Applications & Pathways
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines
Feb 2024
Publication
The utilization of hydrogen fuel in gas turbines brings significant changes to the thermophysical properties of flue gas including higher specific heat capacities and an enhanced steam content. Therefore hydrogen-fueled gas turbines are susceptible to health degradation in the form of steam-induced corrosion and erosion in the hot gas path. In this context the fault diagnosis of hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge there is a scarcity of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The present study however develops an artificial neural network (ANN)-based fault diagnosis model using the MATLAB environment. Prior to the fault detection isolation and identification modules physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the fault detection and isolation. Moreover the feedforward neural network-based regression algorithm showed quite good training testing and validation accuracies in terms of the root mean square error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms thereby prompting other incorrect faults during the fault detection and isolation modules. Additionally the performance of the fault identification module for the hydrogen fuel scenario was found to be marginally lower than that of the natural gas case due to assumption of small magnitudes of faults arising from hydrogen-induced corrosion.
Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application
May 2023
Publication
This paper provides a comprehensive review of the research progress current state-ofthe-art and future research directions of energy storage systems. With the widespread adoption of renewable energy sources such as wind and solar power the discourse around energy storage is primarily focused on three main aspects: battery storage technology electricity-to-gas technology for increasing renewable energy consumption and optimal configuration technology. The paper employs a visualization tool (CiteSpace) to analyze the existing works of literature and conducts an in-depth examination of the energy storage research hotspots in areas such as electrochemical energy storage hydrogen storage and optimal system configuration. It presents a detailed overview of common energy storage models and configuration methods. Based on the reviewed articles the future development of energy storage will be more oriented toward the study of power characteristics and frequency characteristics with more focus on the stability effects brought by transient shocks. This review article compiles and assesses various energy storage technologies for reference and future research.
Equivalent Minimum Hydrogen Consumption of Fuzzy Control-Based Fuel Cells: Exploration of Energy Management Strategies for Ships
Feb 2024
Publication
Aiming to solve the problems of insufficient dynamic responses the large loss of energy storage life of a single power cell and the large fluctuation in DC (direct current) bus voltage in fuel cell vessels this study takes a certain type of fuel cell ferry as the research object and proposes an improved equivalent minimum hydrogen consumption energy management strategy based on fuzzy logic control. First a hybrid power system including a fuel cell a lithium–iron–phosphate battery and a supercapacitor is proposed with the simulation of the power system of the modified mother ship. Second a power system simulation model and a double-closed-loop PI (proportion integration) control model are established in MATLAB/Simulink to design the equivalent hydrogen consumption model and fuzzy logic control strategy. The simulation results show that under the premise of meeting the load requirements the control strategy designed in this paper improves the Li-ion battery’s power the Li-ion battery’s SOC (state of charge) the bus voltage stability and the equivalent hydrogen consumption significantly compared with those before optimization which improves the stability and economy of the power system and has certain practical engineering value.
Thermal Design of a System for Mobile Powersupply
Sep 2023
Publication
Ever more stringent emission regulations for vehicles encourage increasing numbers of battery electric vehicles on the roads. A drawback of storing electric energy in a battery is the comparable low energy density low driving range and the higher propensity to deplete the energy storage before reaching the destination especially at low ambient temperatures. When the battery is depleted stranded vehicles can either be towed or recharged with a mobile recharging station. Several technologies of mobile recharging stations already exist however most of them use fossil fuels to recharge battery electric vehicles. The proposed novel zero emission solution for mobile charging is a combined high voltage battery and hydrogen fuel cell charging station. Due to the thermal characteristics of the fuel cell and high voltage battery (which allow only comparable low coolant temperatures) the thermal design for this specific application (available heat exchanger area zero vehicle speed air flow direction) becomes challenging and is addressed in this work. Experimental methods were used to obtain reliable thermal and electric power measurement data of a 30 kW fuel cell system which is used in the Mobile Hydrogen Powersupply. Subsequently simulation methods were applied for the thermal design and optimisation of the coolant circuits and heat exchangers. It is shown that an battery electric vehicle charging power of 22 kW requires a heat exchanger area of 1 m2 of which 60 % is used by the fuel cell heat exchanger and the remainder by the battery heat exchanger to achieve steady state operation at the highest possible ambient temperature of 436 °C. Furthermore the simulation showed that when the charging power of 22 kW is solely provided by the high voltage battery the highest possible ambient temperature is 42 °C. When the charging power is decreased operation up to the maximum ambient temperatures of 45 °C can be achieved. The results of maximum charging power and limiting ambient temperature give insights for further system improvements which are: sizing of fuel cell or battery trailer design and heat exchanger area operation strategy of the system (power split between high voltage battery and fuel cell) as well as possible dynamic operation scenarios.
Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel
Feb 2024
Publication
The Paris Agreement aims to limit global warming and one of the most polluting sectors is heavy industry where cement production is a significant contributor. This work briefly explores some alternatives recycling reducing clinker content waste heat recovery and carbon capture discussing their advantages and drawbacks. Then it examines the economic viability and benefits of increasing oxygen concentration in the primary burning air from 21 to 27 vol.% which could improve clinker production by 7% and the production of hydrogen through PEM electrolysis to make up 5% of the fuel thermal fraction considering both in a cement plant producing 3000 tons of clinker per day. This analysis used reference values from Secil an international company for cement and building materials to determine the required scale of the oxygen and hydrogen production respectively and calculate the CAPEX of each approach. It is concluded that oxygen enrichment can provide substantial fuel savings for a relatively low cost despite a possible significant increase in NOx emissions. However hydrogen production at this scale is not currently economically viable.
Experimental Activities on a Hydrogen-Fueled Spark-Ignition Engine for Light-Duty Applications
Nov 2023
Publication
The increase in the overall global temperature and its subsequent impact on extreme weather events are the most critical consequences of human activity. In this scenario transportation plays a significant role in greenhouse gas (GHG) emissions which are the main drivers of climate change. The decline of non-renewable energy sources coupled with the aim of reducing GHG emissions from fossil fuels has forced a shift towards a net-zero emissions economy. As an example of this transition the European Union has set 2050 as the target for achieving carbon neutrality. Hydrogen (H2 ) is gaining increasing relevance as one of the most promising carbon-free energy vectors. If produced from renewable sources it facilitates the integration of various alternative energy sources for achieving a carbon-neutral economy. Recently interest in its application to the transportation sector has grown including different power plant concepts such as fuel cells or internal combustion engines. Despite exhibiting significant drawbacks such as low density combustion instabilities and incompatibilities with certain materials hydrogen is destined to become one of the future fuels. In this publication experimental activities are reported that were conducted on a sparkignition engine fueled with hydrogen at different operating points. The primary objective of this research is to gain a better understanding of the thermodynamic processes that control combustion and their effects on engine performance and pollutant emissions. The results show the emission levels performance and combustion characteristics under different conditions of dilution load and injection strategy and timing.
Decarbonization with Induced Technical Change: Exploring the Niche Potential of Hydrogen in Heavy Transportation
Jan 2024
Publication
Fuel cells and electric batteries are competing technologies for the energy transition in heavy transportation. We explore the conditions for the survival of a unique technology in the long term. Learning by doing suggests focusing on a single technology while differentiation and decreasing return to scale (cost convexity) favor diversification. Exogenous technical change also plays a role. The interaction between these factors is analyzed in a general model. It is proved that in absence of convexity and exogenous technical change only one technology is used for the whole transition. We then apply this framework to analyze the competition between fuel-cell electric buses (FCEBs) and battery electric buses (BEB) in the European bus sector. There are both learning by doing and exogenous technical change. The model is calibrated and solved. It is shown that the existence of a niche for FCEBs critically depends on the speed at which cost reductions are achieved. The speed depends both on the size of the niche and the rate of learning by doing for FCEBs. Public policies to decentralize the socially optimal trajectory in terms of taxes (carbon) and subsidies (learning by doing) are derived.
Solar-driven (Photo)electrochemical Devices for Green Hydrogen Production and Storage: Working Principles and Design
Feb 2024
Publication
The large-scale deployment of technologies that enable energy from renewables is essential for a successful transition to a carbon-neutral future. While photovoltaic panels are one of the main technologies commonly used for harvesting energy from the Sun storage of renewable solar energy still presents some challenges and often requires integration with additional devices. It is believed that hydrogen – being a perfect energy carrier – can become one of the broadly utilised storage alternatives that would effectively mitigate the energy supply and demand issues associated with the intermittent nature of renewable energy sources. Current pathways in the development of green technologies indicate the need for more sustainable material utilisation and more efficient device operation. To address this requirement integration of various technologies for renewable energy harvesting conversion and storage in a single device appears as an advantageous option. From the hydrogen economy perspective systems driven by green solar electricity that allow for (photo)electrochemical water splitting would generate hydrogen with the minimal CO2 footprint. If at the same time one of the device electrodes could store the generated gas and release it on demand the utilisation of critical and often costly elements would be reduced with possible gain in more effective device operation. Although conceptually attractive this cross-disciplinary concept has not gained yet enough attention and only limited number of experimental setups have been designed tested and reported. This review presents the first exhaustive overview and critical examination of various laboratory-scale prototype setups that attempt to combine both the hydrogen production and storage processes in a single unit via integration of a metal hydride-based electrode into a photoelectrochemical cell. The architectures of presented configurations enables direct solar energy to hydrogen conversion and its subsequent storage in a single device which – in some cases – can also release the stored (hydrogen) energy on demand. In addition this work explores perspectives and challenges related with the potential upscaling of reviewed solar-to-hydrogen storage systems trying to map and indicate the main future directions of their technological development and optimization. Finally the review also combines information and expertise scattered among various research fields with the aim of stimulating much-needed exchange of knowledge to accelerate the progress in the development and deployment of optimum green hydrogen-based solutions.
H2 URESONIC: Design of a Solar-Hydrogen University Renewable Energy System for a New and Innovative Campus
Feb 2024
Publication
The necessity to move to sustainable energy solutions has inspired an investigation of innovative technologies for satisfying educational institutions’ sustainable energy needs. The possibility of a solar-hydrogen storage system and its integration into university energy management is investigated in this article. The study opens by providing context noting the growing relevance of renewable energy in universities as well as the necessity for effective energy storage systems. The goal is to delve into solar-hydrogen technology outlining its components operating mechanism and benefits over typical storage systems. The chapter on Integration Design examines current university energy infrastructure identifies problems and provides ways for integrating solar-hydrogen systems seamlessly. This integration relies heavily on technological and economic considerations such as a cost-benefit analysis and scalability studies. Case studies include real-world examples performance measurements and significant insights learned from successful implementations. The chapter Future Prospects investigates new trends in solar-hydrogen technology as well as the impact of government legislation providing a forward-looking viewpoint for colleges considering adoption. The report concludes with a summary of significant findings emphasizing the benefits of solar-hydrogen integration and making recommendations for future implementations. The limitation of this research is that it only focuses on design and simulation as a phase of preliminary study.
Environmental Implications and Levelized Cost Analysis of E-fuel Production under Photovoltaic Energy, Direct Air Capture, and Hydrogen
Jan 2024
Publication
The ecological transition in the transport sector is a major challenge to tackle environmental pollution and European legislation will mandate zero-emission new cars from 2035. To reduce the impact of petrol and diesel vehicles much emphasis is being placed on the potential use of synthetic fuels including electrofuels (e-fuels). This research aims to examine a levelised cost (LCO) analysis of e-fuel production where the energy source is renewable. The energy used in the process is expected to come from a photovoltaic plant and the other steps required to produce e-fuel: direct air capture electrolysis and Fischer-Tropsch process. The results showed that the LCOe-fuel in the baseline scenario is around 3.1 €/l and this value is mainly influenced by the energy production component followed by the hydrogen one. Sensitivity scenario and risk analyses are also conducted to evaluate alternative scenarios and it emerges that in 84% of the cases LCOe-fuel ranges between 2.8 €/l and 3.4 €/l. The findings show that the current cost is not competitive with fossil fuels yet the development of e-fuels supports environmental protection. The concept of pragmatic sustainability incentive policies technology development industrial symbiosis economies of scale and learning economies can reduce this cost by supporting the decarbonisation of the transport sector.
Research on the Technical Scheme of Multi-stack Common Rail Fuel Cell Engine Based on the Demand of Commercial Vehicle
Feb 2024
Publication
At present most fuel cell engines are single-stack systems and high-power single-stack systems have bottlenecks in meeting the power requirements of heavy-duty trucks mainly because the increase in the single active area and the excessive number of cells will lead to poor distribution uniformity of water gas and heat in the stack which will cause local attenuation and reduce the performance of the stack. This paper introduces the design concept of internal combustion engine takes three-stack fuel cell engine as an example designs multi-stack fuel cell system scheme and serialized high-voltage scheme. Through Intelligent control technology of independent hydrogen injection based on multi-stack coupling the hydrogen injection inflow of each stack is controlled online according to the real-time anode pressure to achieve accurate fuel injection of a single stack and ensure the consistency between multiple stacks. proves the performance advantage of multi-stack fuel cell engine through theoretical designintelligent control and test verification and focuses on analyzing the key technical problems that may exist in multi-stack consistency. The research results provide a reference for the design of multi-stack fuel cell engines and have important reference value for the powertrain design of long-distance heavy-duty and high-power fuel cell trucks.
Batteries or Hydrogen or Both for Grid Electricity Storage Upon Full Electrification of 145 Countries with Wind-Water-Solar?
Jan 2024
Publication
Grids require electricity storage. Two emerging storage technologies are battery storage (BS) and green hydrogen storage (GHS) (hydrogen produced and compressed with clean-renewable electricity stored then returned to electricity with a fuel cell). An important question is whether GHS alone decreases system cost versus BS alone or BS+GHS. Here energy costs are modeled in 145 countries grouped into 24 regions. Existing conventional hydropower (CH) storage is used along with new BS and/or GHS. A method is developed to treat CH for both baseload and peaking power. In four regions only CH is needed. In five CH+BS is lowest cost. Otherwise CH+BS+GHS is lowest cost. CH+GHS is never lowest cost. A metric helps estimate whether combining GHS with BS reduces cost. In most regions merging (versus separating) grid and non-grid hydrogen infrastructure reduces cost. In sum worldwide grid stability may be possible with CH+BS or CH+BS+GHS. Results are subject to uncertainties.
Hydrogen Fuel Cell Electric Trains: Technologies, Current Status, and Future
Feb 2024
Publication
Trains have been a crucial part of modern transport and their high energy efficiency and low greenhouse gas emissions make them ideal candidates for the future transport system. Transitioning from diesel trains to hydrogen fuel cell electric trains is a promising way to decarbonize rail transport. That’s because the fuel cell electric trains have several advantages over other electric trains such as lower life-cycle emissions and shorter refueling time than battery ones and less requirements for wayside infrastructure than the ones with overhead electric wires. However hydrogen fuel technology still needs to be advanced in areas including hydrogen production storage refueling and on-board energy management. Currently there are several pilot projects of hydrogen fuel cell electric trains across the globe especially in developed countries including one commercialized and permanent route in Germany. The experiences from the pilot projects will promote the technological and economic feasibility of hydrogen fuel in rail transport.
Low Platinum Fuel Cell as Enabler for the Hydrogen Fuel Cell Vehicle
Feb 2024
Publication
In this work the design and modeling of a fuel cell vehicle using low-loading platinum catalysts were investigated. Data from single fuel cells with low Pt-loading cathode catalysts were scaled up to fuel cell stacks and systems implemented in a vehicle and then compared to a commercial fuel cell vehicle. The low-loading Pt systems have shown lower efficiency at high loads compared to the commercial systems suggesting less stable materials. However the analysis showed that the vehicle comprising low-loading Pt catalysts achieves similar or higher efficiency compared to the commercial fuel cell vehicle when being scaled up for the same number of cells. When the systems were scaled up for the same maximum power as the commercial fuel cell vehicle all the low-loading Pt fuel cell systems showed higher efficiencies. In this case more cells are needed but still the amount of Pt is significantly reduced compared to the commercial one. The high-efficiency results can be associated with the vehicle’s power range operation that meets the region where the low-loading Pt fuel cells have high performance. The results suggested a positive direction towards the reduction of Pt in commercial fuel cell vehicles supporting a cost-competitive clean energy transition based on hydrogen.
On the Green Transformation of the Iron and Steel Industry: Market and Competition Aspects of Hydrogen Biomass Options
Feb 2024
Publication
The iron and steel industry is a major emitter of carbon dioxide globally. To reduce their carbon footprint the iron and steel industry pursue different decarbonization strategies including deploying bio-based materials and energy carriers for reduction carburisation and/or energy purposes along their value-chains. In this study two potential roles for biomass were analysed: (a) substituting for fossil fuels in iron-ore pellets induration and (b) carburisation of DRI (direct reduced iron) produced via fully hydrogen-based reduction. The purpose of the study was to analyse the regional demand-driven price and allocative effects of biomass assortments under different biomass demand scenarios for the Swedish iron and steel industry. Economic modelling was used in combination with spatial biomass supply assessments to predict the changes on relevant biomass markets. The results showed that the estimated demand increases for forest biomass will have significant regional price effects. Depending on scenario the biomass demand will increase up to 25 percent causing regional prices to more than doubling. In general the magnitude of the price effects was driven by the volumes and types of biomasses needed in the different scenarios with larger price effects for harvesting residues and industrial by-products compared to those of roundwood. A small price effect of roundwood means that the incentives for forest-owners to increase their harvests and thus also the availability of harvest residues are small. Flexibility in the feedstock sourcing (both regarding quality and geographic origin) will thus be important if forest biomass is to satisfy demands in iron and steel industry.
Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production
Feb 2024
Publication
To improve the recovery of waste heat and avoid the problem of abandoning wind and solar energy a multi-energy complementary distributed energy system (MECDES) is proposed integrating waste heat and surplus electricity for hydrogen storage. The system comprises a combined cooling heating and power (CCHP) system with a gas engine (GE) solar and wind power generation and miniaturized natural gas hydrogen production equipment (MNGHPE). In this novel system the GE’s waste heat is recycled as water vapor for hydrogen production in the waste heat boiler while surplus electricity from renewable sources powers the MNGHPE. A mathematical model was developed to simulate hydrogen production in three building types: offices hotels and hospitals. Simulation results demonstrate the system’s ability to store waste heat and surplus electricity as hydrogen thereby providing economic benefit energy savings and carbon reduction. Compared with traditional energy supply methods the integrated system achieves maximum energy savings and carbon emission reduction in office buildings with an annual primary energy reduction rate of 49.42–85.10% and an annual carbon emission reduction rate of 34.88–47.00%. The hydrogen production’s profit rate is approximately 70%. If the produced hydrogen is supplied to building through a hydrogen fuel cell the primary energy reduction rate is further decreased by 2.86–3.04% and the carbon emission reduction rate is further decreased by 12.67–14.26%. This research solves the problem of waste heat and surplus energy in MECDESs by the method of hydrogen storage and system integration. The economic benefits energy savings and carbon reduction effects of different building types and different energy allocation scenarios were compared as well as the profitability of hydrogen production and the factors affecting it. This has a positive technical guidance role for the practical application of MECDESs.
A Complete Assessment of the Emission Performance of an SI Engine Fueled with Methanol, Methane and Hydrogen
Feb 2024
Publication
This study explores the potentiality of low/zero carbon fuels such as methanol methane and hydrogen for motor applications to pursue the goal of energy security and environmental sustainability. An experimental investigation was performed on a spark ignition engine equipped with both a port fuel and a direct injection system. Liquid fuels were injected into the intake manifold to benefit from a homogeneous charge formation. Gaseous fuels were injected in direct mode to enhance the efficiency and prevent abnormal combustion. Tests were realized at a fixed indicated mean effective pressure and at three different engine speeds. The experimental results highlighted the reduction of CO and CO2 emissions for the alternative fuels to an extent depending on their properties. Methanol exhibited high THC and low NOx emissions compared to gasoline. Methane and even more so hydrogen allowed for a reduction in THC emissions. With regard to the impact of gaseous fuels on the NOx emissions this was strongly related to the operating conditions. A surprising result concerns the particle emissions that were affected not only by the fuel characteristics and the engine test point but also by the lubricating oil. The oil contribution was particularly evident for hydrogen fuel which showed high particle emissions although they did not contain carbon atoms.
Economic Prospects of Taxis Powered by Hydrogen Fuel Cells in Palestine
Feb 2024
Publication
Recently major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study aimed to investigate the economic prospects of using hydrogen fuel cell technology in taxi fleets in Westbank. For this purpose a model that could predict the number of taxis was developed and the expected economic implications of using hydrogen fuel cell technology in taxi fleets were determined based on the expected future fuel consumption and future fuel cost. After analysis of the results it was concluded that a slight annual increase in the number of taxis in Palestine is expected in the future due to the government restrictions on issuing new taxi permits in order to get this sector organized. Furthermore using hydrogen fuel cells in taxi fleets is expected to become more and more feasible over time due to the expected future increase in oil price and the expected significant reduction in hydrogen cost as a result of the new technologies that are expected to be used in the production and handling of hydrogen.
A Systematic Review: The Role of Emerging Carbon Capture and Conversion Rechnologies for Energy Transition to Clean Hydrogen
Feb 2024
Publication
The exploitation of fossil fuels in various sectors such as power and heat generation and the transportation sector has been the primary source of greenhouse gas (GHG) emissions which are the main contributors to global warming. Qatar's oil and gas sector notably contributes to CO2 emissions accounting for half of the total emissions. Globally it is essential to transition into cleaner fossil fuel production to achieve carbon neutrality on a global scale. In this paper we focus on clean hydrogen considering carbon capture to make hydrogen a viable low carbon energy alternative for the transition to clean energy. This paper systematically reviews emerging technologies in carbon capture and conversion (CCC). First the road map stated by the Intergovernmental Panel on Climate Change (IPCC) to reach carbon neutrality is discussed along with pathways to decarbonize the energy sector in Qatar. Next emerging CO2 removal technologies including physical absorption using ionic liquids chemical looping and cryogenics are explored and analyzed regarding their advancement and limitations CO2 purity scalability and prospects. The advantages limitations and efficiency of the CO2 conversion technology to value-added products are grouped into chemical (plasma catalysis electrochemical and photochemical) and biological (photosynthetic and non-photosynthetic). The paper concludes by analyzing pathways to decarbonize the energy sector in Qatar via coupling CCC technologies for low-carbon hydrogen highlighting the challenges and research gaps.
No more items...