Applications & Pathways
Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining
Dec 2023
Publication
As a versatile energy carrier hydrogen possesses tremendous potential to reduce greenhouse emissions and promote energy transition. Global interest in producing hydrogen from renewable energy sources and transporting storing and utilizing hydrogen is rising rapidly. However the high costs of producing clean hydrogen and the uncertain application scenarios for hydrogen energy result in its relatively limited utilization worldwide. It is necessary to find new promising technological paths to drive the development of hydrogen energy. As part of technological innovation emerging technologies have vital features such as prominent impact novelty relatively fast growth etc. Identifying emerging hydrogen-energy-related technologies is important for discovering innovation opportunities during the energy transition. Existing research lacks analysis of the characteristics of emerging technologies. Thus this paper proposes a method combining the latent Dirichlet allocation topic model and hydrogen-energy expert group decision-making. This is used to identify emerging hydrogen-related technology regarding two features of emerging technologies novelty and prominent impact. After data processing topic modeling and analysis the patent dataset was divided into twenty topics. Six emerging topics possess novelty and prominent impact among twenty topics. The results show that the current hotspots aim to promote the application of hydrogen energy by improving the performance of production catalysts overcoming the wide power fluctuations and large-scale instability of renewable energy power generation and developing advanced hydrogen safety technologies. This method efficiently identifies emerging technologies from patents and studies their development trends. It fills a gap in the research on emerging technologies in hydrogen-related energy. Research achievements could support the selection of technology pathways during the low-carbon energy transition.
Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
Nov 2023
Publication
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants leading to net-zero carbon emissions by 2050. Hydrogen (H2 ) fuel cells particularly proton exchange membrane fuel cell (PEMFC) and ammonia (NH3 ) are screened out to be the feasible marine gaseous alternative fuels. Green hydrogen can reduce the highest carbon emission which might amount to 100% among those 5 types of hydrogen. The main hurdles to the development of H2 as a marine alternative fuel include its robust and energy-consuming cryogenic storage system highly explosive characteristics economic transportation issues etc. It is anticipated that fossil fuel used for 35% of vehicles such as marine vessels automobiles or airplanes will be replaced with hydrogen fuel in Europe by 2040. Combustible NH3 can be either burned directly or blended with H2 or CH4 to form fuel mixtures. In addition ammonia is an excellent H2 carrier to facilitate its production storage transportation and usage. The replacement of promising alternative fuels can move the marine industry toward decarbonization emissions by 2050.
Conversion of a Small-Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of EGR and Related Flow Limitations
Jan 2024
Publication
Hydrogen is seen as a prime choice for complete replacement of gasoline so as to achieve zero-emissions energy and mobility. Combining the use of this alternative fuel with a circular economy approach for giving new life to the existing fleet of passenger cars ensures further benefits in terms of cost competitiveness. Transforming spark ignition (SI) engines to H2 power requires relatively minor changes and limited added components. Within this framework the conversion of a small-size passenger car to hydrogen fueling was evaluated based on 0D/1D simulation. One of the methods to improve efficiency is to apply exhaust gas recirculation (EGR) which also lowers NOx emissions. Therefore the previous version of the quasi-dimensional model was modified to include EGR and its effects on combustion. A dedicated laminar flame speed model was implemented for the specific properties of hydrogen and a purpose-built sub-routine was implemented to correctly model the effects of residual gas at the start of combustion. Simulations were performed in several operating points representative of urban and highway driving. One of the main conclusions was that highpressure recirculation was severely limited by the minimum flow requirements of the compressor. Low-pressure EGR ensured wider applicability and significant improvement of efficiency especially during partial-load operation specific to urban use. Another benefit of recirculation was that pressure rise rates were predicted to be more contained and closer to the values expected for gasoline fueling. This was possible due to the high tolerance of H2 to the presence of residual gas.
Analysis of CO2 Emissions Reduction on the Future Hydrogen Supply Chain Network for Dubai Buses
Apr 2023
Publication
There is an impetus to decarbonize transportation sector and mitigate climate change. This study examines the effect of adopting hydrogen (H2) as a fuel for Dubai Buses at different penetration scales on carbon dioxide (CO2) emissions reduction. A H2 supply-chain system dynamics model is developed to conduct life cycle cost and environmental analysis and evaluate the efficacy of different carbon prices and subsidies. Gray green and mixed H2 production scenarios were considered. The results show that gray hydrogen reduces 7.1 million tons of CO2 which is half of green hydrogen buses. Replacing diesel fleet at end of lifetime with mixed hydrogen bus fleet was the optimal approach to promote green hydrogen at pump reaching $4/kg in a decade. This gradual transition reduces 62% of the well-to-wheel CO2 emissions of the new bus fleet and creates mass for economies of scale as carbon prices and subsidies cannot promote green hydrogen alone.
Deploying Green Hydrogen to Decarbonize China's Coal Chemical Sector
Dec 2023
Publication
China’s coal chemical sector uses coal as both a fuel and feedstock and its increasing greenhouse gas (GHG) emissions are hard to abate by electrification alone. Here we explore the GHG mitigation potential and costs for onsite deployment of green H2 and O2 in China’s coal chemical sector using a lifecycle assessment and techno-economic analyses. We estimate that China’s coal chemical production resulted in GHG emissions of 1.1 gigaton CO2 equivalent (GtCO2eq) in 2020 equal to 9% of national emissions. We project GHG emissions from China’s coal chemical production in 2030 to be 1.3 GtCO2eq ~50% of which can be reduced by using solar or wind power-based electrolytic H2 and O2 to replace coal-based H2 and air separation-based O2 at a cost of 10 or 153 Chinese Yuan (CNY)/tCO2eq respectively. We suggest that provincial regions determine whether to use solar or wind power for water electrolysis based on lowest cost options which collectively reduce 53% of the 2030 baseline GHG emissions at a cost of 9 CNY/tCO2eq. Inner Mongolia Shaanxi Ningxia and Xinjiang collectively account for 52% of total GHG mitigation with net cost reductions. These regions are well suited for pilot policies to advance demonstration projects.
Hydrogen Fuel Cell as an Electric Generator: A Case Study for a General Cargo Ship
Feb 2024
Publication
In this study real voyage data and ship specifications of a general cargo ship are employed and it is assumed that diesel generators are replaced with hydrogen proton exchange membrane fuel cells. The effect of the replacement on CO2 NOX SOX and PM emissions and the CII value is calculated. Emission calculations show that there is a significant reduction in emissions when hydrogen fuel cells are used instead of diesel generators on the case ship. By using hydrogen fuel cells there is a 37.4% reduction in CO2 emissions 32.5% in NOX emissions 37.3% in SOX emissions and 37.4% in PM emissions. If hydrogen fuel cells are not used instead of diesel generators the ship will receive an A rating between 2023 and 2026 a B rating in 2027 a C rating in 2028–2029 and an E rating in 2030. On the other hand if hydrogen fuel cells are used the ship will always remain at an A rating between 2023 and 2030. The capital expenditure (CAPEX) and operational expenditure (OPEX) of the fuel cell system are USD 1305720 and USD 2470320 respectively for a 15-year lifetime and the hydrogen fuel expenses are competitive at USD 260981 while marine diesel oil (MDO) fuel expenses are USD 206435.
Multiperiod Modeling and Optimization of Hydrogen-Based Dense Energy Carrier Supply Chains
Feb 2024
Publication
The production of hydrogen-based dense energy carriers (DECs) has been proposed as a combined solution for the storage and dispatch of power generated through intermittent renewables. Frameworks that model and optimize the production storage and dispatch of generated energy are important for data-driven decision making in the energy systems space. The proposed multiperiod framework considers the evolution of technology costs under different levels of promotion through research and targeted policies using the year 2021 as a baseline. Furthermore carbon credits are included as proposed by the 45Q tax amendment for the capture sequestration and utilization of carbon. The implementation of the mixed-integer linear programming (MILP) framework is illustrated through computational case studies to meet set hydrogen demands. The trade-offs between different technology pathways and contributions to system expenditure are elucidated and promising configurations and technology niches are identified. It is found that while carbon credits can subsidize carbon capture utilization and sequestration (CCUS) pathways substantial reductions in the cost of novel processes are needed to compete with extant technology pathways. Further research and policy push can reduce the levelized cost of hydrogen (LCOH) by upwards of 2 USD/kg.
Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions
Feb 2024
Publication
One of the key factors of the current energy transition is the use of hydrogen (H2 ) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential to reduce carbon dioxide (CO2 ) emissions. In recent years hydrogen or hydrogen-rich mixtures in internal combustion engines (ICEs) have gained popularity with numerous reports documenting their use in spark ignition (SI) and compression ignition (CI) engines. Homogeneous charge compression ignition (HCCI) engines have the potential for substantial reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions and the use of hydrogen along with this kind of combustion could substantially reduce CO2 emissions. However there have been few reports using hydrogen in HCCI engines with most studies limited to evaluating technical feasibility combustion characteristics engine performance and emissions in laboratory settings at sea level. This paper presents a study of HCCI combustion using hydrogen in a stationary air-cooled Lombardini 25 LD 425-2 modified diesel engine located at 1495 m above sea level. An experimental phase was conducted to determine the intake temperature requirements and equivalence ratios for stable HCCI combustion. These results were compared with previous research carried out at sea level. To the best knowledge of the authors this is the first report on the combustion and operational limits for an HCCI engine fueled with hydrogen under the mentioned specific conditions. Equivalence ratios between 0.21 and 0.28 and intake temperatures between 188 ◦C and 235 ◦C effectively achieved the HCCI combustion. These temperature values were on average 100 ◦C higher than those reported in previous studies. The maximum value for the indicated mean effective pressure (IMEPn) was 1.75 bar and the maximum thermal efficiency (ITEn) was 34.5%. The achieved results are important for the design and implementation of HCCI engines running solely on hydrogen in developing countries located at high altitudes above sea level.
Low-carbon Economic Operation of IES Based on Life Cycle Method and Hydrogen Energy Utilization
Aug 2023
Publication
The Integrated Energy System (IES) that coordinates multiple energy sources can effectively improve energy utilization and is of great significance to achieving energy conservation and emission reduction goals. In this context a low-carbon and economic dispatch model for IES is proposed. Firstly a hydrogen energy-based IES (H2-IES) is constructed to refine the utilization process of hydrogen energy. Secondly the carbon emissions of different energy chains throughout their life cycle are analyzed using the life cycle assessment method (LCA) and the carbon emissions of the entire energy supply and demand chain are considered. Finally a staged carbon trading mechanism is adopted to promote energy conservation and emission reduction. Based on this an IES low-carbon and economic dispatch model is constructed with the optimization goal of minimizing the sum of carbon trading costs energy procurement costs and hydrogen sales revenue while considering network constraints and constraints on key equipment. By analyzing the model under different scenarios the introduction of life cycle assessment staged carbon trading and hydrogen energy utilization is shown to promote low-carbon and economic development of the comprehensive energy system.
A Techno-economic Analysis of Ammonia-fuelled Powertrain Systems for Rail Freight
Apr 2023
Publication
All diesel-only trains in the UK will be removed from services by 2040. High volumetric density rapid refuelling ability and sophisticated experience in infrastructure and logistics make ammonia a perfect hydrogen carrying fuel for rail freight which urgently requires an economically viable solution. This study conducted a novel techno-economic study of ammonia-fuelled fuel cell powertrains to be compared with current diesel engine-based system and emerging direct hydrogen-fuelled fuel cell system. The results demonstrate that hydrogen-fuelled Proton Exchange Membrane Fuel Cells (PEMFCs) and ammonia-fuelled PEMFCs (using an ammonia cracker) are more cost-effective in terms of Levelized Cost of Electricity. The ammonia fuel storage requires 61.5-75 % less space compared to the hydrogen storage. Although the ammonia-fuelled Solid Oxide Fuel Cells (SOFCs) powertrain has the highest electricity generation efficiency (56%) the overall cost requires a major reduction by 70% before it could be considered as an economically viable solution.
Lab-Scale Investigation of the Integrated Backup/Storage System for Wind Turbines Using Alkaline Electrolyzer
Apr 2023
Publication
The depletion of fossil fuel sources has encouraged the authorities to use renewable resources such as wind energy to generate electricity. A backup/storage system can improve the performance of wind turbines due to fluctuations in power demand. The novelty of this study is to utilize a hybrid system for a wind farm using the excess electricity generated by the wind turbines to produce hydrogen in an alkaline electrolyzer (AEL). The hydrogen storage tank stores the produced hydrogen and provides hydrogen to the proton-exchange membrane fuel cell (PEMFC) to generate electricity once the power demand is higher than the electricity generated by the wind turbines. The goal of this study is to use the wind profile of a region in Iran namely the Cohen region to analyze the performance of the suggested integrated system on a micro scale. The output results of this study can be used as a case study for construction in the future based on the exact specification of NTK300 wind turbines. The results indicate that with the minimum power supply of 30 kW from the wind turbines on a lab scale the generated power by the PEMFC will be 1008 W while the maximum generated hydrogen will be 304 mL/h.
An Energy Systems Model of a Large Commercial Liquid Hydrogen Aircraft in a Low-carbon Future
Apr 2023
Publication
Liquid hydrogen (LH2) aircraft have the potential to achieve carbon neutrality. However if the hydrogen is produced using electricity grids that utilise fossil fuel they have a non-zero carbon dioxide (CO2) emission associated with their well-to-wing pathway. To assess the potential of LH2 in aviation decarbonisation an energy systems comparison of large commercial LH2 liquified natural gas (LNG) conventional Jet-A and LH2 dual-fuel aircraft is presented. The performance of each aircraft is compared towards 2050 over which three system changes occur: (1) LH2 aircraft technology develops; (2) both world average and region-specific grid electricity which is used to produce the hydrogen decarbonises; and (3) the International Air Transportation Association (IATA) emissions targets which are used to restrict the passenger-range performance of each aircraft tighten. In 2050 the emissions of all aircraft are thus constrained to 0.063 kg-CO2/p-km relative to 0.110 kg-CO2/p-km for the unconstrained Jet A fuelled Boeing 787-8. It is estimated that in this year an LH2 aircraft powered by fuel cells and sourcing world average electricity can travel 6000 km 20% further than the conventional Jet A aircraft that is also constrained to meet the IATA targets but not as far as the LNG aircraft. At its maximum range the LH2 aircraft carries 84% of the Jet A passenger demand. Analysis using region-specific hydrogen indicates that LH2 aircraft can travel further than LNG aircraft in North America only accounting for 17% of the global demand. 1.59 times the current aviation energy consumption is required if all conventional aircraft are replaced with LH2 designs. Under stricter emissions constraints than those outlined by the IATA LH2 outperforms LNG in Europe and the Americas accounting for 41% of the global demand. Also in these regions the range energy consumption and passenger capacity of LH2 aircraft can be improved upon by combining the advantages of LH2 with LNG in dual-fuel aircraft concepts. The use of LH2 is therefore advantageous within several prominent niches of a future decarbonising aviation system.
Eco-Sustainable Energy Production in Healthcare: Trends and Challenges in Renewable Energy Systems
Oct 2023
Publication
The shift from fossil fuels to renewable energy systems represents a pivotal step toward the realization of a sustainable society. This study aims to analyze representative scientific literature on eco-sustainable energy production in the healthcare sector particularly in hospitals. Given hospitals’ substantial electricity consumption the adoption of renewable energy offers a reliable low-CO2 emission solution. The COVID-19 pandemic has underscored the urgency for energyefficient and environmentally-responsible approaches. This brief review analyzes the development of experimental simulation and optimization projects for sustainable energy production in healthcare facilities. The analysis reveals trends and challenges in renewable energy systems offering valuable insights into the potential of eco-sustainable solutions in the healthcare sector. The findings indicate that hydrogen storage systems are consistently coupled with photovoltaic panels or solar collectors but only 14% of the analyzed studies explore this potential within hospital settings. Hybrid renewable energy systems (HRES) could be used to meet the energy demands of healthcare centers and hospitals. However the integration of HRES in hospitals and medical buildings is understudied.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
H2-powered Aviation - Design and Economics of Green LH2 Supply for Airports
Aug 2023
Publication
The economic competitiveness of hydrogen-powered aviation highly depends on the supply costs of green liquid hydrogen to enable true-zero CO2 flying. This study uses non-linear energy system optimization to analyze three main liquid hydrogen (LH2) supply pathways for five locations. Final liquid hydrogen costs at the dispenser supply costs could reach 2.04 USD/kgLH2 in a 2050 base case scenario for locations with strong renewable energy source conditions. This could lead to cost-competitive flying with hydrogen. Reflecting techno-economic uncertainties in two additional scenarios the liquid hydrogen cost span at all five airport locations ranges between 1.37–3.48 USD/kgLH2 if hydrogen import options from larger hydrogen markets are also available. Import setups are of special importance for airports with a weaker renewable energy source situation e.g. selected Central European airports. There on-site supply might not only be too expensive but space requirements for renewable energy sources could be too large for feasible implementation in densely populated regions. Furthermore main costs for liquid hydrogen are caused by renewable energy sources electrolysis systems and liquefaction plants. Seven detailed design rules are derived for optimized energy systems for these and the storage components. This and the cost results should help infrastructure planners and general industry and policy players prioritize research and development needs
Impact of Climate and Geological Storage Potential on Feasibility of Hydrogen Fuels
Apr 2023
Publication
Electrofuels including hydrogen methane and ammonia have been suggested as one pathway in achieving net-zero greenhouse gas energy systems. They can play a role in providing an energy storage and fuel or feedstock to hard-to-abate sectors. In future energy systems their role is often studied in case studies adhering to specific region. In this study we study their role by defining multiple archetypal energy systems which represent approximations of real systems in different regions. Comparing the role of electrofuels across the cost-optimized systems relying only on renewable energy in power generation we found that hydrogen was a significant energy vector in all systems with its annual quantity approaching the classic electricity demand. The role of renewable methane was very limited. Electrofuel storages were needed in all systems and their capacity was the highest in the northern Hemiboreal system. Absence of cavern storage potential did not hamper the significance of electrofuels but increased the role of ammonia and led to average 5.5 % systemic cost increase. Systems where reservoir hydropower was scarce or level of electricity consumption was high needed more fuel storages. The findings of this study can help for better understanding of what kind of storage and generation technologies will be most useful in future carbon-neutral systems in different types of regions.
A Multi-energy Multi-microgrid System Planning Model for Decarbonisation and Decontamination of Isolated Systems
May 2023
Publication
Decarbonising and decontaminating remote regions in the world presents several challenges. Many of these regions feature isolation dispersed demand in large areas and a lack of economic resources that impede the development of robust and sustainable networks. Furthermore isolated systems in the developing world are mostly based on diesel generation for electricity and firewood and liquefied petroleum gas for heating as these options do not require a significant infrastructure cost. In this context we present a stochastic multi-energy multi-microgrid system planning model that integrates electricity heat and hydrogen networks in isolated systems. The model is stochastic to capture uncertainty in renewable generation outputs particularly hydro and wind and thus design a multi-energy system proved secured against such uncertainty. The model also features two distinct constraints to limit the emissions of CO2 (for decarbonisation) and particulate matter (for decontamination) and incorporates firewood as a heating source. Moreover given that the focus is on low-voltage networks we introduce a fully linear AC power flow equations set allowing the planning model to remain tractable. The model is applied to a real-world case study to design a multi-energy multi-microgrid system in an isolated region in Chilean Patagonia. In a case with a zero limit over direct CO2 emissions the total system’s cost increases by 34% with respect to an unconstrained case. In a case with a zero limit over particulate matter emissions the total system’s cost increases by 189%. Finally although an absolute zero limit over both particulate matter and direct CO2 emissions leads to a total system’s cost increase of 650% important benefits in terms of decarbonisation and decontamination can be achieved at marginal cost increments.
Life-Cycle and Applicational Analysis of Hydrogen Production and Powered Inland Marine Vessels
Aug 2023
Publication
Green energy is at the forefront of current policy research and engineering but some of the potential fuels require either a lot of deeper research or a lot of infrastructure before they can be implemented. In the case of hydrogen both are true. This report aims to analyse the potential of hydrogen as a future fuel source by performing a life-cycle assessment. Through this the well-to-tank phase of fuel production and the usage phase of the system have been analysed. Models have also been created for traditional fuel systems to best compare results. The results show that hydrogen has great potential to convert marine transport to operating off green fuels when powered through low-carbon energy sources which could reduce a huge percentage of the international community’s greenhouse gas emissions. Hydrogen produced through wind powered alkaline electrolysis produced emission data 5.25 g of CO2 equivalent per MJ compared to the 210 g per MJ produced by a medium efficiency diesel equivalent system a result 40 times larger. However with current infrastructure in most countries not utilising a great amount of green energy production the effects of hydrogen usage could be more dangerous than current fuel sources owing to the incredible energy requirements of hydrogen production with even grid (UK) powered electrolysis producing an emission level of 284 g per MJ which is an increase against standard diesel systems. From this the research concludes that without global infrastructure change hydrogen will remain as a potential fuel rather than a common one.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Optimal Operation Strategy of PV-Charging-Hydrogenation Composite Energy Station Considering Demand Response
Apr 2023
Publication
Traditional charging stations have a single function which usually does not consider the construction of energy storage facilities and it is difficult to promote the consumption of new energy. With the gradual increase in the number of new energy vehicles (NEVs) to give full play to the complementary advantages of source-load resources and provide safe efficient and economical energy supply services this paper proposes the optimal operation strategy of a PV-charging-hydrogenation composite energy station (CES) that considers demand response (DR). Firstly the operation mode of the CES is analyzed and the CES model including a photovoltaic power generation system fuel cell hydrogen production hydrogen storage hydrogenation and charging is established. The purpose is to provide energy supply services for electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) at the same time. Secondly according to the travel law of EVs and HFCVs the distribution of charging demand and hydrogenation demand at different periods of the day is simulated by the Monte Carlo method. On this basis the following two demand response models are established: charging load demand response based on the price elasticity matrix and interruptible load demand response based on incentives. Finally a multi-objective optimal operation model considering DR is proposed to minimize the comprehensive operating cost and load fluctuation of CES and the maximum–minimum method and analytic hierarchy process (AHP) are used to transform this into a linearly weighted single-objective function which is solved via an improved moth–flame optimization algorithm (IMFO). Through the simulation examples operation results in four different scenarios are obtained. Compared with a situation not considering DR the operation strategy proposed in this paper can reduce the comprehensive operation cost of CES by CNY 1051.5 and reduce the load fluctuation by 17.8% which verifies the effectiveness of the proposed model. In addition the impact of solar radiation and energy recharge demand changes on operations was also studied and the resulting data show that CES operations were more sensitive to energy recharge demand changes.
No more items...