Production & Supply Chain
Cotton Stalk Activated Carbon-supported Co–Ce–B Nanoparticles as Efficient Catalysts for Hydrogen Generation Through Hydrolysis of Sodium Borohydride
Nov 2019
Publication
Porous cotton stalk activated carbons (CSAC) were prepared by phosphoric acid activation of cotton stalks in a fluidized bed. The CSAC-supported Co–B and Co–Ce–B catalysts were prepared by the impregnation-chemical reduction method. The samples were characterized by the nitrogen adsorption XRD FTIR and TEM measurements. The effects of the sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations reaction temperature and recy Read More
Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland
Sep 2020
Publication
This study documents the results of economic assessment concerning four variants of coal gasification to hydrogen in a shell reactor. That assessment has been made using discounting methods (NPV: net present value IRR: internal rate of return) as well as indicators based on a free cash flow to firm (FCFF) approach. Additionally sensitivity analysis has been carried out along with scenario analysis in current market conditions concerning prices of hard Read More
Thermodynamic Analysis of the Effect of Green Hydrogen Addition to a Fuel Mixture on the Steam Methane Reforming Process
Oct 2021
Publication
Steam methane (CH4–H2O) reforming in the presence of a catalyst usually nickel is the most common technology for generating synthesis gas as a feedstock in chemical synthesis and a source of pure H2 and CO. What is essential from the perspective of further gas use is the parameter describing a ratio of equilibrium concentration of hydrogen to carbon monoxide (/ = 2/). The parameter is determined by operating temperature and the initial ratio of Read More
Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
Oct 2021
Publication
The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However commercially practiced pathways to hydrogen production todays are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international com Read More
Life Cycle Assessment of Hydrogen from Proton Exchange Membrane Water Electrolysis in Future Energy Systems
Jan 2019
Publication
This study discusses the potential of H2 production by proton exchange membrane water electrolysis as an effective option to reduce greenhouse gas emissions in the hydrogen sector. To address this topic a life cycle assessment is conducted to compare proton exchange membrane water electrolysis versus the reference process - steam methane reforming. As a relevant result we show that hydrogen production via proton exchange membrane Read More
Global Status of CCS 2021: CCS Accelerating to Net Zero
Oct 2021
Publication
Carbon capture and storage (CCS) continues to make significant progress around the world against a backdrop of greater climate action from countries and private companies. The Global Status of CCS 2021 demonstrates the critical role of CCS as nations and industry accelerate to net-zero.The report provides detailed analyses of the global project pipeline international policy finance and emerging trends. In addition four regional overviews highlight the r Read More
Layered Transition Metal Selenophosphites for Visible Light Photoelectrochemical Production of Hydrogen
Jun 2021
Publication
The growing consumption of global energy has posed serious challenges to environmental protection and energy supplies. A promising solution is via introducing clean and sustainable energy sources including photoelectrochemical hydrogen fuel production. 2D materials such as transition metal trichalcogenphosphites (MPCh3) are gaining more and more interest for their potential as photocatalysts. Crystals of transition metal selenophosp Read More
Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery
Mar 2020
Publication
Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications due to its many advantages. However the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit refo Read More
In Situ Irradiated X-Ray Photoelectron Spectroscopy on Ag-WS2 Heterostructure For Hydrogen Production Enhancement
Oct 2020
Publication
The hot electron transition of noble materials to catalysis accelerated by localized surface plasmon resonances (LSPRs) was detected by in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) in this article. This paper synthesized an Ag Nanowire (AgNW) @ WS2 core-shell structure with an ultra-thin shell of WS2(3 ∼ 7 nm) and characterized its photocatalytic properties. The AgNW@WS2 core-shell structure exhibited different surface-enhanced Raman Read More
Delivering Clean Growth: CCUS Cost Challenge Taskforce Report
Jul 2018
Publication
An independent report by the CCUS Cost Challenge Taskforce setting out the industry’s view on how best to progress carbon capture usage and storage (CCUS) in the UK in order to enable the UK to have the option of deploying CCUS at scale during the 2030s subject to costs coming down sufficiently.
Modeling of Thermal Performance of a Commercial Alkaline Electrolyzer Supplied with Various Electrical Currents
Nov 2021
Publication
Hydrogen produced by solar and other clean energy sources is an essential alternative to fossil fuels. In this study a commercial alkaline electrolyzer with different cell numbers and electrode areas are simulated for different pressure temperature thermal resistance and electrical current. This alkaline electrolyzer is considered unsteady in simulations and different parameters such as temperature are obtained in terms of time. The obtained resu Read More
Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage
Aug 2021
Publication
Storing renewable energy in chemicals like hydrogen can bring various benefits like high energy density seasonal storability possible cost reduction of the final product and the potential to let renewable power penetrate other markets and to overcome their intermittent availability. In the last year’s production of this gas from renewable energy sources via electrolysis has grown its reputation as one feasible solution to satisfy future zero-emission energy de Read More
Development of an Operation Strategy for Hydrogen Production Using Solar PV Energy Based on Fluid Dynamic Aspects
Apr 2017
Publication
Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However wind and solar energy sources are highly dependent on weather conditions. As a result power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency a novel operation strategy is proposed in this stu Read More
Modeling Photovoltaic-electrochemical Water Splitting Devices for the Production of Hydrogen Under Real Working Conditions
Jan 2022
Publication
Photoelectrochemical splitting of water is potentially a sustainable and affordable solution to produce hydrogen from sun light. Given the infancy stage of technology development it is important to compare the different experimental concepts and identify the most promising routes. The performance of photoelectrochemical devices is typically measured and reported under ideal irradiation conditions i.e. 1 sun. However real-life operating conditio Read More
Feasibility of Hydrogen Production from Steam Reforming of Biodiesel (FAME) Feedstock on Ni-supported Catalysts
Jan 2015
Publication
The catalytic steam reforming of biodiesel was examined over Ni-alumina and Ni–ceria–zirconia catalysts at atmospheric pressure. Effects of temperatures of biodiesel preheating/vaporising (190–365 ◦C) and reforming (600–800 ◦C) molar steam to carbon ratio (S/C = 2–3) and residence time in the reformer represented by the weight hourly space velocity ‘WHSV’ of around 3 were examined for 2 h. Ni supported on calcium aluminate and on ceria–zirco Read More
Photocatalytic Production of Hydrogen from Binary Mixtures of C-3 Alcohols on Pt/TiO2: Influence of Alcohol Structure
Oct 2018
Publication
The effect of alcohol structure on photocatalytic production of H2 from C-3 alcohols was studied on 0.5% Pt/TiO2. A C-2 alcohol (ethanol) was also included for comparative purposes. For individual reactions from 10% v/v aqueous solutions of alcohols hydrogen production followed the order ethanol ≈ propan-2-ol > propan-1- ol > propane-123-triol > propane-12-diol > propane-13-diol. The process was found to be quite sensitive to the presence of additional Read More
Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review
Nov 2020
Publication
Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that Read More
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of Read More
Co-production of Hydrogen and Power from Black Liquor Via Supercritical Water Gasification, Chemical Looping and Power Generation
Mar 2019
Publication
An integrated system to harvest efficiently the energy from the waste of pulp mill industry which is black liquor (BL) is proposed and evaluated. The proposed system consists of the supercritical water gasification (SCWG) of BL syngas chemical looping and power generation. To minimize the exergy loss throughout the system and to optimize the energy efficiency process design and integration is conducted by employing the principles of exergy recovery and Read More
Introducing Power-to-H3: Combining Renewable Electricity with Heat, Water and Hydrogen Production and Storage in a Neighbourhood
Oct 2019
Publication
In the transition from fossil to renewable energy the energy system should become clean while remaining reliable and affordable. Because of the intermittent nature of both renewable energy production and energy demand an integrated system approach is required that includes energy conversion and storage. We propose a concept for a neighbourhood where locally produced renewable energy is partly converted and stored in the form of heat and hydr Read More
Bench-Scale Steam Reforming of Methane for Hydrogen Production
Jul 2019
Publication
The effects of reaction parameters including reaction temperature and space velocity on hydrogen production via steam reforming of methane (SRM) were investigated using lab- and bench-scale reactors to identify critical factors for the design of large-scale processes. Based on thermodynamic and kinetic data obtained using the lab-scale reactor a series of SRM reactions were performed using a pelletized catalyst in the bench-scale reactor with a hydrog Read More
SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment
Nov 2020
Publication
Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electr Read More
Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential
Nov 2021
Publication
Hydrogen derived from biomass feedstock (biohydrogen) can play a significant role in Germany’s hydrogen economy. However the bioenergy potential and environmental benefits of biohydrogen production are still largely unknown. Additionally there are no uniform evaluation methods present for these emerging technologies. Therefore this paper presents a methodological approach for the evaluation of bioenergy potentials and the attainable environment Read More
Energy, Exergy, and Environmental Analyses of Renewable Hydrogen Production Through Plasma Gasification of Microalgal Biomass
Feb 2021
Publication
In this study an energy exergy and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels namely raw microalgae (RM) and three torrefied microalgal fuels (TM200 TM250 and TM300) are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-tobiomass (S/B) ratio on the syngas and hydrogen yields and e Read More
A Review on Recent Progress in the Integrated Green Hydrogen Production Processes
Feb 2022
Publication
The thermochemical water‐splitting method is a promising technology for efficiently con verting renewable thermal energy sources into green hydrogen. This technique is primarily based on recirculating an active material capable of experiencing multiple reduction‐oxidation (redox) steps through an integrated cycle to convert water into separate streams of hydrogen and oxygen. The thermochemical cycles are divided into two main categories according Read More
Integration of a Dark Fermentation Effluent in a Microalgal-based Biorefinery for the Production of High-added Value Omega-3 Fatty Acids
Mar 2019
Publication
Dark fermentation is an anaerobic digestion process of biowaste used to produce hydrogen- for generation of energy- that however releases high amounts of polluting volatile fatty acids such as acetic acid in the environment. In order for this biohydrogen production process to become more competitive the volatile fatty acids stream can be utilized through conversion to high added-value metabolites such as omega-3 fatty acids. The docosahexaenoic acid is o Read More
Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition
Oct 2021
Publication
This study aims to reduce greenhouse gas emissions to the atmosphere and effectively utilize wasted resources by converting methane the main component of biogas into hydrogen. Therefore a reactor was developed to decompose methane into carbon and hydrogen using solar thermal sources instead of traditional energy sources such as coal and petroleum. The optical distributions were analyzed using TracePro a Monte Carlo ray-tracing-based pr Read More
Black TiO2 for Solar Hydrogen Conversion
Feb 2017
Publication
Titanium dioxide (TiO2 ) has been widely investigated for photocatalytic H2 evolution and photoelectrochemical (PEC) water splitting since 1972. However its wide bandgap (3.0–3.2 eV) limits the optical absorption of TiO2 for sufficient utilization of solar energy. Blackening TiO2 has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities and aroused widespread research interest. In this article we Read More
Study of the Co-production of Butanol and Hydrogen by Immobilizing Clostridium Acetobutylicum CICC8012
Mar 2019
Publication
Three kinds of carrier materials activated carbon bagasse and brick were used as immobilizing carriers during fermentation by Clostridium acetobutylicum CICC8012. Compared with cell suspended fermentation enhanced fermentation performance was achieved during immobilizing cell fermentation with shorter fermentation time required. During the experiments hydrogen and butanol appear to be competitive events. The best fermentation performance Read More
Multi-Tubular Reactor for Hydrogen Production CFD Thermal Design and Experimental Testing
Jan 2019
Publication
This study presents the Computational Fluid Dynamics (CFD) thermal design and experimental tests results for a multi-tubular solar reactor for hydrogen production based on the ferrite thermochemical cycle in a pilot plant in the Plataforma Solar de Almería (PSA). The methodology followed for the solar reactor design is described as well as the experimental tests carried out during the testing campaign and characterization of the reactor. The CFD Read More
Review of Renewable Energy-based Hydrogen Production Processes for Sustainable Energy Innovation
Dec 2019
Publication
In this review we primarily analyze the hydrogen production technologies based on water and biomass including the economic technological and environmental impacts of different types of hydrogen production technologies based on these materials and comprehensively compare them. Our analyses indicate that all renewable energy-based approaches for hydrogen production are more environmentally friendly than fossil-based hydrogen gene Read More
Hydrogen‐Rich Gas Production from Two‐Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite
Jan 2022
Publication
Tao Xu,
Jue Xu and
Yongping Wu
The potential of catalytic pyrolysis of biomass for hydrogen and bio‐oil production has drawn great attention due to the concern of clean energy utilization and decarbonization. In this paper the catalytic pyrolysis of pine sawdust with calcined dolomite was carried out in a novel moving bed reactor with a two‐stage screw feeder. The effects of pyrolysis temperature (700–900 °C) and catalytic temperature (500–800 °C) on pyrolysis performance were inv Read More
Acid Acceleration of Hydrogen Generation Using Seawater as a Reactant
Jul 2016
Publication
The present study describes hydrogen generation from NaBH4 in the presence of acid accelerator boric oxide or B2O3 using seawater as a reactant. Reaction times and temperatures are adjusted using various delivery methods: bulk addition funnel and metering pump. It is found that the transition metal catalysts typically used to generate hydrogen gas are poisoned by seawater. B2O3 is not poisoned by seawater; in fact reaction times are conside Read More
Bioanode as a Limiting Factor to Biocathode Performance in Microbial Electrolysis Cells
Mar 2017
Publication
The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m2 and 0.37 A/ Read More
Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway
Jun 2019
Publication
In Norway where nearly 100% of the power is hydroelectric it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a start-up market with low demand for hydrogen one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilizatio Read More
Pathways to Hydrogen as an Energy Carrier
Feb 2007
Publication
When hydrogen is used as an alternative energy carrier it is very important to understand the pathway from the primary energy source to the final use of the carrier. This involves for example the understanding of greenhouse gas emissions associated with the production of hydrogen and throughout the lifecycle of a given utilization pathway as well as various energy or exergy1 efficiencies and aspects involved. This paper which is based on a talk given at the Read More
Tracking the Evolution of a Single Composite Particle During Redox Cycling for Application in H2 Production
Mar 2020
Publication
Composite materials consisting of metal and metal oxide phases are being researched intensively for application in various energy conversion and storage technologies. In these applications composites are often expected to operate under redox conditions at elevated temperature. The understanding of the dynamics of composite phase and morphology evolution during redox cycling is still very limited yet critical to maximising performance and increa Read More
Sustainable Hydrogen Production: A Role for Fusion
Apr 2007
Publication
This Meeting Report summarises the findings of a two-day workshop in April 2007 at the Culham Science Centre and Worcester College Oxford which explored the potential for large-scale Hydrogen production through methods other than electrolysis.Operating at the cusp of research and policy-making the UK Energy Research Centre's mission is to be the UK's pre-eminent centre of research and source of authoritative information and leadership on s Read More
Assessment of Hydrogen Direct Reduction for Fossil-free Steelmaking
Aug 2018
Publication
Climate policy objectives require zero emissions across all sectors including steelmaking. The fundamental process changes needed for reaching this target are yet relatively unexplored. In this paper we propose and assess a potential design for a fossil-free steelmaking process based on direct reduction of iron ore with hydrogen. We show that hydrogen direct reduction steelmaking needs 3.48 MWh of electricity per tonne of liquid steel mainly for the elec Read More
Hydrogen Production and Subsequent Adsorption/Desorption Process within a Modified Unitized Regenerative Fuel Cell
Apr 2019
Publication
For sustainable and incremental growth mankind is adopting renewable sources of energy along with storage systems. Storing surplus renewable energy in the form of hydrogen is a viable solution to meet continuous energy demands. In this paper the concept of electrochemical hydrogen storage in a solid multi-walled carbon nanotube (MWCNT) electrode integrated in a modified unitized regenerative fuel cell (URFC) is investigated. The method of solid ele Read More
Production of Hydrogen by Chemical Looping Reforming of Methane and Biogas using a Reactive and Durable Cu-based Oxygen Carrier
Apr 2022
Publication
The objective of this work was to assess the suitability of a synthetic Cu-based oxygen carrier in a continuous pilot plant for the production of blue and green hydrogen through the autothermal Chemical Looping Reforming (CLRa). In CLRa methane is converted to a H2 + CO mixture through partial oxidation and reforming reactions in the fuel reactor. The degree of the partial oxidation of methane was defined by controlling the oxygen flow in the air reacto Read More
Baseload Electricity and Hydrogen Supply Based on Hybrid PV-wind Power Plants
Sep 2019
Publication
The reliable supplies of electricity and hydrogen required for 100% renewable energy systems have been found to be achievable by utilisation of a mix of different resources and storage technologies. In this paper more demanding parameter conditions than hitherto considered are used in measurement of the reliability of variable renewable energy resources. The defined conditions require that supply of baseload electricity (BLEL) and baseload hydrogen Read More
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the Read More
Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications
May 2019
Publication
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in Read More
Pathways to Low-cost Clean Hydrogen Production with Gas Switching Reforming
Feb 2020
Publication
Gas switching reforming (GSR) is a promising technology for natural gas reforming with inherent CO2 capture. Like conventional steam methane reforming (SMR) GSR can be integrated with CO2 -gas shift and pressure swing adsorption units for pure hydrogen production. The resulting GSR-H2 process concept was techno-economically assessed in this study. Results showed that GSR-H2 can achieve 96% CO2 capture at a CO2 avoidance cost of 15 $/ton (i Read More
Potential for Hydrogen Production from Sustainable Biomass with Carbon Capture and Storage
Jan 2022
Publication
Low-carbon hydrogen is an essential element in the transition to net-zero emissions by 2050. Hydrogen production from biomass is a promising bio-energy with carbon capture and storage (BECCS) scheme that could produce low-carbon hydrogen and generate the carbon dioxide removal (CDR) envisioned to be required to offset hard-to-abate emissions. Here we design a BECCS supply chain for hydrogen production from biomass with carbon capture and Read More
Energy Production by Laser-induced Annihilation in Ultradense Hydrogen H(0)
Feb 2021
Publication
Laser-induced nuclear processes in ultra-dense hydrogen H(0) give ejection of bunches of mesons similar to known baryon annihilation processes. This process was recently described as useful for relativistic interstellar travel (Holmlid and Zeiner-Gundersen 2020) and more precise experimental results exist now. The mesons are identified from their known decay time constants at rest as slow charged kaons slow neutral long-lived kaons and slow char Read More
Pd Catalysts Supported on Bamboo-Like Nitrogen-Doped Carbon Nanotubes for Hydrogen Production
Mar 2021
Publication
Bamboo-like nitrogen-doped carbon nanotubes (N-CNTs) were used to synthesize supported palladium catalysts (0.2–2 wt.%) for hydrogen production via gas phase formic acid decomposition. The beneficial role of nitrogen centers of N-CNTs in the formation of active isolated palladium ions and dispersed palladium nanoparticles was demonstrated. It was shown that although the surface layers of N-CNTs are enriched with graphitic nitrogen palladium first inter Read More
A Direct Synthesis of Platinum/Nickel Co-catalysts on Titanium Dioxide Nanotube Surface from Hydrometallurgical-type Process Streams
Aug 2018
Publication
Solutions that simulate hydrometallurgical base metal process streams with high nickel (Ni) and minor platinum (Pt) concentrations were used to create Pt/Ni nanoparticles on TiO2 nanotube surfaces. For this electrochemical deposition – redox replacement (EDRR) was used that also allowed to control the nanoparticle size density and Pt/Ni content of the deposited nanoparticles. The Pt/Ni nanoparticle decorated titanium dioxide nanotubes (TiO2 nan Read More
Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study
Jan 2022
Publication
This paper presents an optimization modeling approach to support strategic planning for designing hydrogen supply chain (HSC) networks. The energy source for hydrogen production is proposed to be electricity generated at Mexican sugar factories. This study considers the utilization of existing infrastructure in strategic areas of the country which brings several advantages in terms of possible solutions. This study aims to evaluate the economic and enviro Read More
Fabrication of CdS/β-SiC/TiO2 Tri-composites That Exploit Hole- and Electron-transfer Processes for Photocatalytic Hydrogen Production Under Visible Light
Dec 2017
Publication
In this work CdS/SiC/TiO2 tri-composite photocatalysts that exploit electron- and hole-transfer processes were fabricated using an easy two-step method in the liquid phase. The photocatalyst with a 1:1:1 M ratio of CdS/SiC/TiO2 exhibited a rate of hydrogen evolution from an aqueous solution of sodium sulfite and sodium sulfide under visible light of 137 μmol h−1 g−1 which is 9.5 times that of pure CdS. β-SiC can act as a sink for the photogenerated holes b Read More
A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy
May 2016
Publication
A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H2 day−1 (3.65 kilotons per year) was performed to assess the economics of each technology and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems differentiated primarily by the extent of solar concentration (unconcentrated and 10× con Read More
Achieving High-rate Hydrogen Recovery from Wastewater Using Customizable Alginate Polymer Gel Matrices Encapsulating Biomass
Jul 2018
Publication
In addition to methane gas higher-value resources such as hydrogen gas are produced during anaerobic wastewater treatment. They are however immediately consumed by other organisms. To recover these high-value resources not only do the desired phenotypes need to be retained in the anaerobic reactor but the undesired ones need to be washed out. In this study a well-established alginate-based polymer gel with and without a coating layer Read More
Aqueous Phase Reforming in a Microchannel Reactor: The Effect of Mass Transfer on Hydrogen Selectivity
Aug 2013
Publication
Aqueous phase reforming of sorbitol was carried out in a 1.7 m long 320 mm ID microchannel reactor with a 5 mm Pt-based washcoated catalyst layer combined with nitrogen stripping. The performance of this microchannel reactor is correlated to the mass transfer properties reaction kinetics hydrogen selectivity and product distribution. Mass transfer does not affect the rate of sorbitol consumption which is limited by the kinetics of the reforming Read More
Integration of Chemical Looping Combustion for Cost-effective CO2 Capture from State-of-the-art Natural Gas Combined Cycles
May 2020
Publication
Chemical looping combustion (CLC) is a promising method for power production with integrated CO2 capture with almost no direct energy penalty. When integrated into a natural gas combined cycle (NGCC) plant however CLC imposes a large indirect energy penalty because the maximum achievable reactor temperature is far below the firing temperature of state-of-the-art gas turbines. This study presents a techno-economic assessment of a CLC plant Read More
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samp Read More
Production of H2-rich Syngas from Excavated Landfill Waste through Steam Co-gasification with Biochar
Jun 2020
Publication
Gasification of excavated landfill waste is one of the promising options to improve the added-value chain during remediation of problematic old landfill sites. Steam gasification is considered as a favorable route to convert landfill waste into H2-rich syngas. Co-gasification of such a poor quality landfill waste with biochar or biomass would be beneficial to enhance the H2 concentration in the syngas as well as to improve the gasification performance. In this Read More
Study on Hydrogen from Renewable Resources in the EU
Feb 2016
Publication
Hydrogen can be produced from a broad range of renewable energy sources acting as a unique energy hub providing low or zero emission energy to all energy consuming sectors. Technically and efficiently producing hydrogen from renewable sources is a key enabler for these developments.Traditionally hydrogen has been produced from fossil sources by steam methane reforming of natural gas. At present the technology of choice to produce ren Read More
Efficient Hydrogen Production with CO2 Capture Using Gas Switching Reforming
Jul 2019
Publication
Hydrogen is a promising carbon-neutral energy carrier for a future decarbonized energy sector. This work presents process simulation studies of the gas switching reforming (GSR) process for hydrogen production with integrated CO2 capture (GSR-H2 process) at a minimal energy penalty. Like the conventional steam methane reforming (SMR) process GSR combusts the off-gas fuel from the pressure swing adsorption unit to supply heat to the endothermi Read More
Project Cavendish - National Grid Gas Transmission
Sep 2020
Publication
The Isle of Grain (IoG) presents a technically feasible commercially viable strategic location to build and operate a hydrogen production facility which would be a key enabler to the UK meeting the Net Zero 2050 target.As highlighted in the ‘Net Zero – The UK’s contribution to stopping global warming’ report published by The Committee on Climate Change in May 2019 hydrogen is set to have a major part to play in reducing UK carbon dioxide emissions Read More
The Global Status of CCS 2020: Vital to Achieve Net Zero
Dec 2020
Publication
The Global Status of CCS Report 2020 demonstrates the vital role of carbon capture and storage technologies (CCS) in reducing emissions to net-zero by 2050 as well as documenting the current status and important milestones for the technology over the past 12 months.The report provides detailed information on and analyses of the global CCS facility pipeline international policy perspectives CO2 storage and the CCS legal and regulatory envi Read More
Mechanism of Action of Polytetrafluoroethylene Binder on the Performance and Durability of High-temperature Polymer Electrolyte Fuel Cells
Feb 2021
Publication
In this work new insights into impacts of the polytetrafluoroethylene (PTFE) binder on high temperature polymer electrolyte fuel cells (HT-PEFCs) are provided by means of various characterizations and accelerated stress tests. Cathodes with PTFE contents from 0 wt% to 60 wt% were fabricated and compared using electrochemical measurements. The results indicate that the cell with 10 wt% PTFE in the cathode catalyst layer (CCL) shows the best performanc Read More
A Numerical Performance Study of a Fixed-bed Reactor for Methanol Synthesis by CO2 Hydrogenation
Mar 2021
Publication
Synthetic fuels are needed to replace their fossil counterparts for clean transport. Presently their production is still inefficient and costly. To enhance the process of methanol production from CO2 and H2 and reduce its cost a particle-resolved numerical simulation tool is presented. A global surface reaction model based on the Langmuir-Hinshelwood-Hougen-Watson kinetics is utilized. The approach is first validated against standard benchmark proble Read More
The Role of Effectiveness Factor on the Modeling of Methanol Steam Reforming Over CuO/ZnO/Al2O3 Catalyst in a Multi-tubular Reactor
Jan 2022
Publication
A pseudo-homogeneous model for the methanol steam reforming process was developed based on reaction kinetics over a CuO/ZnO/Al2O3 catalyst and non-adiabatic heat and mass transfer performances in a co-current packed-bed reactor. A Thiele modulus method and an intraparticle distribution method were applied for predicting the effectiveness factors for main reactions and providing insights into the diffusion-reaction process in a cylindrical catalyst Read More
Thermodynamic Assessment of the Novel Concept of the Energy Storage System Using Compressed Carbon Dioxide, Methanation and Hydrogen Generator
Jul 2021
Publication
The main aim of this paper is to characterize the concept of a novel energy storage system based on compressed CO2 storage installation that uses an infrastructure of depleted coal mines to provide required volume of tanks and additionally hydrogen generators and a methanation installation to generate synthetic natural gas that can be used within the system or taken out of it e.g. to a gas grid. A detailed mathematical model of the proposed soluti Read More
Economic Viability and Environmental Efficiency Analysis of Hydrogen Production Processes for the Decarbonization of Energy Systems
Aug 2019
Publication
The widespread penetration of hydrogen in mainstream energy systems requires hydrogen production processes to be economically competent and environmentally efficient. Hydrogen if produced efficiently can play a pivotal role in decarbonizing the global energy systems. Therefore this study develops a framework which evaluates hydrogen production processes and quantifies deficiencies for improvement. The framework integrates slack-based d Read More
Compact Heat Integrated Reactor System of Steam Reformer, Shift Reactor and Combustor for Hydrogen Production from Ethanol
Jun 2020
Publication
A compact heat integrated reactor system (CHIRS) of a steam reformer a water gas shift reactor and a combustor were designed for stationary hydrogen production from ethanol. Different reactor integration concepts were firstly studied using Aspen Plus. The sequential steam reformer and shift reactor (SRSR) was considered as a conventional system. The efficiency of the SRSR could be improved by more than 12% by splitting water addition to the shift r Read More
Debunking the Myths of Hydrogen Production and Water Consumption
Dec 2020
Publication
In our factsheet where we debunk 3 myths around hydrogen production and water consumption: electrolysis uses vast amounts of water; electrolysis uses freshwater resources only and electrolysis is bound to create water stress in water-scarce regions.
The Role of the Substrate on the Mechanical and Thermal Stability of Pd Thin Films During Hydrogen (De)sorption
Nov 2020
Publication
In this work we studied the mechanical and thermal stability of ~100 nm Pd thin films magnetron sputter deposited on a bare oxidized Si(100) wafer a sputtered Titanium (Ti) intermediate layer and a spin-coated Polyimide (PI) intermediate layer. The dependence of the film stability on the film morphology and the film-substrate interaction was investigated. It was shown that a columnar morphology with elongated voids at part of the grain boundaries Read More
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered bas Read More
Hydrolysis-Based Hydrogen Generation Investigation of Aluminium System Adding Low-Melting Metals
Mar 2021
Publication
In this age of human civilization there is a need for more efficient cleaner and renewable energy as opposed to that provided by nonrenewable sources such as coal and oil. In this sense hydrogen energy has been proven to be a better choice. In this paper a portable graphite crucible metal smelting furnace was used to prepare ten multi-element aluminum alloy ingots with different components. The microstructure and phase composition of the ingots and Read More
A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates
May 2022
Publication
Hydrogen production from surplus solar electricity as energy storage for export purposes can push towards large-scale application of solar energy in the United Arab Emirates and the Middle East region; this region’s properties of high solar irradiance and vast empty lands provide a good fit for solar technologies such as concentrated solar power and photovoltaics. However a thorough comparison between the two solar technologies as well as Read More
Progress in Biofuel Production from Gasification
May 2017
Publication
Biofuels from biomass gasification are reviewed here and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production process design and integration and socio-environmental impacts of biofuel generation are discussed with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as Read More
A Developed Plasmatron Design to Enhance Production of Hydrogen in Synthesis Gas Produced by a Fuel Reformer System
Jan 2022
Publication
Feeding IC engines with hydrogen‐rich syngas as an admixture to hydrocarbon fuels can decrease pollutant emissions particularly NOx. It offers a potential technique for low‐environmen‐ tal impact hydrocarbon fuel use in automotive applications. However hydrogen‐rich reformate gas (syngas) production via fuel reforming still needs more research and optimization. In this paper we describe the effect of a plasma torch assembly design on syngas yield Read More
Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes
Mar 2021
Publication
Formic acid is a liquid organic hydrogen carrier giving hydrogen on demand using catalysts. Metal complexes are known to be used as efficient catalysts for the hydrogen production from formic acid decomposition. Their performance could be better than those of supported catalysts with metal nanoparticles. However difficulties to separate metal complexes from the reaction mixture limit their industrial applications. This problem can be resolved by sup Read More
Hydrogen Generation by Photocatalytic Reforming of Potential Biofuels: Polyols, Cyclic Alcohols, and Saccharides
Jan 2018
Publication
We have studied hydrogen gas production using photocatalysis from C2-C5 carbon chain polyols cyclic alcohols and mono and di-saccharides using palladium nanoparticles supported on a TiO2 catalyst. For many of the polyols the hydrogen evolution rate is found to be dictated by the number of hydroxyl groups and available a-hydrogens in the structure. However the rule only applies to polyols and cyclic alcohols while the sugar activity is limited by the bulky st Read More
Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production
Jan 2022
Publication
Hydrogen is an economical source of clean energy that has been utilized by industry for decades. In recent years demand for hydrogen has risen significantly. Hydrogen sources include water electrolysis hydrocarbon steam reforming and fossil fuels which emit hazardous greenhouse gases and therefore have a negative impact on global warming. The increasing worldwide population has created much pressure on natural fuels with a gro Read More
Power Generation Analysis of Terrestrial Ultraviolet-Assisted Solid Oxide Electrolyzer Cell
Jan 2022
Publication
This paper presents a novel system design that considerably improves the entrapment of terrestrial ultraviolet (UV) irradiance in a customized honeycomb structure to produce hydrogen at a standard rate of 7.57 slpm for places with a UV index > 11. Thermolysis of high salinity water is done by employing a solid oxide electrolyzer cell (SOEC) which comprises three customized novel active optical subsystems to filter track and concentrate terrestrial UV sola Read More
MELCOR Analysis of a SPARC Experiment for Spray-PAR Interaction During a Hydrogen Release
Oct 2020
Publication
A series of experiments were performed in the SPARC (spray-aerosol-recombiner-combustion) test facility to simulate a hydrogen mitigation system with the actuation of a PAR (passive auto-catalytic re-combiner) and spray system. In this study the SPARC-SPRAY-PAR (SSP1) experiment is chosen to benchmark the MELCOR (a lumped-parameter code for severe accident analysis) predictions against test data. For this purpose firstly we prepared the base input Read More
PEM Fuel Cell Performance with Solar Air Preheating
Feb 2020
Publication
Proton Exchange Membrane Fuel Cells (PEMFC) have proven to be a promising energy conversion technology in various power applications and since it was developed it has been a potential alternative over fossil fuel-based engines and power plants all of which produce harmful by-products. The inlet air coolant and reactants have an important effect on the performance degradation of the PEMFC and certain power outputs. In this work a theoretical model Read More
Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting
Jul 2017
Publication
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide f Read More
Large Transition State Stabilization From a Weak Hydrogen Bond
Jul 2020
Publication
A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯O[double bond length as m-dash]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol−1) than control rotors which could not form hydrogen bonds. The magnitude of the Read More
Clean Hydrogen Production by Ultrasound (Sonochemistry): The Effect of Noble Gases
Feb 2022
Publication
Power ultrasonic (> 100 kHz) splits water into free radicals and hydrogen. As a result water sonochemistry is considered as an alternative clean and fossil-fuel-free hydrogen production technique. In this research work the impact of rare gases (Xe Ar and He) on the sonochemical production of hydrogen as well as the population of active bubbles has been investigated computationally for various sonicated frequencies (213-515 kHz) and intensities (1-2 W/c Read More
Recent Advances in Seawater Electrolysis
Jan 2022
Publication
Hydrogen energy as a clean and renewable energy has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seaw Read More
Methane Emissions from Natural Gas and LNG Imports: An Increasingly Urgent Issue for the Future of Gas in Europe
Nov 2020
Publication
Pressure is mounting on the natural gas and LNG community to reduce methane emissions and this is most urgent in EU countries following the adoption of much tougher greenhouse gas reduction targets of 2030 and the publication of the European Commission’s Methane Strategy. With rapidly declining indigenous EU production and therefore rising import dependence there are increasing calls for emissions from imported pipeline gas and LNG to Read More
Remarkable Visible-light Induced Hydrogen Generation with ZnIn2S4 Microspheres/CuInS2 Quantum Dots Photocatalytic System
Oct 2020
Publication
A new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited stron Read More
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus i Read More
Treatment of Dark Fermentative H2 Production Effluents by Microbial Fuel Cells: A Tutorial Review on Promising Operational Strategies and Practices
Nov 2020
Publication
Deriving biohydrogen from dark fermentation is a practically suitable pathway for scaling-up and envisaged mass production. However a common issue with these systems is the incomplete conversion of feedstock as a result of which a process effluent with notable organic strength is left behind. The main components of dark fermentation effluents are volatile fatty acids that can be utilized by integrated applications involving bioelectrochemical syst Read More
Power-to-Gas: Electrolysis and Methanation Status Review
Jun 2019
Publication
This review gives a worldwide overview on Power-to-Gas projects producing hydrogen or renewable substitute natural gas focusing projects in central Europe. It deepens and completes the content of previous reviews by including hitherto unreviewed projects and by combining project names with details such as plant location. It is based on data from 153 completed recent and planned projects since 1988 which were evaluated with regards to plant allocati Read More
Hydrogen Production from Offshore Wind Parks: Current Situation and Future Perspectives
Jun 2021
Publication
With the increase in renewable energy connected to the grid new challenges arise due to its variable supply of power. Therefore it is crucial to develop new methods of storing energy. Hydrogen can fulfil the role of energy storage and even act as an energy carrier since it has a much higher energetic density than batteries and can be easily stored. Considering that the offshore wind sector is facing significant growth and technical advances hydrogen has the Read More
Renewable Hydrogen Production from the Organic Fraction of Municipal Solid Waste through a Novel Carbon-negative Process Concept
Apr 2022
Publication
Bioenergy with carbon capture and storage (BECCS) is one of the prevailing negative carbon emission technologies. Ensuring a hydrogen economy is essential to achieving the carbon-neutral goal. In this regard the present study contributed by proposing a carbon negative process for producing high purity hydrogen from the organic fraction of municipal solid waste (OFMSW). This integrated process comprises anaerobic digestion pyrolysis catalytic re Read More
The Merit and the Context of Hydrogen Production from Water and Its Effect on Global CO2 Emission
Feb 2022
Publication
For a green economy to be possible in the near future hydrogen production from water is a sought-after alternative to fossil fuels. It is however important to put things into context with respect to global CO2 emission and the role of hydrogen in curbing it. The present world annual production of hydrogen is about 70 million metric tons of which almost 50% is used to make ammonia NH3 (that is mostly used for fertilizers) and about 15% is used for other che Read More
Ordered Clustering of Single Atomic Te Vacancies in Atomically Thin PtTe2 Promotes Hydrogen Evolution Catalysis
Apr 2021
Publication
Exposing and stabilizing undercoordinated platinum (Pt) sites and therefore optimizing their adsorption to reactive intermediates offers a desirable strategy to develop highly efficient Pt-based electrocatalysts. However preparation of atomically controllable Pt-based model catalysts to understand the correlation between electronic structure adsorption energy and catalytic properties of atomic Pt sites is still challenging. Herein we report the atomically thin t Read More
Boosting Photocatalytic Hydrogen Production from Water by Photothermally Induced Biphase Systems
Feb 2021
Publication
Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred woo Read More
The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production
Oct 2016
Publication
This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG) and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models f Read More
Magnesium Gasar as a Potential Monolithic Hydrogen Absorbent
Feb 2021
Publication
The study focuses on the aspect of using the structure of gasars i.e. materials with directed open porosity as a potential hydrogen storage. The structure of the tested gasar is composed of a large number of thin open tubular pores running through the entire longitudinal section of the sample. This allows hydrogen to easily penetrate into the entire sample volume. The analysis of pore distribution showed that the longest diffusion path needed for full Read More
Modulating Electronic Structure of Metal-organic Frameworks by Introducing Atomically Dispersed Ru for Efficient Hydrogen Evolution
Mar 2021
Publication
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy yet still challenging. Herein we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in Read More
Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass
Jun 2021
Publication
In order to reduce global greenhouse gas emissions renewable energy technologies such as wind power and solar photovoltaic power systems have recently become more widespread. However Japan as a nation faces high reliance on imported fossil fuels for electricity generation despite having great potential for further renewable energy development. The focus of this study examines untapped geographical locations in Japan’s northern most prefecture Ho Read More
Self-sustainable Protonic Ceramic Electrochemical cells Using a Triple Conducting Electrode for Hydrogen and Power Production
Apr 2020
Publication
The protonic ceramic electrochemical cell (PCEC) is an emerging and attractive technology that converts energy between power and hydrogen using solid oxide proton conductors at intermediate temperatures. To achieve efficient electrochemical hydrogen and power production with stable operation highly robust and durable electrodes are urgently desired to facilitate water oxidation and oxygen reduction reactions which are the critical steps for bot Read More
A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors
Dec 2022
Publication
Global demand for alternative renewable energy sources is increasing due to the consumption of fossil fuels and the increase in greenhouse gas emissions. Hydrogen (H2 ) from biomass gasification is a green energy segment among the alternative options as it is environmentally friendly renewable and sustainable. Accordingly researchers focus on conducting experiments and modeling the reforming reactions in conventional and membrane reac Read More
No more items...