Skip to content
1900

Efficient Hydrogen Production with CO2 Capture Using Gas Switching Reforming

Abstract

Hydrogen is a promising carbon-neutral energy carrier for a future decarbonized energy sector. This work presents process simulation studies of the gas switching reforming (GSR) process for hydrogen production with integrated CO2 capture (GSR-H2 process) at a minimal energy penalty. Like the conventional steam methane reforming (SMR) process, GSR combusts the off-gas fuel from the pressure swing adsorption unit to supply heat to the endothermic reforming reactions. However, GSR completes this combustion using the chemical looping combustion mechanism to achieve fuel combustion with CO2 separation. For this reason, the GSR-H2 plant incurred an energy penalty of only 3.8 %-points relative to the conventional SMR process with 96% CO2 capture. Further studies showed that the efficiency penalty is reduced to 0.3 %-points by including additional thermal mass in the reactor to maintain a higher reforming temperature, thereby facilitating a lower steam to carbon ratio. GSR reactors are standalone bubbling fluidized beds that will be relatively easy to scale up and operate under pressurized conditions, and the rest of the process layout uses commercially available technologies. The ability to produce clean hydrogen with no energy penalty combined with this inherent scalability makes the GSR-H2 plant a promising candidate for further research.

Related subjects: Production & Supply Chain
Countries: Norway
Loading

Article metrics loading...

/content/journal154
2019-07-11
2024-12-27
/content/journal154
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error