 hydrogen gauges with short response time. This experimental innovation permits to study spatial features of flammable cloud evolution in detail which previously was attainable only from CFD computations. Two qualitatively different gas dynamic patterns were documented for the same leak flowrate. In one limiting case (sufficiently low speed of leak) the overall gas-dynamic pattern can be described by the well-known “filling box” model. In another limited case (high velocity of leak) it is proposed to describe the peculiarities of gas-dynamic behavior of flammable cloud by the term of a “fading up box” model. From the safety view point the “fading up box” case is more hazardous than the “filling box” case. Differences in macroscopic and kinetic behavior which are essential for safety provision are presented. Empirical non-dimensional criterion for discrimination of the two revealed basic patterns for hydrogen leaks into confined spaces with comparable length scale is proposed. The importance of the revealed “fading up box” gas-dynamic pattern is discussed for development of an advanced hydrogen gauges system design and safety criteria.
Experimental Study of Ignited Unsteady Hydrogen Releases from a High Pressure Reservoir
Sep 2011
Publication
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3 4 and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Numerical Study on Spontaneous Ignition of Pressurized Hydrogen Release Through a Length of Tube
Sep 2009
Publication
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.<br/>The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.<br/>Parametric studies were also conducted to investigate the effect of rupture time release pressure tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value even though ignition could take place inside the tube the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched.
Spontaneous Ignition Processes Due To High-Pressure Hydrogen Release in Air
Sep 2011
Publication
Spontaneous ignition processes due to the high-pressure hydrogen releases into air were investigated both experimentally and theoretically. Such processes reproduce accident scenarios of sudden expansion of pressurized hydrogen into the ambient atmosphere in cases of tube or valve rupture. High-pressure hydrogen releases in the range of initial pressures from 20 to 275 bar and with nozzle diameters of 0.5 – 4 mm have been investigated. Glass tubes and high-speed CCD camera were used for experimental study of self-ignition process. The problem was theoretically considered in terms of contact discontinuity for the case when spontaneous ignition of pressurized hydrogen due to the contact with hot pressurized air occurs. The effects of boundary layer and material properties are discussed in order to explain the minimum initial pressure of 25 bar leading to the self-ignition of hydrogen with air.
Modelling of Hydrogen Jet Fires Using CFD
Sep 2011
Publication
The computational fluid dynamics (CFD) software FLACS has primarily been developed to model dispersion and explosion phenomena; however models for the simulation of jet fires are under development. The aim is to be able to predict industrial fires efficiently and with good precision. Newly developed models include e.g. flame models for non-premixed flames discrete transfer radiation model as well as soot models. Since the time scales for fire simulations are longer than for explosions the computational speed is important. The recent development of non-compressible and parallel solvers in FLACS may therefore be important to ensure efficiency. Hydrogen flames may be invisible will generate no soot and tend to radiate less than hydrocarbon fuels. Due to high pressure storage the flame lengths can be significant. Simpler jet flame relations can not predict the jet flame interaction with objects and barriers and thus the heat loads on impacted objects. The development of efficient and precise CFD-tools for hydrogen fires is therefore important. In this paper the new models for the simulation of fire are described. These models are currently under development and this manuscript describes the current status of the work. Jet fire experiments performed by Health and Safety Laboratories (HSL) both free jets and impinging jets will also be simulated to evaluate the applicability and validity of the new fire models.
Fundamental Study on Accidental Explosion Behavior of Hydrogen/Air Mixtures in Open Space
Sep 2011
Publication
In this study the flame propagation behavior and the intensity of blast wave by an accidental explosion of a hydrogen/air mixture in an open space have been measured simultaneously by using soap bubble method. The results show that the flame in lean hydrogen/air mixtures propagated with a wrinkled flame by spontaneous instability. The flame in rich hydrogen/air mixtures propagated smoothly in the early stage and was intensively wrinkled and accelerated in the later stage by different type of instability. The intensity of the blast wave of hydrogen/air mixtures is strongly affected by the acceleration of the flame propagation by these spontaneous flame disturbances.
Hydrogen Self-Ignition In Pressure Relief Devices
Sep 2009
Publication
In future pressure relief devices (PRDs) should be installed on hydrogen vehicles to prevent a hydrogen container burst in the event of a nearby fire. Weakening of the container at elevated temperature could result in such burst. In this case the role of a PRD is to release some or all of the system fluid in the event of an abnormally high pressure. The paper analyzes the possibility of hydrogen self-ignition at PRD operation and ways of its prevention.
A New Technology for Hydrogen Safety: Glass Structures as a Storage System
Sep 2011
Publication
The storage of hydrogen poses inherent weight volume and safety obstacles. An innovative technology which allows for the storage of hydrogen in thin sealed glass capillaries ensures the safe infusion storage and controlled release of hydrogen gas under pressures up to 100 MPa. Glass is a non-flammable material which also guarantees high burst pressures. The pressure resistance of single and multiple capillaries has been determined for different glass materials. Borosilicate capillaries have been proven to have the highest pressure resistance and have therefore been selected for further series of advanced testing. The innovative storage system is finally composed of a variable number of modules. As such in the case of the release of hydrogen this modular arrangement allows potential hazards to be reduced to a minimum. Further advantage of a modular system is the arrangement of single modules in every shape and volume dependent on the final application. Therefore the typical locations of storage systems e.g. the rear of cars can be modified or shifted to places of higher safety and not directly involved in crashes. The various methods of refilling and releasing capillaries with compressed hydrogen the increase of burst pressures through pre-treatment as well as the theoretical analysis and experimental results of the resistance of glass capillaries will further be discussed in detail.
Shock Initiated Ignition for Hydrogen Mixtures of Different Concentrations
Sep 2011
Publication
The scenario of ignition of fuels by the passage of shock waves is relevant from the perspective of safety primarily because shock ignition potentially plays an important role in deflagration to detonation transition. Even in one dimension simulation of ignition between a contact surface or a flame and a shock moving into combustible mixture is difficult because of the singular nature of the initial conditions. Indeed initially as the shock starts moving away from the contact surface the region filled with shocked reactive mixture does not exist. In the current work the formulation is transformed using time and length over time as the independent variables. This transformation yields a finite domain from t = 0. In this paper the complete spatial and temporal ignition evolution of hydrogen combustible mixtures of different concentrations is studied numerically. Integration of the governing equations is performed using an Essentially Non-Oscillatory (ENO) algorithm in space and Runge-Kutta in time while the chemistry is modeled by a three-step chain-branching mechanism which appropriately mimics hydrogen combustion.
Estimation of Final Hydrogen Temperature From Refueling Parameters
Oct 2015
Publication
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refuelling process. For safety reason the final gas temperature in the hydrogen tank during vehicle refuelling must be maintained under a certain limit e.g. 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank and it serves as function formula to fit experimental temperatures. From the analytical solution the final hydrogen temperature can be expressed as a weighted average form of initial temperature inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refuelling parameters such as initial mass initial pressure refuelling time refuelling mass rate average pressure ramp rate (APRR) final mass final pressure etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refuelling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.
Enhancing Safety of Hydrogen Containment Components Through Materials Testing Under In-service Conditions
Oct 2015
Publication
The capabilities in the Hydrogen Effects on Materials Laboratory (HEML) at Sandia National Laboratories and the related materials testing activities that support standards development and technology deployment are reviewed. The specialized systems in the HEML allow testing of structural materials under in-service conditions such as hydrogen gas pressures up to 138 MPa temperatures from ambient to 203 K and cyclic mechanical loading. Examples of materials testing under hydrogen gas exposure featured in the HEML include stainless steels for fuel cell vehicle balance of plant components and Cr-Mo steels for stationary seamless pressure vessels.
Experimental Study on High Pressure Hydrogen Jets Coming Out of Tubes of 0.1–4.2 m in Length
Sep 2011
Publication
Wide use of hydrogen faces significant studies to resolve hydrogen safety issues in industries worldwide. However widely acceptable safety level standards are not achieved in the present situation yet. The present paper deals with hydrogen leaks from a tube to ignite and explode in atmosphere. The experiments using a shock tube are performed to clarify the auto-ignition property of high pressure hydrogen jet spouting from a tube. In order to improve experimental repeatability and reliability the shock tube with a plunger system is applied where the PET diaphragm is ruptured by a needle in order to control a diaphragm burst pressure (hydrogen pressure). As a result it becomes possible to control the diaphragm burst pressure to obtain a local minimum value. The most important result obtained in the preset study is that the minimum diaphragm burst pressure for auto-ignition is found between 1.0 and 1.2 m of tube length using a longer tube than the one used in the previous study. This minimum tube size is not found elsewhere to suggest that the tube length has a limit size for auto-ignition. Furthermore auto-ignition and Mach disk at the tube exit are observed using a high speed camera which is set at the frame speed of 1x105 fps when the ignited hydrogen jet is spouted out the tube.
Low Energy Hydrogen Sensor
Sep 2011
Publication
A new silicon-based hydrogen sensor for measurements at high concentrations near the lower flammable limit of hydrogen (40000 ppm) is presented. Due to operation at room temperature the power consumption of the sensor is smaller than that of other sensors on the market by several orders magnitude. Further development of the sensor system could lead to battery powered or even energy-independent operation. As sensor fabrication is based on semiconductor technology low-cost production can be achieved for the mass market. The sensor investigated showed good long-term stability combined with a fast response on the basis of cyclic thermal activations. This was demonstrated by a stress test that simulated the activation and measurement cycles experienced by the sensor in one year. Finite element method was used to further reduce the power consumption of the thermal activation. This resulted in an average power consumption of 2 × 10−6 W for the sensor activation.
Self-Ignition of Hydrogen Jet Fires By Electrostatic Discharge Induced By Entrained Particulates
Sep 2011
Publication
The potential for particulates entrained in hydrogen releases to generate electrostatic charge and induce electrostatic discharge ignitions was investigated. A series of tests were performed in which hydrogen was released through a 3.75-mm-diameter orifice from an initial pressure of 140 bar. Electrostatic field sensors were used to characterize the electrification of known quantities of iron oxide particulates deliberately entrained in the release. The ignition experiments focused on using charged particulates to induce spark discharges from isolated conductors and corona discharges. A total of 12 ignition events were observed. The results show that electrification of entrained particulates is a viable self-ignition mechanism of hydrogen releases.
Study on the Harm Effect of Liquid Hydrogen Release by Consequence Modeling
Sep 2011
Publication
In this paper the accidental release of hydrogen from cryogenic liquid storage tank and the subsequent consequences are studied including hydrogen cold cloud fire ball jet fire flash fire and vapor cloud explosion. The cold effect thermal effects and explosion overpressures from the above consequences are evaluated using IGC and TNO harm criteria. Results show that for instantaneous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>flash fire>cold cloud> fireball. For continuous releases of liquid hydrogen the sequence of harm effect distances is that vapor cloud explosion>jet fire>flash fire>cold cloud. The vapor cloud explosion is the leading consequence of both instantaneous and continuous releases and may be used for the determination of safety distances of a liquid hydrogen tank. Besides the harm effect distances of liquid hydrogen tank are compared with those of compressed hydrogen storages with equivalent mass. Results show that the liquid hydrogen storage may be safer than 70MPa gaseous storage in case of leak scenario but may be more dangerous than 70MPa storage in case of catastrophic rupture. It is difficult to tell which storage is safer from a consequence perspective. Further investigation need to be made from a standpoint of risk which combined both consequences and the likelihood of scenarios.
Ignitability and Mixing of Underexpanded Hydrogen Jets
Sep 2011
Publication
Reliable methods are needed to predict ignition boundaries that result from compressed hydrogen bulk storage leaks without complex modelling. To support the development of these methods a new high-pressure stagnation chamber has been integrated into Sandia National Laboratories’ Turbulent Combustion Laboratory so that relevant compressed gas release scenarios can be replicated. For the present study a jet with a 10:1 pressure ratio issuing from a small 0.75 mm radius nozzle has been examined. Jet exit shock structure was imaged by Schlieren photography while quantitative Planar Laser Rayleigh Scatter imaging was used to measure instantaneous hydrogen mole fractions downstream of the Mach disk. Measured concentration statistics and ignitable boundary predictions compared favorably to analytic reconstructions of downstream jet dispersion behaviour. Model results were produced from subsonic jet dispersion models and by invoking self-similarity jet scaling arguments with length scaling by experimentally measured effective source radii. Similar far field reconstructions that relied on various notional nozzle models to account for complex jet exit shock phenomena failed to satisfactorily predict the experimental findings. These results indicate further notional nozzle refinement is needed to improve the prediction fidelity. Moreover further investigation is required to understand the effect of different pressure ratios on measured virtual origins used in the jet dispersion model.
Numerical Study on Fast Filling of 70 MPA Hydrogen Vehicle Cylinder
Sep 2011
Publication
There will be significant temperature rise within hydrogen vehicle cylinder during the fast filling process. The temperature rise should be controlled under the temperature limit (85 °C) of the structure material (set by ISO/TS 15869) because it may lead to the failure of the structure. In this paper a 2-dimensional axisymmetric computational fluid dynamics (CFD) model for fast filling of 70 MPa hydrogen vehicle cylinder is presented. The numerical simulations are based on the modified standard k − ɛ turbulence model. In addition both the equation of state for hydrogen gas and the thermodynamic properties are calculated by National Institute of Standards and Technology (NIST) database: REFPROP 7.0. The thermodynamic responses of fast filling with different pressure-rise patterns and filling times within type III cylinder have been analyzed in detail.
Fire Risk on High-pressure Full Composite Cylinders for Automotive Applications
Sep 2011
Publication
In the event of a fire the TPRD (Thermally activated Pressure Relief Device) prevents the high-pressure full composite cylinder from bursting by detecting high temperatures and releasing the pressurized gas. The current safety performance of both the vessel and the TPRD is demonstrated by an engulfing bonfire test. However there is no requirement concerning the effect of the TPRD release which may produce a hazardous hydrogen flame due to the high flow-rate of the TPRD. It is necessary to understand better the behavior of an unprotected composite cylinder exposed to fire in order to design appropriate protection for it and to be able to reduce the length of any potential hydrogen flame. For that purpose a test campaign was performed on a 36 L cylinder with a design pressure of 70 MPa. The time from fire exposure to the bursting of this cylinder (the burst delay) was measured. The influence of the fire type (partial or global) and the influence of the pressure in the cylinder during the exposure were studied. It was found that the TPRD orifice diameter should be significantly reduced compared to current practice.
Pressure Cycling Of Type 1 Pressure Vessels with Gaseous Hydrogen
Sep 2011
Publication
Type 1 steel pressure vessels are commonly used for the transport of pressurized gases including gaseous hydrogen. In the majority of cases these cylinders experience relatively few pressure cycles over their lifetime perhaps in the hundreds. In emerging markets such as hydrogen-powered industrial trucks hydrogen fuel systems are expected to experience thousands of cycles over just a few year period. This study investigates the fatigue life of Type 1 steel pressure vessels by subjecting full- scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3.5 and 43.8 MPa. In addition engineered defects were machined on the inside of several pressure vessels for comparison to fatigue crack growth measurements on materials sectioned from these pressure vessels. As-manufactured pressure vessels have sustained >35000 cycles with failure while vessels with machined defects leaked before bursting after 8000 to 15000 pressure cycles. The measured number of cycles to failure in these pressure vessels is two to three times greater than predicted using conservative methods based on fatigue crack growth rates measured in gaseous hydrogen.
The Analysis of Fire Test for the High Pressure Composite Cylinder
Sep 2011
Publication
A large number of natural gas vehicles (NGV) with composite cylinders run in the world. In order to store hydrogen using the composite cylinder has also reached commercialization for the hydrogen fuel cell vehicle (FCV) which is been developing on ECO Energy. Under these increasing circumstances the most important issue is that makes sure of safety of the hydrogen composite cylinder. In case of the composite cylinder a standards to verify the safety of cylinders obey several country's standards. For NGV ISO 11439 has adopted as international standards but for FCV it has been still developing and there is only ISO/TS 15869 as international technical standards. In contents of international standards the fire test is the weakest part. The fire test is that the pressure relief valves (PRD) normally operate or not in order to prevent cylinders bursting when a vehicle is covered by fire. However with present standards there is no method to check the problem from vehicles in local flame. This study includes fire test results that have been performed to establish the fire-test standards.
Influence of Pressure and Temperature on the Fatigue Strength of Type-3 Compressed-hydrogen Tanks
Sep 2011
Publication
The pressure of compressed hydrogen changes with temperature when mass and volume are constant. Therefore when a compressed-hydrogen tank is filled with a certain amount of hydrogen it is necessary to adjust the filling pressure according to the gas temperature. In this study we conducted hydraulic pressure-cycle tests to investigate the fatigue life of Type-3 compressed-hydrogen tanks when environmental temperature and filling pressure are changed. The results indicated that the fatigue life at low temperatures (−40 °C 28 MPa) and room temperature (15 °C 35 MPa) was almost equal. However the fatigue life at high temperatures (85 °C 44 MPa) was shorter than that under other conditions suggesting that stress changes caused by thermal stress affect the fatigue life of the Type-3 tank.
Pressure Limit of Hydrogen Spontaneous Ignition in a T-shaped Channel
Sep 2011
Publication
This paper describes a large eddy simulation model of hydrogen spontaneous ignition in a T-shaped channel filled with air following an inertial flat burst disk rupture. This is the first time when 3D simulations of the phenomenon are performed and reproduced experimental results by Golub et al. (2010). The eddy dissipation concept with a full hydrogen oxidation in air scheme is applied as a sub-grid scale combustion model to enable use of a comparatively coarse grid to undertake 3D simulations. The renormalization group theory is used for sub-grid scale turbulence modelling. Simulation results are compared against test data on hydrogen release into a T-shaped channel at pressure 1.2–2.9 MPa and helped to explain experimental observations. Transitional phenomena of hydrogen ignition and self-extinction at the lower pressure limit are simulated for a range of storage pressure. It is shown that there is no ignition at storage pressure of 1.35 MPa. Sudden release at pressure 1.65 MPa and 2.43 MPa has a localised spot ignition of a hydrogen-air mixture that quickly self-extinguishes. There is an ignition and development of combustion in a flammable mixture cocoon outside the T-shaped channel only at the highest simulated pressure of 2.9 MPa. Both simulated phenomena i.e. the initiation of chemical reactions followed by the extinction and the progressive development of combustion in the T-shape channel and outside have provided an insight into interpretation of the experimental data. The model can be used as a tool for hydrogen safety engineering in particular for development of innovative pressure relief devices with controlled ignition.
The Crucial Role of the Lewis Number in Jet Ignition
Sep 2011
Publication
During the early phase of the transient process following a hydrogen leak into the atmosphere a contact surface appears separating hot air from cold hydrogen. Locally the interface is approximately planar. Diffusion occurs potentially leading to ignition. This process was analyzed by Lin˜a´n and Crespo (1976) for Lewis number unity and Lin˜a´n and Williams (1993) for Lewis number less than unity. In addition to conduction these processes are affected by expansion due to the flow which leads to a temperature drop. If chemistry is very temperature-sensitive then the reaction rate peaks close to the hot region where relatively little fuel is present. Indeed the Arrhenius rate drops rapidly as temperature drops much more so than fuel concentration. However the small fuel concentration present close to the airrich side depends crucially upon the balance between fuel diffusion and heat diffusion hence the fuel Lewis number. For Lewis number unity the fuel concentration present due to diffusion is comparable to the rate of consumption due to chemistry. If the Lewis number is less than unity fuel concentration brought in by diffusion is large compared with temperature-controlled chemistry. For a Lewis number greater than unity diffusion is not strong enough to bring in as much fuel as chemistry would be able to burn and combustion is controlled by fuel diffusion. In the former case combustion occurs faster leading to a localized ignition at a finite time determined by the analysis. As long as the temperature drop due to the expansion associated with the multidimensional nature of the jet does not lower significantly the reaction rate up to that point ignition in the jet takes place. For fuel Lewis number greater than unity first the reaction rate is much lower. Second chemistry does not lead to a defined ignition. Eventually expansion will affect the process and ignition does not take place. In summary it appears that the reason why hydrogen is the only fuel for which jet ignition has been observed is a Lewis number effect coupled with a high speed of sound hence a high initial temperature discontinuity.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Numerical Analysis of the Effects of Ship Motion on Hydrogen Release and Dispersion in an Enclosed Area
Jan 2022
Publication
Hydrogen is an alternative to conventional heavy marine fuel oil following the initial strategy of the International Maritime Organization (IMO) for reducing greenhouse gas emissions. Although hydrogen energy has many advantages (zero-emission high efficiency and low noise) it has considerable fire and explosion risks due to its thermal and chemical characteristics (wide flammable concentration range and low ignition energy). Thus safety is a key concern related to the use of hydrogen. Whereas most previous studies focused on the terrestrial environment we aim to analyze the effects of the ship’s motion on hydrogen dispersion (using commercial FLUENT code) in an enclosed area. When compared to the steady state our results revealed that hydrogen reached specific sensors in 63% and 52% less time depending on vessel motion type and direction. Since ships carry and use a large amount of hydrogen as a power source the risk of hydrogen leakage from collision or damage necessitates studying the correspondence between leakage diffusion and motion characteristics of the ship to position the sensor correctly.
Pressure Effects of an Ignited Release from Onboard Storage in a Garage with a Single Vent
Sep 2017
Publication
This work is driven by the need to understand the hazards resulting from the rapid ignited release of hydrogen from onboard storage tanks through a thermally activated pressure relief device (TPRD) inside a garage-like enclosure with low natural ventilation i.e. the consequences of a jet fire which has been immediately ignited. The resultant overpressure is of particular interest. Previous work [1] focused on an unignited release in a garage with minimum ventilation. This initial work demonstrated that high flow rates of unignited hydrogen through a thermally activated pressure relief device (TPRD) in ventilated enclosures with low air change per hour can generate overpressures above the limit of 10- 15 kPa which a typical civil structure like a garage could withstand. This is due to the pressure peaking phenomenon. Both numerical and phenomenological models were developed for an unignited release and this has been recently validated experimentally [2]. However it could be expected that the majority of unexpected releases through a TPRD may be ignited; leading to even greater overpressures and to date whilst there has been some work on fires in enclosures the pressure peaking phenomenon for an ignited release has yet to be studied or compared with that for an equivalent unignited release. A numerical model for ignited releases in enclosures has been developed and computational fluid dynamics has then been used to examine the pressure dynamics of an ignited hydrogen release in a real scale garage. The scenario considered involves a high mass flow rate release from an onboard hydrogen storage tank at 700 bar through a 3.34 mm diameter orifice representing the TPRD in a small garage with a single vent equivalent in area to small window. It is shown that whilst this vent size garage volume and TPRD configuration may be considered “safe” from overpressures in the event of an unignited release the overpressure resulting from an ignited release is two orders of magnitude greater and would destroy the structure. Whilst further investigation is needed the results clearly indicate the presence of a highly dangerous situation which should be accounted for in regulations codes and standards. The hazard relates to the volume of hydrogen released in a given timeframe thus the application of this work extends beyond TPRDs and is relevant where there is a rapid ignited release of hydrogen in an enclosure with limited ventilation.
Numerical Prediction of Forced-ignition Limit in High-pressurized Hydrogen Jet Flow Through a Pinhole
Sep 2017
Publication
The numerical simulations on the high-pressure hydrogen jet are performed by using the unsteady three-dimensional compressible Navier-Stokes equations with multi-species conservation equations. The present numerical results show that the highly expanded hydrogen free jet observes and the distance between the Mach disc and the nozzle exit agrees well with the empirical equation. The time-averaged H2 concentration of the numerical simulations agrees well with the experimental data and the empirical equation. The numerical simulation of ignition in a hydrogen jet is performed to show the flame behaviour from the calculated OH iso surface. We predicted the ignition and no-ignition region from the present numerical results about the forced ignition in the high-pressurized hydrogen jet.
Large Eddy Simulations of Asymmetric Turbulent Hydrogen Jets Issuing from Realistic Pipe Geometries
Sep 2017
Publication
In the current study a Large Eddy Simulation strategy is applied to model the dispersion of compressible turbulent hydrogen jets issuing from realistic pipe geometries. The work is novel as it explores the effect of jet densities and Reynolds numbers on vertical buoyant jets as they emerge from the outer wall of a pipe through a round orifice perpendicular to the mean flow within the pipe. An efficient Godunov solver is used and coupled with Adaptive Mesh Refinement to provide high resolution solutions only in areas of interest. The numerical results are validated against physical experiments of air and helium which allows a degree of confidence in analysing the data obtained for hydrogen releases. The results show that the jets investigated are always asymmetric. Thus significant discrepancies exist when applying conventional round jet assumptions to determine statistical properties associated with gas leaks from pipelines.
A Dual Zone Thermodynamic Model for Refueling Hydrogen Vehicles
Sep 2017
Publication
With the simple structure and quick refuelling process the compressed hydrogen storage system is currently widely used. However thermal effects during charging-discharging cycle may induce temperature change in storage tank which has significant impact on the performance of hydrogen storage and the safety of hydrogen storage tank. To address this issue we once propose a single zone lumped parameter model to obtain the analytical solution of hydrogen temperature and use the analytical solution to estimate the hydrogen temperature but the effect of the tank wall is ignored. For better description of the heat transfer characteristics of the tank wall a dual zone (hydrogen gas and tank wall) lumped parameter model will be considered for widely representation of the reference (experimental or simulated) data. Now we extend the single zone model to the dual zone model which uses two different temperatures for gas zone and wall zone. The dual zone model contains two coupled differential equations. To solve them and obtain the solution we use the method of decoupling the coupled differential equations and coupling the solutions of the decoupled differential equations. The steps of the method include: (1) Decoupling of coupled differential equations; (2) Solving decoupled differential equations; (3) Coupling of solutions of differential equations; (4) Solving coupled algebraic equations. Herein three cases are taken into consideration: constant inflow/outflow temperature variable inflow/outflow temperature and constant inflow temperature and variable outflow temperature. The corresponding approximate analytical solutions of hydrogen temperature and wall temperature can be obtained. The hydrogen pressure can be calculated from the hydrogen temperature and the hydrogen mass using the equation of state for ideal gas. Besides the two coupled differential equations can also be solved numerically and the simulated solution can also be obtained. This study will help to set up a formula based approach of refuelling protocol for gaseous hydrogen vehicles.
Experiments on the Combustion Behaviour of Hydrogen-Carbon Monoxide-Air Mixtures
Sep 2019
Publication
As a part of a German nuclear safety project on the combustion behaviour of hydrogen-carbon monoxide-air mixtures small scale experiments were performed to determine the lower flammability limit and the laminar burning velocity of such mixtures. The experiments were performed in a spherical explosion bomb with a free volume of 8.2 litre. The experimental set-up is equipped with a central spark ignition and quartz glass windows for optical access. Further instrumentation included pressure and temperature sensors as well as high-speed shadow-videography. A wide concentration range for both fuel gases was investigated in numerous experiments from the lower flammability limits up to the stoichiometric composition of hydrogen carbon monoxide and air (H2-CO-air) mixtures. The laminar burning velocities were determined from the initial pressure increase after the ignition and by using high-speed videos taken during the experiments.
Delayed Explosion of Hydrogen High Pressure Jets: An Inter Comparison Benchmark Study
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario for safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. As a consequence the assessment of the associated consequences requires accurate and validated prediction based on modelling and experimental approaches. In the frame of the French working group dedicated to the evaluation of computational fluid dynamics (CFD) codes for the modelling of explosion phenomena this study is dedicated to delayed explosions of high pressure releases. Two participants using two different codes have evaluated the capacity of CFD codes to reproduce explosions of high pressure hydrogen releases. In the first step the jet dispersion is modelled and simulation results are compared with experimental data in terms of axial and radial concentration dilution velocity decay and turbulent characteristics of jets. In the second step a delayed explosion is modelled and compared to experimental data in terms of overpressure at different monitor points. Based on this investigation several recommendations for CFD modelling of high pressure jets explosions are suggested.
Very Low-cost Visual and Wireless Sensors for Effective Hydrogen Gas Leak Detection
Sep 2013
Publication
Element One Inc. Boulder CO is developing novel hydrogen gas leak indicators to improve the safety and maintenance operations of hydrogen production and chemical processing facilities and hydrogen fueling stations. These technologies can be used to make visual gas leak indicators such as paints decals and conformal plastic films as well as RF sensors for wireless networks. The primary advantage of the Element One hydrogen gas indicators is their low cost and easy deployment which allows them to be used ubiquitously at each and every potential hydrogen leak site. They have the potential to convert safety problems into routine maintenance problems thereby improving overall safety and decreasing operational costs.
Monte-Carlo-analysis of Minimum Load Cycle Requirements for Composite Cylinders for Hydrogen
Sep 2017
Publication
Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3 UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition the probability of acceptance for potentially unsafe design types is determined.
Analysis of Out-of-spec Events During Refueling of On-board Hydrogen Tanks
Sep 2017
Publication
For refuelling on-board hydrogen tanks table-based or formula based protocols are commonly used. These protocols are designed to achieve a tank filling close to 100% SOC (State of Charge) in s safe way: without surpassing temperature (-40°C to 85°C) and pressure limits (125% Nominal Working Pressure NWP). The ambient temperature the initial pressure and the volume category of the (compressed hydrogen storage system CHSS are used as inputs to determine the final target pressure and the pressure ramp rate (which controls the filling duration). However abnormal out-of-spec events (e.g. misinformation of storage system status and characteristics of the storage tanks) may occur and result in a refuelling in which the safety boundaries are surpassed. In the present article the possible out of specification (out-of-spec) events in a refuelling station have been analyzed. The associated hazards when refuelling on-board hydrogen tanks have been studied. Experimental results of out-of-spec event tests performed on a type 3 tank are presented. The results show that on the type 3 tank the safety temperature limit of 85°C was only surpassed under a combination of events; e.g. an unnoticed stop of the cooling of the gas combined with a wrong input of ambient temperature at a very warm environment. On the other hand under certain events (e.g. cooling the gas below the target temperature) and in particular under cold environmental conditions the 100% SOC limit established in the fuelling protocols has been surpassed. Hydrogen safety on-board tanks refuelling protocols out-of-spec events.
Influence of hydraulic sequential tests on the burst strength of Type-4 compressed hydrogen containers
Sep 2019
Publication
One of the topics for the revision deliberation of GTR13 on hydrogen and fuel cell vehicles is the study of an appropriate initial burst pressure of the containers. The purpose of this study is to investigate the influence of the hydraulic sequential tests on the residual burst pressure in order to examine the appropriate initial burst pressure correlated with the provisions for the residual burst pressure at the Endof-Life (EOL). Specifically we evaluated any deterioration and variations of burst pressure due to hydraulic sequential tests on 70MPa compressed-hydrogen containers. When the burst pressure after the hydraulic sequential testing (EOL) was compared with the initial burst pressure at the beginning of life (BOL) the pressure proved to have decreased by a few percent while the variation increased. In the burst test it was observed that the rupture originated in the cylindrical part in all the BOL containers while in some of the EOL containers the rupture originated in the dome part. Since the dome part is a section that suffers an impact of vertical drop test it is conceivable that some sort of damage occurred in the CFRP. Therefore it was assumed that this damage was the main causal factor for the decrease in the burst pressure and the increase of the burst pressure variation at the dome part.
Hazards of Liquid Hydrogen: Position paper
Jan 2010
Publication
In the long term the key to the development of a hydrogen economy is a full infrastructure to support it which include means for the delivery and storage of hydrogen at the point of use eg at hydrogen refuelling stations for vehicles. As an interim measure to allow the development of refuelling stations and rapid implementation of hydrogen distribution to them liquid hydrogen is considered the most efficient and cost effective means for transport and storage.
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
Study of Fire Risk and Accidents Emergency Disposal Technology System of Hydrogen Fuel Vehicles
Sep 2017
Publication
As the energy crisis and environment pollution growing severely the hydrogen fuel motor vehicle has got more and more attention many automobile companies and research institutions invest significant R&D resources to research and develop the hydrogen fuel vehicles. With the development of the hydrogen fuel cell vehicles and hydrogen fuel motor vehicles the hydrogen had more to more extensive application. According to the categories of the hydrogen fuel vehicles the characteristics of hydrogen fuel vehicle fire risk and accidents are analyzed in this paper. As for hydrogen fuel cell vehicles the function of its key components such as the fuel cell the high-pressure storage tank is presented firstly. Then based on the low density fast diffusion and flammable of hydrogen the probable scenarios of accident such as fuel leak jet flame are analyzed and the fire risk of the key components and the whole vehicle is evaluated. Finally the development trend of the emergency warning system of hydrogen fuel cell vehicles is analyzed and some recommendations are proposed referring to the detection pre-warning and control technologies used in the industrial sites. Aiming at the hydrogen car structure characteristics and the fire accident modes and accidents evolution rules the emergency disposal technology system for hydrogen fuel motor vehicles is put forward.
Model of 3D Conjugate Heat Transfer and Mechanism of Compressed Gas Storage Failure in a Fire
Sep 2017
Publication
The 3D model of conjugate heat transfer from a fire to compressed gas storage cylinder is described. The model predictions of temperature outside and inside the cylinder as well as pressure increase during a fire are compared against a fire test experiment. The simulation reproduced measured in test temperatures and pressures. The original failure criterion of the cylinder in a fire has been applied in the model. This allowed for the prediction of the cylinder catastrophic rupture time with acceptable engineering accuracy. The significance of 3D modelling is demonstrated and recommendations to improve safety of high-pressure composite tanks are given.
LES Simulation of Buoyancy Jet From Unintended Hydrogen Release with GASFLOW-MPI
Sep 2017
Publication
Hydrogen leakage is a key safety issue for hydrogen energy application. For hydrogen leakage hydrogen releases with low momentum hence the development of the leakage jet is dominated by both initial momentum and buoyancy. It is important for a computational code to capture the flow characteristics transiting from momentum-dominated jet to buoyancy dominated plume during leakage. GASFLOW-MPI is a parallel computational fluid dynamics (CFD) code which is well validated and widely used for hydrogen safety analysis. In this paper its capability for small scale hydrogen leakage is validated with unintended hydrogen release experiment. In the experiment pure hydrogen is released into surrounding stagnant air through a jet tube on a honeycomb plate with various Froude numbers (Fr). The flow can be fully momentum-dominated at the beginning while the influence of buoyancy increases with the Fr decreases along the streamline. Several quantities of interest including velocity along the centerline radial profiles of the time-averaged H2 mass fraction are obtained to compare with experimental data. The good agreement between the numerical results and the experimental data indicates that GASFLOW-MPI can successfully simulate hydrogen turbulent dispersion driven by both momentum and buoyant force. Different turbulent models i.e. k-ε LES and DES model are analyzed for code performance the result shows that all these three models are adequate for hydrogen leakage simulation k-ε simulation is sufficient for industrial applications while LES model can be adopted for detail analysis for a jet/plume study like entrainment. The DES model possesses both characters of the former two model only the performance of its result depends on the grid refinement.
Vented Explosion of Hydrogen/Air Mixture: An Inter Comparison Benchmark Exercise
Sep 2017
Publication
Explosion venting is a widely used mitigation solution in the process industry to protect indoor equipment or buildings from excessive internal pressure caused by accidental explosions. However vented explosions are very complicated to model using computational fluid dynamics (CFD). In the framework of a French working group the main target of this investigation is to assess the predictive capabilities of five CFD codes used by five different organizations by means of comparison with recent experimental data. On this basis several recommendations for the CFD modelling of vented explosions are suggested.
Residual Performance of Composite Pressure Vessels Submitted to Mechanical Impacts
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. During their lifetime they can be submitted to mechanical impacts creating damage within the composite structure not necessarily correlated to what is visible from the outside. When an impact is suspected or when a cylinder is periodically inspected it is necessary to determine whether it can safely stay in service or not. The FCH JU project Hypactor aims at creating a large database of impacts characterized by various non destructive testing (NDT) methods in order to provide reliable pass-fail criteria for damaged cylinders. This paper presents some of the tests results investigating short term burst) and long term (cycling) performance of impacted cylinders and the recommendations that can be made for impact testing and NDT criteria calibration.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Some Issues Concerning the CFD Modelling of Confined Hydrogen Releases
Sep 2017
Publication
In SUSANA E.U. project a rather broad CFD benchmarking exercise was performed encompassing a number of CFD codes a diversity of turbulence models... It is concluded that the global agreement is good. But in this particular situation the experimental data to compare with were known to the modelers. In performing this exercise the present authors explored the influence of some modelling choices which may have a significant impact on the results (apart from the traditional convergence testing and mass conservation) especially in the situation where little relevant data are available. The configuration investigated is geometrically simple: a vertical round hydrogen jet in a square box. Nevertheless modelling aspects like the representation of the source and of the boundary conditions have a rather strong influence on the final results as illustrated in this communication. In other words the difficulties may not be so much in the intrinsic capabilities of the code (which SUSANA tends to show) but more in the physical representation the modelers have. Even in the specific situation addressed in this communication although looking simple it may not be so obvious to grasp correctly the leading physical processes.
Experimental Measurements, CFD Simulations and Model for a Helium Release in a Two Vents Enclosure
Sep 2017
Publication
The present work proposes improvements on a model developed by Linden to predict the concentration distribution in a 2 vented cavities. Recent developments on non constant entrainment coefficient from Carazzo et al as well as a non constant pressure distribution at the vents-the vents being vertical-are included in the Linden approach. This model is compared with experimental results from a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated 2 vents enclosure. The varying parameters of the study were mainly the height of the release the releasing flow rate and the geometry of the vents. At last Large Eddy Simulations of the flow and Particle Image Velocimetry measurements performed on a small 2 vented cavity are presented. The objective is to have a better understanding of the flow structure which is at the origin of the 2 layers concentration distribution described by Linden.
Spontaneous Ignition of Hydrogen- Literature Review
Jan 2008
Publication
Objectives
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
The aim of this review is to establish which available literature may be of use as part of the HSE funded project which will investigate spontaneous ignition of accidental hydrogen releases (JR02071). It will identify phenomena that have the potential to cause spontaneous ignition of releases of pressured hydrogen and identify literature that may be of use when formulating the experimental program.
Main Findings
The identification of important work that shows conclusive evidence of spontaneous ignition of hydrogen due to the failure of a boundary layer.
Assessment of the Effects of Inert Gas and Hydrocarbon Fuel Dilution on Hydrogen Flames
Sep 2009
Publication
To advance hydrogen into the energy market it is necessary to consider risk assessment for scenarios that are complicated by accidental hydrogen release mixing with other combustible hydrocarbon fuels. The paper is aimed at examining the effect of mixing the hydrocarbon and inert gas into the hydrogen flame on the kinetic mechanisms the laminar burning velocity and the flame stability. The influences of hydrogen concentration on the flame burning velocity were determined for the hydrogen/propane (H2-C3H8) hydrogen/ethane (H2-C2H6) hydrogen/methane (H2-CH4) and hydrogen/carbon dioxide (H2-CO2) mixtures. Experimental tests were carried out to determine the lift-off blow-out and blowoff stability limits of H2 H2-C3H8 H2-C2H6 H2-CH4 and H2-CO2 jet flames in a 2 mm diameter burner. The kinetic mechanisms of hydrogen interacting with C3 C2 and C1 fuels is analysed using the kinetic mechanisms for hydrocarbon combustion.
Flow of Hydrogen from Buried Leaks
Sep 2019
Publication
The substitution of hydrogen for natural gas within a gas network has implications for the potential rate of leakage from pipes and the distribution of gas flow driven by such leaks. This paper presents theoretical analyses of low-pressure flow through porous ground in a range of circumstances and practical experimental work at a realistic scale using natural gas hydrogen or nitrogen for selected cases. This study considers flow and distribution of 100% hydrogen. A series of eight generic flow regimes have been analysed theoretically e.g. (i) a crack in uncovered ground (ii) a crack under a semi-permeable cover in a high porosity channel (along a service line or road). In all cases the analyses yield both the change in flow rate when hydrogen leaks and the change in distance to which hydrogen gas can travel at a dangerous rate compared to natural gas. In some scenarios a change to hydrogen gas from natural gas makes minimal difference to the range (i.e. distance from the leak) at which significant gas flows will occur. However in cases where the leak is covered by an impermeable membrane a change to hydrogen from natural gas may extend the range of significant gas flow by tens or even hundreds of metres above that of natural gas. Experimental work has been undertaken in specific cases to investigate the following: (i) Flow rate vs pressure curves for leaks into media with different permeability (ii) Effects of the water content of the ground on gas flow (iii) Distribution of surface gas flux near a buried leak
A Barrier Analysis of a Generic Hydrogen Refuelling Station
Sep 2009
Publication
Any technical installation need appropriate safety barriers installed to prevent or mitigate any adverse effects concerning people property and environment. In this context a safety barrier is a series of elements each consisting of a technical system or human action that implement a planned barrier function to prevent control or mitigate the propagation of a condition or event into an undesired condition or event. This is also important for new technologies as hydrogen refuelling stations being operated at very high pressures up to 900bar. In order to establish the needed barriers a hazard identification of the installation has to be carried out to identify the possible hazardous events. In this study this identification was done using the generic layout of a future large hydrogen refuelling station that has been developed by the EU NoE HySafe. This was based on experiences with smaller scale refuelling stations that has been in operation for several years e.g. being used in the former CUTE and ECTOS projects. Using this approach the object of the study is to support activities to further improve the safety performance of future larger refuelling stations. This will again help to inform the authorities and the public to achieve a proper public awareness and to support building up a realistic risk and safety perception of the safety on such future refuelling stations. In the second step the hazardous events that may take place and the barriers installed to stop hazards and their escalation are analysed also using in-house developed software to model the barriers and to quantify their performance. The paper will present an overview and discuss the state-of-the-art of the barriers established in the generic refuelling station.
Experimental Study of Light Gas Dispersion in a Channel
Sep 2019
Publication
Usage of hydrogen as fuel gives rise to possible accidental risks due to leakage and dispersion. A risk from hydrogen leak is the formation of a large volume of the hydrogen-air mixture which could be ignited and leading up to a severe explosion. Prevention and control of formation and ignition of combustible hydrogen cloud necessitate sufficient knowledge of mechanisms of the hydrogen leak dispersion ignition and over-pressures generated during combustion. This paper aims to investigate the momentum-controlled jet the buoyancy-controlled wave and the parameters influencing hydrogen concentration distribution in an elongated space. It demonstrates experimental results and analysis from helium and hydrogen dispersion in a channel. A set of experiments were carried out for the release of helium and hydrogen jets in a 3 m long channel to record their concentrations in the cloud by concentration sensors at different horizontal and vertical positions. Flow visualization technique was applied using shadowgraph to image the mixing process next to the release point and the helium- hydrogen-air cloud shape at the middle of the channel. Moreover results were used for comparison of helium and hydrogen concentration gradients. The results of the experiments show that swift mixing occurs at higher flow rates smaller nozzle sizes and downward release direction. Higher concentration recorded in the channel with negative inclination. Results also confirmed that hydrogen/helium behavior pattern in the channel accords with mutual intrusion theory about gravity currents.
Highly Resolved Large Eddy Simulation of Subsonic Hydrogen Jets – Evaluation of ADREA-HF Code Against Detailed Experiments
Sep 2019
Publication
The main objective of this work is the Large Eddy Simulation (LES) of hydrogen subsonic jets in order to evaluate modelling strategies and to provide guidelines for similar simulations. The ADREAHF code and the experiments conducted by Sandia National Laboratories are used for that purpose. These experiments are particularly ideal for LES studies because turbulent fluctuations have been measured which is something rare in hydrogen experiments. Hydrogen is released vertically from a small orifice of 1.91 mm diameter into an unconfined stagnant environment. Three experimental cases are simulated with different inlet velocity (49.7 76.0 and 133.9 m/s) which corresponds to transitional or turbulent flows. Hydrogen mass fraction and velocity mean values and fluctuations are compared against the experimental data. The Smagorinsky subgrid-scale model is mainly used. In the 49.7 m/s case the RNG LES is also evaluated. Several grid resolutions are used to assess the effect on the results. The amount of the resolved by the LES turbulence and velocity spectra are presented. Finally the effect of the release modelling is discussed.
New Paradigms in Hydrogen Explosion Modelling Using an Industrial CFD Code
Sep 2019
Publication
It is well-known that deflagration to detonation transition (DDT) may be a significant threat for hydrogen explosions. This paper presents a summary of the work carried out for the development of models in order to enable the industrial computational fluid dynamic (CFD) tool FLACS to provide indications about the possibility of a deflagration-to-detonation transition (DDT). The likelihood of DDT has been expressed in terms of spatial pressure gradients across the flame front. This parameter is able to visualize when the flame front captures the pressure front which is the case in situations when fast deflagrations transition to detonation. Reasonable agreement was obtained with experimental observations in terms of explosion pressures transition times and flame speeds for several practical geometries. The DDT model has also been extended to develop a more meaningful criterion for estimating the likelihood of DDT by comparison of the geometric dimensions with the detonation cell size. The conclusion from simulating these experiments is that the FLACS DPDX criterion seems robust and will generally predict the onset DDTs with reasonable precision including the exact location where DDT may happen. The standard version of FLACS can however not predict the consequences if there is DDT as only deflagration flames are modelled. Based on the methodology described above an approach for predicting detonation flames and explosion loads has been developed. The second part of the paper covers new paradigms associated with risk assessment of a hydrogen infrastructure such as a refueling station. In particular approaches involving one-to-one coupling between CFD and FEA modelling are summarized. The advantages of using such approaches are illustrated. This can have wide-ranging implications on the design of things like protection walls against hydrogen explosions.
Multistage Risk Analysis and Safety Study of a Hydrogen Energy Station
Sep 2017
Publication
China has plenty of renewable energy like wind power and solar energy especially in the northwest part of the country. Due to the volatile and intermittent characters of the green powers high penetration level of renewable resources could arise grid stabilization problem. Therefore electricity storage is considered as a solution and hydrogen energy storage is proposed. Instead of storing the electricity directly it converts electricity into hydrogen and the energy in hydrogen will be released as needed from gas to electricity and heat. The transformed green power can be fed to the power grid and heat supply network. State Grid Corporation of China carried out its first hydrogen demonstration project. In the demonstration project an alkaline electrolyzer and a PEM hydrogen fuel cell stack are decided as the hydrogen producer and consumer respectively. Hydrogen safety issue is always of significant importance to secure the property. In order to develop a dedicated safety analysis method for hydrogen energy storage system in power industry the risk analysis for the power-to-gas-topower&heat facility was made. The hazard and operability (HAZOP) study and the failure mode and effects analysis (FMEA) are performed sequentially to the installation to identify the most problematic parts of the system in view of hydrogen safety and possible failure modes and consequences. At the third step the typical hydrogen leak accident scenarios are simulated by using computational fluid dynamics (CFD) computer code. The resulted pressure loads of the possibly ignited hydrogen-air mixture in the facility container are estimated conservatively. Important safeguards and mitigation measures are proposed based on the three-stage risk and safety studies.
Numerical Simulation of Diverging Detonation in Hydrogen Air Mixtures
Oct 2015
Publication
Propagation and stability of diverging cylindrical detonation in hydrogen air mixture is numerically simulated and the mechanism of the transverse waves is analysed. For the numerical modelling a new solver based on compressible transient reactive Navier–Stokes equations is developed which can the simulate detonation propagation and extinction in hydrogen-air mixture. A single step reaction mechanism is tuned to ensure the detonation and deflagration properties (in case of detonation failure) can be simulated accurately. The solver is used for modelling various detonation scenarios in particular cylindrical diverging-detonations because most of accidental industrial detonations start from a spark and then a diverging-detonation propagates outwards. The diverging detonation its cellular structure and adoption with the increased surface area at the detonation front as well as interactions with obstacles leading to detonation failure and re-initiation are studied.
Hydrogen Odorant and Leak Detection: Part 1, Hydrogen Odorant - Project Closure Report
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Defect Assessment on Pipe Used For Transport of Mixture of Hydrogen and Natural Gas
Sep 2009
Publication
The present article indicates the change of mechanical properties of X52 gas pipe steel in presence of hydrogen and its consequence on defect assessment particularly on notch like defects. The purpose of this work is to determine if the transport of a mixture of natural gas and hydrogen in the actual existing European natural gas pipe network can be done with a reasonable low failure risk (i.e. a probability of failure less than 10-6). To evaluate this risk a deterministic defect assessment method has been established. This method is based on Failure Assessment Diagram and more precisely on a Modified Notch Failure Assessment Diagram (MNFAD) which has been proposed for this work. This MNFAD is coupled with the SINTAP failure curve and allows determining the safety factor associated with defect geometry loading conditions and material resistance. The work described in this paper was performed within the NATURALHY work package 3 on ’Durability of pipeline material’.
Detailed Examination of Deformations Induced by Internal Hydrogen Explosions: Part 1 Experiments
Sep 2019
Publication
In industry handling hydrogen explosion presents a potential danger due to its effects on people and property. In the nuclear industry this explosion which is possible during severe accidents can challenge the reactor containment and it may lead to a release of radioactive materials into the environment. The Three Mile Island accident in the United States in 1979 and more recently the Fukushima accident in Japan have highlighted the importance of this phenomenon for a safe operation of nuclear installations as well as for the accident management.<br/>In 2013 the French Research Agency (ANR) launched the MITHYGENE project with the main aim of improving knowledge on hydrogen risk for the benefit of reactor safety. One of the topics in this project is devoted to the effect of hydrogen explosions on solid structures. In this context CEA conducted a test program with its SSEXHY facility to build a database on deformations of simple structures following an internal hydrogen explosion. Different regimes of explosion propagation have been studied ranging from detonation to slow deflagration. Different targets were tested such as cylinders and plates of variable thickness and diameter. Detailed instrumentation was used to obtain data for the validation of coupled CFD models of combustion and structural dynamics.<br/>This article details the experimental set-up and the results obtained. A companion article focuses on the comparison between these experimental results and the prediction of CFD numerical models
High Pressure Hydrogen Fires
Sep 2009
Publication
Within the scope of the French national project DRIVE and European project HyPER high pressure jet flames of hydrogen were produced and instrumented.<br/>The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container the image processing to extract the flame geometry the heat flux measurement device the thermocouples arrangement…<br/>Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.<br/>A brief comparison of some available models is presented.
Review of Methods For Estimating the Overpressure and Impulse Resulting From a Hydrogen Explosion in a Confined/Obstructed Volume
Sep 2009
Publication
This study deals with the TNO Multi-Energy and Baker-Strehlow-Tang (BST) methods for estimating the positive overpressures and positive impulses resulting from hydrogen-air explosions. With these two methods positive overpressure and positive impulse results depend greatly on the choice of the class number for the TNO Multi-Energy method or the Mach number for the BST methods. These two factors permit the user to read the reduced parameters of the blast wave from the appropriate monographs for each of these methods i.e. positive overpressure and positive duration phase for the TNO Multi-Energy method and positive overpressure and positive impulse for the BST methods. However for the TNO Multi-Energy method the determination of the class number is not objective because it is the user who makes the final decision in choosing the class number whereas with the BST methods the user is strongly guided in their choice of an appropriate Mach number. These differences in the choice of these factors can lead to very different results in terms of positive overpressure and positive impulse. Therefore the objective of this work was to compare the positive overpressures and positive impulses predicted with the TNO Multi-Energy and BST methods with data available from large-scale experiments.
Hydrogen Effect on Fatigue and Fracture of Pipe Steels
Sep 2009
Publication
Transport by pipe is one the most usual way to carry liquid or gaseous energies from their extraction point until their final field sites. To limit explosion risk or escape to avoid pollution problems and human risks it is necessary to assess nocivity of defect promoting fracture. This need to know the mechanical properties of the pipes steels. Hydrogen is considered to day as a new energy vector and its transport in one of the key problems to extension of its use. Within the European project NATURALHY it has been proposed to transport a mixture of natural gas and hydrogen. 39 European partners have combined their efforts to assess the effects of hydrogen presence on the existing gas network. Key issues are durability of pipeline material integrity management safety aspects life cycle and socio-economic assessment and end-use. The work described in this paper was performed within the NATURALHY work package on ’Durability of pipeline material’. This study makes it possible to emphasize the hydrogen effect on mechanical properties of several pipe steels as X52 X70 or X100 in fatigue and fracture and in two different environments: air and hydrogen electrolytic.
Numerical Simulations of a Large Hydrogen Release in a Process Plant
Sep 2009
Publication
This paper describes a series of numerical simulations with release and ignition of hydrogen. The objective of this work was to re-investigate the accidental explosion in an ammonia plant which happened in Norway in 1985 with modern CFD tools. The severe hydrogen-air explosion led to two fatalities and complete destruction of the factory building where the explosion occurred. A case history of the accident was presented at the 1.st ICHS in Pisa 2005.<br/>The numerical simulations have been performed with FLACS a commercial CFD simulation tool for gas dispersion and gas explosions. The code has in the recent years been validated in the area of hydrogen dispersion and explosions.<br/>The factory building was 100 m long 10 m wide and 7 m high. A blown-out gasket in a water pump led to release of hydrogen from a large reservoir storing gaseous hydrogen at 3.0 MPa. The accident report estimated a total mass of released hydrogen between 10 and 20 kg. The location of the faulty gasket is known but the direction of the accidental release is not well known and has been one of the topics of our investigations. Several simulations have been performed to investigate the mixing process of hydrogen-air clouds and the development of a flammable gas cloud inside the factory building resulting in a simulation matrix with dispersions in all axis directions. Simulations of ignition of the different gas clouds were carried out and resulting pressure examined. These results have been compared with the damages observed during the accident investigation.<br/>We have also performed FLACS simulations to study the effect of natural venting and level of congestion. The height of the longitudinal walls has been varied leading to different vent openings at floor level at the ceiling and a combination of the two. This was done to investigate the effects of congestion with regards to gas cloud formation.<br/>The base case simulation appears to be in good accordance to the observed damages from the accident. The simulations also show that the build up of the gas cloud strongly depends on the direction of the jet and degree of ventilation. The CFD study has given new insights to the accident and the results are a clear reminder of the importance of natural venting in hydrogen safety.
Numerical Assessment of Hydrogen Explosion Consequences in Mine Tunnel
Sep 2019
Publication
The aim of the work is a numerical estimation of the conditional probability of damage to the mine personnel during an accidental explosion of a hydrogen-air mixture. The methodology for determining the parameters of the gas-dynamic process of the explosion of a hydrogen-air cloud in an open and closed space taking into account chemical interaction and space clutter is presented. A computational method based on a probit analysis for determining the damage probability fields of a person exposed to the explosion shock wave has been developed. To automate the computational process the tabular dependence “probit-function-damage probability” is replaced by a piecewise cubic spline. Numerical studies of the influence of the drift working space clutter by an electric locomotive on the distribution of the overpressure of the gaseous medium and the conditional probability of the eardrums rupture and lethal damage to personnel in the accidental zone of the coal mine have been carried out. It was obtained that the closed nature of the working space and its blockage significantly changes the shape and size of the danger zone and requires consideration by an expert at the stage of deciding on the safety level at the mine. The scientific novelty of the method proposed in the work is in taking into account in the mathematical model of the movement of a multi-component chemically reacting gas mixture the effect of compressibility of flow complex terrain (space clutter with equipment) three-dimensional nature of the gas-air mixture dispersion process. The model allows obtaining the space-time distributions of the shock-impulse load of the blast wave that is necessary for determining the non-stationary three-dimensional fields of the conditional probability of damage to the staff on the basis of probit analysis. The developed computational method allows analyzing and forecasting in time and space the conditional probability of damage of varying degrees of severity of personnel who are exposed to an explosive shock wave as an indicator of the safety level of a coal mine.
Improvements in Two-Step Model of Hydrogen Detonative Combustion: Model Description and Sensitivity to its Parameters
Sep 2009
Publication
In the present paper the two-stage model of detonative combustion of hydrogen is presented. The following improvements are described: accurate description of the heat release stage of combustion; the clear physics-based procedure for calculation of the parameters of the proposed model; sample calculations of the detonation wave in hydrogen/air mixtures in wide range of conditions showing that the proposed model performs well in a wide range of conditions (pressures temperatures mixture compositions). The results of the 2D simulations of the detonation cell are presented for the hydrogen/oxygen/argon mixture as example to show the performance and accuracy of the model presented in this paper.
High-pressure PEM Water Electrolysis and Corresponding Safety Issues
Sep 2009
Publication
In this paper safety considerations related to the operation of proton-exchange membrane (PEM) water electrolysers (hydrogen production capacity up to 1 Nm3/h and operating pressure up to 130 bars) are presented. These results were obtained in the course of the GenHyPEM project a research program on high-pressure PEM water electrolysis supported by the European Commission. Experiments were made using a high-pressure electrolysis stack designed for operation in the 0–130 bars pressure range at temperatures up to 90 °C. Besides hazards related to the pressure itself hydrogen concentration in the oxygen gas production and vice-versa (resulting from membrane crossover permeation effects) have been identified as the most significant risks. Results show that the oxygen concentration in hydrogen at 130 bars can be as high as 2.66 vol %. This is a value still outside the flammability limit for hydrogen–oxygen mixtures (3.9–95.8 vol %) but safety measures are required to prevent explosion hazards. A simple model based on the diffusion of dissolved gases is proposed to account for gas cross-permeation effects. To reduce contamination levels different solutions are proposed. First thicker membranes can be used. Second modified or composite membranes with lower gas permeabilities can be used. Third as reported earlier external catalytic gas recombiners can be used to promote H2/O2 recombination and reduce contamination levels in the gas production. Finally other considerations related to cell and stack design are also discussed to further reduce operation risks.
Non-adiabatic Under-expanded Jet Theory for Blowdown and Fire Resistance Rating of Hydrogen Tank
Sep 2019
Publication
The European Regulations on type-approval of hydrogen vehicles require thermally-activated pressure relief device (TPRD) to be installed on hydrogen onboard storage tanks to release its content in a fire event to prevent its catastrophic rupture. The aim of this study is to develop a model for design of an inherently safer system TPRD-storage tank. Parameters of tank materials and hydrogen external heat flux from the fire to the tank wall TPRD diameter time to initiate TPRD are input parameters of the model. The energy conservation equation and real gas equation of state are employed to describe the dynamic behaviour of the system. The under-expanded jet theory developed previously for adiabatic release from a storage tank is applied here to non-adiabatic blowdown of a tank in a fire. Unsteady heat transfer equation is used to calculate heat conduction through the tank wall. It includes the decomposition of the wall material due to high heat flux. The convective heat transfer between tank wall and hydrogen is modelled through the dimensionless Nusselt number correlations. The model is validated against two types of experiments i.e. realistic (non-adiabatic) blowdown of high-pressure storage tank and failure of a tank without TPRD in a fire. The model is confirmed to be time efficient for computations and accurately predicts the dynamic pressure and temperature of the gas inside the tank temperature profile within the tank wall time to tank rupture in a fire and the blowdown time.
A National Set of Hydrogen Codes and Standards for the US
Sep 2009
Publication
In 2003 the US Department of Energy (DOE) initiated a project to coordinate the development of a national template of hydrogen codes and standards for both vehicular and stationary applications. The process consisted of an initial evaluation to determine where there were gaps in the existing hydrogen codes and standards and the codes and standards required to fill these gaps. These codes and standards were to be developed by several Standards Development Organizations (SDOs). This effort to develop codes and standards has progressed from a position in 2003 when there were relatively few codes and standards that directly addressed hydrogen technology applications to the position at the end of 2008 where requirements to permit hydrogen technologies have been implemented in primary adopted codes- building and fire codes in hydrogen specific codes such as National Fire Protection Association (NFPA) 52 NFPA 55 and NFPA 853 and in many of the hydrogen specific component standards that are referenced primarily in the NFPA codes and standards. This paper describes the three levels of codes and standards that address hydrogen technologies for the built environment:<br/>Level 1. Primary adopted building and fire codes<br/>Level 2. Hydrogen specific codes and standards references in primary adopted code<br/>Level 3. Hydrogen specific component standards referenced in hydrogen specific codes<br/>This paper also describes the progress to date in populating these three levels with the required hydrogen codes and standards. The first two levels are essentially complete and are undergoing refinement and routine revision. Level 3 the hydrogen specific component standards is the furthest from having first edition documents that address requirements for a hydrogen system component.<br/>The DOE is focusing much of their codes and standards development efforts on these hydrogen specific component standards with the expectation that a first edition of most of these standards will be issued by 2010.
Dynamics of Vented Hydrogen-air Deflagrations
Sep 2011
Publication
The use of hydrogen as an energy carrier is a real perspective for Europe since a number of breakthroughs now enable to envision a deployment at the industrial scale. However some safety issues need to be further addressed but experimental data are still lacking especially about the explosion dynamics in realistic dimensions. A set of hydrogen-air vented explosions were thus performed in two medium scale chambers (1 m3 and 10 m3). Homogeneous mixtures were used (10% to 30% vol.). The explosion overpressure was measured inside the chamber and outside on the axis of the discharge from the vent. The incidence of the external explosion is clearly seen. All the results in this paper and the predictions from the standards differ greatly meaning that a significant effort is still required. It is the purpose of the French project DIMITRHY to help progressing.
Compatibility of Metallic Materials with Hydrogen Review of the Present Knowledge
Sep 2007
Publication
In this document after a review of the accidents/incidents are described the different interactions between hydrogen gas and the most commonly used materials including the influence of "internal" and "external" hydrogen the phenomena occurring in all ranges of temperatures and pressures and Hydrogen Embrittlement (HE) created by gaseous hydrogen. The principle of all the test methods used to investigate this phenomenon are presented and discussed. The advantages and disadvantages of each method will be explained. The document also covers the influence of all the parameters related to HE including the ones related to the material itself the ones related to the design and manufacture of the equipment and the ones related to the hydrogen itself (pressure temperature purity etc). Finally recommendations to avoid repetition of accidents/incidents mentioned before are proposed.
CFD Simulation Study to Investigate the Risk from Hydrogen Vehicles in Tunnels
Sep 2007
Publication
When introducing hydrogen-fuelled vehicles an evaluation of the potential change in risk level should be performed. It is widely accepted that outdoor accidental releases of hydrogen from single vehicles will disperse quickly and not lead to any significant explosion hazard. The situation may be different for more confined situations such as parking garages workshops or tunnels. Experiments and computer modelling are both important for understanding the situation better. This paper reports a simulation study to examine what if any is the explosion risk associated with hydrogen vehicles in tunnels. Its aim was to further our understanding of the phenomena surrounding hydrogen releases and combustion inside road tunnels and furthermore to demonstrate how a risk assessment methodology developed for the offshore industry could be applied to the current task. This work is contributing to the EU Sixth Framework (Network of Excellence) project HySafe aiding the overall understanding that is also being collected from previous studies new experiments and other modelling activities. Releases from hydrogen cars (containing 700 bar gas tanks releasing either upwards or downwards or liquid hydrogen tanks releasing only upwards) and buses (containing 350 bar gas tanks releasing upwards) for two different tunnel layouts and a range of longitudinal ventilation conditions have been studied. The largest release modelled was 20 kg H2 from four cylinders in a bus (via one vent) in 50 seconds with an initial release rate around 1000 g/s. Comparisons with natural gas (CNG) fuelled vehicles have also been performed. The study suggests that for hydrogen vehicles a typical worst-case risk assessment approach assuming the full gas inventory being mixed homogeneously at stoichiometry could lead to severe explosion loads. However a more extensive study with more realistic release scenarios reduced the predicted hazard significantly. The flammable gas cloud sizes were still large for some of the scenarios but if the actual reactivity of the predicted clouds is taken into account very moderate worst-case explosion pressures are predicted. As a final step of the risk assessment approach a probabilistic QRA study is performed in which probabilities are assigned to different scenarios time dependent ignition modelling is applied and equivalent stoichiometric gas clouds are used to translate reactivity of dispersed nonhomogeneous clouds. The probabilistic risk assessment study is based on over 200 dispersion and explosion CFD calculations using the commercially available tool FLACS. The risk assessment suggested a maximum likely pressure level of 0.1-0.3 barg at the pressure sensors that were used in the study. Somewhat higher pressures are seen elsewhere due to reflections (e.g. under the vehicles). Several other interesting observations were found in the study. For example the study suggests that for hydrogen releases the level of longitudinal tunnel ventilation has only a marginal impact on the predicted risk since the momentum of the releases and buoyancy of hydrogen dominates the mixing and dilution processes.
Dispersion Tests on Concentration and its Fluctuations for 40MPa Pressurized Hydrogen
Sep 2007
Publication
Hydrogen is one of the important alternative fuels for future transportation. At the present stage research into hydrogen safety and designing risk mitigation measures are significant task. For compact storage of hydrogen in fuel cell vehicles storage of hydrogen under high pressure up to 40 MPa at refuelling stations is planned and safety in handling such high-pressure hydrogen is essential. This paper describes our experimental investigation into dispersion of high-pressure hydrogen gas which leaks through pinholes in the piping to the atmosphere. First in order to comprehend the basic behaviour of the steady dispersion of high-pressure hydrogen gas from the pinholes the time-averaged concentrations were measured. In our experiments initial release pressures of hydrogen gas were set at 20 MPa or 40 MPa and release diameters were in the range from 0.25 mm to 2 mm. The experimental results show that the hydrogen concentration along the axis of the dispersion plume can be expressed as a simple formula which is a function of the downwind distance X and the equivalent release diameter. This formula enables us to easily estimate the axial concentration (maximum concentration) at each downstream distance. However in order for the safety of flammable gas dispersion to be analyzed comparisons between time-averaged concentrations evaluated as above and lower flammable limit are insufficient. This is because even if time-averaged concentration is lower than the flammability limit instantaneous concentrations fluctuate and a higher instantaneous concentration occasionally appears due to turbulence. Therefore the time-averaged concentration value which can be used as a threshold for assessing safety must be determined considering concentration fluctuations. Once the threshold value is determined the safe distance from the leakage point can be evaluated by the above-mentioned simple formula. To clarify the phenomenon of concentration fluctuations instantaneous concentrations were measured with the fast-response flame ionization detector. A small amount of methane gas was mixed into the hydrogen as a tracer gas for this measurement. The relationship between the time-mean concentration and the occurrence probability of flammable concentration was analyzed. Under the same conditions spark-ignition experiments were also conducted and the relationship between the occurrence probability of flammable concentration and actual ignition probabilities were also investigated. The experimental results show that there is a clear correlation between the time-mean concentration the occurrence probability of flammable concentration flame length and occurrence probability of hydrogen flame.
Hydrogen Transport Safety: Case of Compressed Gaseous Tube Trailer
Sep 2005
Publication
The following paper describes researches to evaluate the behaviour under various accidental conditions of systems of transport compressed hydrogen. Particularly have been considered gaseous tube trailer and the packages cylinders employed for the road transport which have an internal gas pressures up to 200 barg.<br/>Further to a verification of the actual safety conditions this analysis intends to propose a theme that in the next future if confirmed projects around the employment of hydrogen as possible source energetic alternative could become quite important. The general increase of the consumptions of hydrogen and the consequently probable increase of the transports of gaseous hydrogen in pressure they will make the problem of the safety of the gaseous tube trail particularly important. Gaseous tube trailers will also use as components of plant. for versatility easy availability' and inexpensiveness.<br/>The first part of the memory is related to the analysis of the accidents happened in the last year in Italy with compressed hydrogen transports and particularly an accurate study has been made on the behaviour of a gaseous tube trailer involved in fire following a motorway accident in March 2003. In the central part of the job has been done a safety analysis of the described events trying to make to also emerge the most critical elements towards the activities developed by the teams of help intervened.<br/>Finally in the last part you are been listed on the base of the picked data a series of proposals and indications of the possible structural and procedural changes that could be suggested with the purpose to guarantee more elevated safety levels.
CFD Modelling of Accidental Hydrogen Release from Pipelines
Sep 2005
Publication
Although today hydrogen is distributed mainly by trailers in the long terms pipeline distribution will be more suitable if large amounts of hydrogen are produced on industrial scale. Therefore from the safety point of view it is essential to compare hydrogen pipelines to natural gas pipelines which are well established today. Within the paper we compare safety implications in accidental situations. We do not look into technological aspects such as compressors or seals.<br/>Using a CFD (Computational Fluid Dynamics) tool it is possible to investigate the effects of different properties (density diffusivity viscosity and flammability limits) of hydrogen and methane on the dispersion process. In addition CFD tools allow studying the influence of different release scenarios geometrical configurations and atmospheric conditions. An accidental release from a pipeline is modelled. The release is simulated as a flow though a small hole between the high-pressure pipeline and the environment. A part of the pipeline is included in the simulations as high-pressure reservoir. Due to the large pressure difference between the pipeline and the environment the flow conditions at the release become critical.<br/>For the assumed scenarios larger amount of flammable mixture could be observed in case of hydrogen release. On the other hand because of buoyancy and a higher sonic speed at the release the hydrogen clouds are farther from the ground level or buildings than in case of the methane clouds decreasing the probability of ignition and reducing the flame acceleration due to obstacles in case of ignition. Results on the effect of wind in the release scenarios are also described.
Hydrogen Flames in Tubes- Critical Run-up Distances
Sep 2007
Publication
The hazard associated with flame acceleration to supersonic speeds in hydrogen mixtures is discussed. A set of approximate models for evaluation of the run-up distances to supersonic flames in relatively smooth tubes and tubes with obstacles is presented. The model for smooth tubes is based on general relationships between the flame area turbulent burning velocity and the flame speed combined with an approximate description for the boundary layer thickness ahead of an accelerated flame. The unknown constants of the model are evaluated using experimental data. This model is then supplemented with the model for the minimum run-up distance for FA in tubes with obstacles developed earlier. On the basis of these two models solutions for the determination of the critical runup distances for FA and deflagration to detonation transition in tubes and channels for various hydrogen mixtures initial temperature and pressure tube size and tube roughness are presented.
HySafe European Network of Excellence on Hydrogen Safety
Sep 2005
Publication
Introduction and commercialisation of hydrogen as an energy carrier of the future make great demands on all aspects of safety. Safety is a critical issue for innovations as it influences the economic attractiveness and public acceptance of any new idea or product. However research and safety expertise related to hydrogen is quite fragmented in Europe. The vision of a significant increased use of hydrogen as an energy carrier in Europe could not go ahead without strengthening and merging this expertise. This was the reason for the European Commission to support the launch on the first of March 2004 of a so-called Network of Excellence (NoE) on hydrogen safety: HySafe.
The Safe Use of the Existing Natural Gas System for Hydrogen (Overview of the NATURALHY-Project)
Sep 2005
Publication
The transition period towards the situation in which hydrogen will become an important energy carrier will be lengthy (decades) costly and needs a significant R&D effort. It’s clear therefore that the development of a hydrogen system requires a practical strategy within the context of the existing assets. Examining the potential of the existing extensive natural gas chain (transmission - distribution - end user infrastructures and appliances) is a logical first step towards the widespread delivery of hydrogen.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
The project will define the conditions under which hydrogen can be mixed with natural gas for delivery by the existing natural gas system and later withdrawn selectively from the pipeline system by advanced separation technologies. Membranes will be developed to enable this separation. The socio-economic and life cycle consequences of this hydrogen delivery approach will be mapped out. By adding hydrogen to natural gas the physical and chemical properties of the mixture will differ from “pure” natural gas. As this may have a major effect on safety issues and durability issues (which also have a safety component) related to the gas delivery and the performance of end use appliances these issues are particularly addressed in the project.
The project is executed by a European consortium of 39 partners (including 15 from the gas industry). In this project set up under the auspices of GERG The European Gas Research Group there are leading roles for N.V. Nederlandse Gasunie (NL) Gaz de France (F) TNO (NL) ISQ (P) the Universities of Loughborough and Warwick (UK) and Exergia (GR). Guidance will be provided by a Strategic Advisory Committee consisting of representatives from relevant (inter)national organizations.
The project started on 1st May 2004 and will run for 5 years. The European Commission has selected the Integrated Project NATURALHY for financial support within the Sixth Framework Programme.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
A Survey Among Experts of Safety Related to the Use of Hydrogen as an Energy Carrier
Sep 2005
Publication
Based on the increasing need of energy for the future and the related risks to the environments due to burning of fossils fuels hydrogen is seen as an efficient and application related clean energy carrier that may be derived from renewable energy sources. A variety of applications connected with production and use of hydrogen and the related risks have been identified and a survey has been conducted among a number of experts as an internet exercise for unveiling the potential lack of necessary knowledge in order to handle hydrogen in a safe way concerning the various applications. The main results concern hazardous situations related to release and explosions of hydrogen in confined and semi-confined areas tunnels and garages and mitigation of hazardous situations i.e. preventions of accidents and reduction of consequences from accidents happening anyway.
Guidelines for Fire Corps Standard Operating Procedures in the Event of Hydrogen Releases
Sep 2007
Publication
This paper presents a study on the Standard Operating Procedures (P.O.S.s) for the operation of the Fire Corps squads in the event of accidents with a hydrogen release fire or explosion. This study has been carried out by the Italian Working Group on the fire prevention safety issues as one of its main objectives. The Standard Operating Procedures proved to be a basic tool in order to improve the effectiveness of the Fire Corps rescue activity. The unique physical and chemical properties of the hydrogen its use without odorization and its almost invisible flame require a review of the already codified approaches to the rescue operations where conventional gases are involved. However this is only the first step; a Standard Operating Procedure puts together both the theoretical and practical experience achieved on the management of the rescue operations; therefore its arrangement is a cyclic process by nature always under continuous revision updating and improvement.
Safety Study of Hydrogen Supply Stations for the Review of High Pressure Gas Safety Law in Japan
Sep 2005
Publication
A safety study of gaseous hydrogen supply stations with 40MPa storage system is undertaken through a risk based approach. Accident scenarios are identified based on a generic model of hydrogen station. And risks of identified accident scenarios are estimated and evaluated comparing with risk acceptance criteria. Also safety measures for risk reduction are discussed. Especially for clearance distance it is proposed that the distance from high-pressurized equipment to site borders should be at least 6 meters. As a result of the study it is concluded that risks of accidental scenarios can be mitigated to acceptable level under the proposed safety measures with several exceptions. These exceptional scenarios are very unlikely to occur but expected to have extremely severe consequence once occurred.
Addressing Hydrogen Embrittlement of Metals in the Sae J2579 Fuel Cell Vehicle Tank Standard
Sep 2013
Publication
The SAE Technical Information Report (TIR) J2579 (Technical Information Report for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles) has been created to address the safety performance of hydrogen storage and handling systems on vehicles. Safety qualification of the compressed hydrogen storage system is demonstrated through performance testing on prototype containment vessels. The two performance tests currently included in the SAE J2579 for evaluating unacceptable leakage and burst do not account for the potential effects of hydrogen embrittlement on structural integrity. This report describes efforts to address hydrogen embrittlement of structural metals in the framework of performance-based safety qualification. New safety qualification pathways that account for hydrogen embrittlement in the SAE J2579 include an additional pneumatic performance test using hydrogen gas or materials tests that demonstrate acceptable hydrogen embrittlement resistance of candidate structural metals.
Compatibility of Materials with Hydrogen Particular Case- Hydrogen Assisted Stress Cracking of Titanium Alloys
Sep 2007
Publication
A review of the effect of hydrogen on materials is addressed in this paper. General aspects of the interaction of hydrogen and materials hydrogen embrittlement low temperature effects material suitability for hydrogen service and materials testing are the main subjects considered in the first part of the paper. As a particular case of the effect of hydrogen in materials the hydride formation of titanium alloys is considered. Alpha titanium alloys are considered corrosion resistant materials in a wide range of environments. However hydrogen absorption and the possible associated problems must be taken into account when considering titanium as a candidate material for high responsibility applications. The sensitivity of three different titanium alloys Ti Gr-2 Ti Gr-5 and Ti Gr-12 to the Hydrogen Assisted Stress Cracking phenomena has been studied by means of the Slow Strain Rate Technique (SSRT). The testing media has been sea water and hydrogen has been produced on the specimen surface during the test by cathodic polarization. Tested specimens have been characterized by metallography and scanning electron microscopy. Results obtained show that the microstructure of the materials particularly the β phase content plays an important role on the sensitivity of the studied alloys to the Hydrogen Assisted Stress Cracking Phenomena.
H2 High Pressure On-board Storage Considering Safety Issues
Sep 2007
Publication
The present paper reviews the state-of-the-art of integrated structural integrity monitoring systems applicable to hydrogen on-board applications. Storage safety and costs are key issues for the success of the hydrogen technology considered for replacing the conventional fuel systems in transport applications. An in-service health monitoring procedure for high pressure vessels would contribute to minimize the risks associated to high pressure hydrogen storage and to improve the public acceptance. Such monitoring system would also enable a reduction on design burst criteria enabling savings in material costs and weight. This paper reviews safety and maintenance requirements based on present standards for high pressure vessels. A state-of-the-art of storage media and materials for onboard storage tank is presented as well as of current European programmes on hydrogen storage technologies for transport applications including design safety and system reliability. A technological road map is proposed for the development and validation of a prototype within the framework of the Portuguese EDEN project. To ensure safety an exhaustive test procedure is proposed. Furthermore requirements of a safety on-board monitoring system is defined for filament wound hydrogen tanks.
Hydrogen Safety, Training and Risk Assessment System
Sep 2007
Publication
The rapid evolution of information related to hydrogen safety is multidimensional ranging from developing codes and standards to CFD simulations and experimental studies of hydrogen releases to a variety of risk assessment approaches. This information needs to be transformed into system design risk decision-making and first responder tools for use by hydrogen community stakeholders. The Canadian Transportation Fuel Cell Alliance (CTFCA) has developed HySTARtm an interactive Hydrogen Safety Training And Risk System. The HySTARtm user interacts with a Web-based 3-D graphical user interface to input hydrogen system configurations. The system includes a Codes and Standards Expert System that identifies the applicable codes and standards in a number of national jurisdictions that apply to the facility and its components. A Siting Compliance and Planning Expert System assesses compliance with clearance distance requirements in these jurisdictions. Incorporating the results of other CTFCA projects HySTARtm identifies stand-out hydrogen release scenarios and their corresponding release condition that serves as input to built-in consequence and risk assessment programs that output a variety of risk assessment metrics. The latter include on- and off-site individual risk probability of loss of life and expected number of fatalities. These results are displayed on the graphical user interface used to set up the facility. These content and graphical tools are also used to educate regulatory approval and permitting officials and build a first-responder training guide.
The Hydrogen Executive Leadership Panel (HELP) Initiative for Emergency Responder Training
Sep 2007
Publication
In close cooperation with their Canadian counterparts United States public safety authorities are taking the first steps towards creating a proper infrastructure to ensure the safe use of the new hydrogen fuel cells now being introduced commercially. Currently public safety officials are being asked to permit hydrogen fuel cells for stationary power and as emergency power backups for the telecommunications towers that exist everywhere. Consistent application of the safety codes is difficult – in part because it is new – yet it is far more complex to train emergency responders to deal safely with the inevitable hydrogen incidents. The US and Canadian building and fire codes and standards are similar but not identical. The US and Canadian rules are unlikely to be useful to other nations without modification to suit different regulatory systems. However emergency responder safety training is potentially more universal. The risks strategies and tactics are unlikely to differ much by region. The Hydrogen Executive Leadership Panel (HELP) made emergency responder safety training its first priority because the transition to hydrogen depends on keeping incidents small and inoffensive and the public and responders safe from harm. One might think that advising 1.2 million firefighters and 800000 law enforcement officers about hydrogen risks is no more complicated than adding guidance to a website. One would be wrong. The term “training” has specific legal implications which may vary by state. For hazardous materials federal requirements apply. Insurance companies place training requirements on the policies they sell to fire departments including the thousands of small all-volunteer departments which may operate as private corporations. Union contracts may define training and promotions may be based on satisfactorily completed certain levels of training. Emergency responders could no sooner learn how to extinguish a<br/>hydrogen fire by reading a webpage than a person could learn to ride a bicycle by reading a book. Procedures must be learned by listening reading and then doing. Regular practice is necessary. As new hydrogen applications are commercialized additional responder training may be necessary. This highlights another obstacle emergency responders’ ability to travel distances and take the time to undergo training. Historically fire academies established adjunct instructor programs and satellite academies to bring the training to firefighters. The large well-equipped academies are typically used for specialized training. States rarely have enough instructors and instructors often must take the time to create a course outline research each point and produce a program that is informative useful and holds the attention of responders. The challenge of training emergency responders seems next to impossible but public safety authorities are asked to tackle the impossible every day and a model exists to move forward in the U.S. Over the past few years the National Association of State Fire Marshals and U.S. Department of Transportation enlisted the help of emergency responders and industry to create a standardized approach to train emergency responders to deal with pipeline incidents. A curriculum and training materials were created and more than 26000 sets have been distributed for free to public safety agencies nationwide. More than 8000 instructors have been trained to use these materials that are now part of the regular training in 23 states. Using this model HELP intends to ensure that all emergency responders are trained to address hydrogen risks. The model and the rigorous scenario analysis and review used to developing the operational and technical training is addressed in this paper.
Prediction of the Lift-off, Blow-out and Blow-off Stability Limits of Pure Hydrogen and Hydrogen and Hydrocarbon Mixture Jet Flames
Sep 2007
Publication
The paper presented experimental studies of the liftoff and blowout stability of pure hydrogen hydrogen/propane and hydrogen/methane jet flam es using a 2 mm burner. Carbon dioxide and Argon gas were also used in the study for the comparison with hydrocarbon fuel. Comparisons of the stability of H 2/C3H8 H 2/CH4 H 2/Ar and H 2/CO2 flames showed that H 2/C3H8 produced the highest liftoff height and H 2/CH4 required highest liftoff and blowoff velocities. The non-dimensional analysis of liftoff height approach was used to correlate liftoff data of H 2 H2-C3H8 H 2-CO2 C 3H8 and H2-Ar jet flames tested in the 2 mm burner. The suitability of extending the empirical correlations based on hydrocarbon flames to both hydrogen and hydrogen/ hydrocarbon flames was examined.
Complex Hydrides as Solid Storage Materials- First Safety Tests
Sep 2007
Publication
Hydrogen technology requires efficient and safe hydrogen storage systems. For this purpose storage in solid materials such as high capacity complex hydrides is studied intensely. Independent from the actual material to be used eventually any tank design will combine nanoscale powders of highly reactive material with pressurized hydrogen gas and so far little is known about the behaviour of these mixtures in case of incidents. For a first evaluation of a complex hydride in case of a tank failure NaAlH4 (doped with Ti) was investigated in a small scale tank failure tests. 80-100 ml of the material were filled into a heat exchanger tube and sealed under argon atmosphere with a burst disk. Subsequently the NaAlH4 was partially desorbed by heating. When the powder temperature reached 130 °C and the burst disk ruptured at 9 bar hydrogen overpressure the behaviour of the expelled powder was monitored using a high speed camera an IR camera as well as sound level meters. Expulsion of the hydrogen storage material into (dry) ambient atmosphere yields a dust cloud of finely dispersed powder which does not ignite spontaneously. Similar experiments including an external source of ignition (spark / water reacting with NaAlH4) yield a flame of reacting powder. The intensity will be compared to the reaction of an equivalent amount of pure hydrogen.
Modelling of Lean Uniform and Non-Uniform Hydrogen-Air Mixture Explosions in a Closed Vessel
Sep 2009
Publication
Simulation of hydrogen-air mixture explosions in a closed large-scale vessel with uniform and nonuniform mixture compositions was performed by the group of partners within the EC funded project “Hydrogen Safety as an Energy Carrier” (HySafe). Several experiments were conducted previously by Whitehouse et al. in a 10.7 m3 vertically oriented (5.7-m high) cylindrical facility with different hydrogen-air mixture compositions. Two particular experiments were selected for simulation and comparison as a Standard Benchmark Exercise (SBEP) problem: combustion of uniform 12.8% (vol.) hydrogen-air mixture and combustion of non-uniform hydrogen-air mixture with average 12.6% (vol.) hydrogen concentration across the vessel (vertical stratification 27% vol. hydrogen at the top of the vessel 2.5% vol. hydrogen at the bottom of the vessel); both mixtures were ignited at the top of the vessel. The paper presents modelling approaches used by the partners comparison of simulation results against the experiment data and conclusions regarding the non-uniform mixture combustion modelling in real-life applications.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
High Pressure Hydrogen Jets in the Presence of a Surface
Sep 2009
Publication
The effect of surfaces on the extent of high pressure vertical and horizontal unignited jets is studied using CFD numerical simulations performed with FLACS Hydrogen and Phoenics. For a constant flow rate release of hydrogen from a 284 bar storage unit through a 8.5 mm orifice located 1 meter from the ground the maximum extent of the flammable cloud is determined as a function of time and compared to a free vertical hydrogen jet under identical release conditions. The results are compared to methane numerical simulations and to the predictions of the Birch correlations for the size of the flammable cloud. We find that the maximum extent of the flammable clouds of free jets obtained using CFD numerical simulations for both hydrogen and methane are in agreement with the Birch predictions. For hydrogen horizontal free jets there is strong buoyancy effect observed towards the end of the flammable cloud thus noticeably reducing its centreline extent. For methane horizontal free jets this effect is not observed. For methane the presence of the ground results in a pronounced increase in the extent of the flammable cloud compared to a free jet. The effects of a surface on vertical jets are also studied.
Hydrogen Safety and Permitting Hydrogen Fueling Stations
Sep 2007
Publication
Two key aspects of hydrogen safety are (1) incorporating data and analysis from research development and demonstration (RD&D) into the codes and standards development process; and (2) adopting and enforcing these codes and standards by state and local permitting officials. This paper describes work that the U.S. Department of Energy (DOE) is sponsoring to address these aspects of hydrogen safety. For the first DOE is working with the automobile and energy industries to identify and address high priority RD&D to establish a sound scientific basis for requirements that are incorporated in hydrogen codes and standards. The high priority RD&D needs are incorporated and tracked in an RD&D Roadmap adopted by the Codes and Standards Technical Team of the FreedomCAR and Fuel Partnership. DOE and its national laboratories conduct critical RD&D and work with key standards and model code development organizations to help incorporate RD&D results into the codes and standards process. To address the second aspect DOE has launched an initiative to facilitate the permitting process for hydrogen fueling stations (HFS). A key element of this initiative will be a Web-based information repository a toolkit that includes information fact sheets networking charts to encourage information exchange among code officials who have permitted or are in the process of permitting HFS templates to show whether a proposed station footprint conforms to requirements in the jurisdiction and a database of requirements incorporated in key codes and standards. The information repository will be augmented by workshops for code officials and station developers in jurisdictions that are likely to have HFS in the near future.
Experimental and Numerical Investigation of Hydrogen Gas Auto-ignition
Sep 2007
Publication
This paper describes hydrogen self-ignition as a result of the formation of a shock wave in front of a high-pressure hydrogen gas propagating in the tube and the semi-confined space for which the numerical and experimental investigation was done. An increase in the temperature behind the shock wave leads to the ignition on the contact surface of the mixture of combustible gas with air. The required condition of combustible self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. Experimental technique was based on a high-pressure chamber inflating with hydrogen burst disk failure and pressurized hydrogen discharge into tube of round or rectangular cross section filled with air. A physicochemical model involving the gas dynamic transport of a viscous gas the detailed kinetics of hydrogen oxidation k-ω differential turbulence model and the heat exchange was used for calculations of the self-ignition of high-pressure hydrogen. The results of our experiments and model calculations show that self-ignition in the emitted jet takes place. The stable development of self-ignition naturally depends on the orifice size and the pressure in the vessel a decrease in which leads to the collapse of the ignition process. The critical conditions are obtained.
Optimization of a Solar Hydrogen Storage System: Safety Considerations
Sep 2007
Publication
Hydrogen has been extensively used in many industrial applications for more than 100 years including production storage transport delivery and final use. Nevertheless the goal of the hydrogen energy system implies the use of hydrogen as an energy carrier in a more wide scale and for a public not familiarised with hydrogen technologies and properties.<br/>The road to the hydrogen economy passes by the development of safe practices in the production storage distribution and use of hydrogen. These issues are essential for hydrogen insurability. We have to bear in mind that a catastrophic failure in any hydrogen project could damage the insurance public perception of hydrogen technologies at this early step of development of hydrogen infrastructures.<br/>Safety is a key issue for the development of hydrogen economy and a great international effort is being done by different stakeholders for the development of suitable codes and standards concerning safety for hydrogen technologies [1 2]. Additionally to codes and standards different studies have been done regarding safety aspects of particular hydrogen energy projects during the last years [3 4]. Most of such have been focused on hydrogen production and storage in large facilities transport delivery in hydrogen refuelling stations and utilization mainly on fuel cells for mobile and stationary applications. In comparison safety considerations for hydrogen storage in small or medium scale facilities as usual in hydrogen production plants from renewable energies have received relatively less attention.<br/>After a brief introduction to risk assessment for hydrogen facilities this paper reports an example of risk assessment of a small solar hydrogen storage system applied to the INTA Solar Hydrogen Production and Storage facility as particular case and considers a top level Preliminary Failure Modes and Effects Analysis (FMEA) for the identification of hazard associated to the specific characteristics of the facility.
CFD Simulations of Hydrogen Release and Dispersion Inside the Storage Room of a Hydrogen Refuelling Station Using the ADREA-HF Code
Sep 2007
Publication
The paper presents CFD simulations of high pressure hydrogen release and dispersion inside the storage room of realistic hydrogen refuelling station and comparison to experimental data. The experiments were those reported by Tanaka et al. (2005) carried out inside an enclosure 5 m wide 6 m long and 4 m high having 1 m high ventilation opening on all sidewalls (half or fully open) containing an array of 35 x 250 L cylinders. The scenarios investigated were 40 MPa storage pressure horizontal releases from the center of the room from one cylinder with orifices of diameters 0.8 1.6 and 8 mm. The release calculations were performed using GAJET integral code. The CFD dispersion simulations were performed using the ADREA-HF CFD code. The structure of the flow and the mixing patterns were also investigated by presenting the predicted hydrogen concentration field. Finally the effects of release parameters natural ventilation and wind conditions were analyzed too.
Hydrogen Refuelling Stations for Public Transport Quality and Safety in the User-interface
Sep 2007
Publication
Hydrogen stations and supply systems for public transport have been demonstrated in a number of European cities during the last four years. The first refuelling facility was put into operation in Reykjavik in April 2003. Experience from the four years of operation shows that safety related incidents are more frequent in the user interface than in the other parts of the hydrogen refuelling station (HRS). This might be expected taking into account the fact that the refuelling is manually operated and that according to industrial statistics human failures normally stand for more than 80% of all safety related incidents. On the other hand the HRS experience needs special attention since the refuelling at the existing stations is carried out by well trained personnel and that procedures and systems are followed closely. So far the quality and safety approach to hydrogen refuelling stations has been based on industrial experience. This paper addresses the challenge related to the development of safe robust and easy to operate refuelling systems. Such systems require well adapted components and system solutions as well as user procedures. The challenge to adapt the industrial based quality and safety philosophy and methodologies to new hydrogen applications and customers in the public sector is addressed. Risk based safety management and risk acceptance criteria relevant to users and third party are discussed in this context. Human factors and the use of incident reporting as a tool for continuous improvement are also addressed. The paper is based on internal development programmes for hydrogen refuelling stations in Hydro and on participation in international EU and IPHE projects such as CUTE HyFLEET:CUTE HySafe and HyApproval.
Numerical Study of Spontaneous Ignition of Pressurized Hydrogen Release into Air
Sep 2007
Publication
Numerical simulations have been carried out for spontaneous ignition of pressurized hydrogen release directly into air. Results showed a possible mechanism for spontaneous ignition due to molecular diffusion. To accurately calculate the molecular transport of species momentum and energy in a multi-component gaseous mixture a mixture-averaged multi-component approach was employed in which thermal diffusion is accounted for. To reduce false numerical diffusion extremely fine meshes were used along with the ALE (Arbitrary Lagrangian-Eulerian) method. The ALE method was employed to track the moving contact surface with moving clustered grids. A detailed kinetic scheme with 21 elementary steps and 8 reactive chemical species was implemented for combustion chemistry. The scheme gives due consideration to third body reactions and reaction-rate pressure-dependant “fall-off” behavior. The autoignition of pressurized hydrogen release was previously observed in laboratory tests [2-3] and suspected as possible cause of some accidents. The present numerical study successfully captured this scenario. Autoignition was predicted to first take place at the tip region of the hydrogen-air contact surface due to mass and energy exchange between low temperature hydrogen and shock-heated air at the contact surface through molecular diffusion. The initial flame thickness is extremely thin due to the limiting molecular diffusion. The combustion region extends downward along the contact surface as it moves downstream. As the hydrogen jet developed downstream the front contact surface tends to be distorted by the developed flow of the air. Turbulence plays an important role in mixing at the region of the distorted contact surface. This is thought to be a major factor for the initial laminar flame to turn into a final stable turbulent flame.
Safety-Barrier Diagrams for Documenting Safety of Hydrogen Applications
Sep 2007
Publication
Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. In Denmark they are used to inform the authorities and the nonexperts on safety relevant issues as safety-barrier diagrams are less complex compared to fault trees and are easy to understand. Internationally there is a growing interest in this concept with the use of so-called “bowtie” diagrams which are a special case of safety-barrier diagrams. Especially during the on-going introduction of new hydrogen technologies or applications as e.g. hydrogen refueling stations this technique is considered a valuable tool to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that there is a direct focus on those system elements that need to be subject to safety management in terms of design and installation operational use inspection and monitoring and maintenance. Safety-barrier diagrams support both quantitative and qualitative or deterministic approaches. The paper will describe the background and syntax of the methodology and thereafter the use of such diagrams for hydrogen technologies are demonstrated.
Testing Safety of Hydrogen Components
Sep 2007
Publication
Hydrogen as a new and ecologic energy source is tempting though it creates the challenge of ensuring the safe use of hydrogen for all future consumers. Making sure that a hydrogen vehicle can be simply and safely used by anyone while performing as expected requires that the car be light with built-in safety features. This is achieved by combining high pressure composite cylinders with strict test procedures. Composite cylinders of up to 150 L operated to a maximum of 700 bar are required for vehicle applications. Air Liquide has developed test benches to hydraulically cycle such cylinders at 1400 bar and up to 3500 bar for burst tests. These tests are performed under controlled temperature conditions at ambient and extreme temperatures in order to simulate cylinder aging. Components in gas service such as valves hoses and other pressure devices are tested up to 1400 bars with hydrogen to simulate actual usage conditions. Hydrogen is used as a testing gas instead of nitrogen which is commonly used for such tests because hydrogen interacts with materials (e.g. hydrogen embrittlement) and because hydrogen has a special thermodynamic behaviour ( pressure drop velocity heat exchange…)
No more items...