- Home
- A-Z Publications
- Publications
Publications
A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation from Atacama Desert to Japan
Aug 2020
Publication
H2 production from solar electricity in the region of the Atacama Desert – Chile – has been identified as strategical for global hydrogen exportation. In this study the full supply chain of solar hydrogen has been investigated for 2018 and projected to scenarios for 2025-2030. Multi-year hourly electrical profiles data have been used from real operating PV plants and simulated Concentrated Solar Power “CSP” plants with Thermal Energy Storage “TES” as well as commercial electricity Power Purchase Agreement “PPA” prices reported in the Chilean electricity market were considered. The Levelized Cost of Hydrogen “LCOH” of each production pathway is calculated by a case-sensitive techno-economic MATLAB/Simulink model for utility scale (multi-MW) alkaline and PEM electrolyser technologies. Successively different distribution storage and transportation configurations are evaluated based on the 2025 Japanese case study according to the declared H2 demand. Transport in the form of liquefied hydrogen (LH2) and via ammonia (NH3) carrier is compared from the port of Antofagasta CL to the port of Osaka JP.
Mechanical Properties and Hydrogen Embrittlement of Laser-Surface Melted AISI 430 Ferritic Stainless Steel
Feb 2020
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 to 4.8 × 10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
European Hydrogen Backbone
Jul 2020
Publication
This paper authored by eleven gas infrastructure companies and supported by Guidehouse describes how a dedicated hydrogen infrastructure can be created in
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
a significant part of the EU between 2030 and 2040 requiring work to start during the 2020s. The hydrogen infrastructure as proposed in this paper fits well with the ambitions of the EU Hydrogen Strategy and the Energy System Integration Strategy plus it aligns well with the goals of the recently announced Clean Hydrogen Alliance to scale up hydrogen enabled by hydrogen transport. Hydrogen clearly gains momentum and this paper aims to provide a contribution towards accelerating a large scale-up of hydrogen by enabling its transport from supply to demand across Europe.
This paper analyses the likely routes across Europe by 2030 2035 and 2040. The included maps show the suggested topology of hydrogen pipelines in ten European countries: Germany France Italy Spain the Netherlands Belgium Czech Republic Denmark Sweden and Switzerland.
You can download the whole report by clicking this link
Hydrogen Act Towards the creation of the European Hydrogen Economy
Apr 2021
Publication
It is time that hydrogen moves from an afterthought to a central pillar of the energy system and its key role in delivering climate neutrality means it merits a dedicated framework. It becomes paramount to allow hydrogen to express its full potential as the other leg of the energy mobility and industry transitions. The proposed “Hydrogen Act” is not a single piece of legislation it is intended to be a vision for an umbrella framework aimed at harmonising and integrating all separate hydrogen-related actions and legislations. It focuses on infrastructure and market aspects describing three phases of development: the kick-start phase the ramp-up phase and the market-growth phase.
Clean Hydrogen Monitor
Oct 2020
Publication
It’s the first of its kind overview showing the state of play with regards to hydrogen technologies in Europe. On an annual basis there will be an update serving as a basis for your investment or political decisions.<br/><br/>OUR MISSION IS – NO EMISSION!<br/>From day 1 Hydrogen Europe promoted clean hydrogen and clean hydrogen technologies as enablers of a decarbonised energy system. We strongly support the adoption of very ambitious climate targets for 2030 and the objective of carbon neutrality in the EU by 2050. Clean hydrogen can help to realise this transition of our energy system in multiple sectors from energy production storage and distribution to end-uses in transport industry heating and others.<br/><br/>CLEAN HYDROGEN TECHNOLOGIES CAN AND WILL REPLACE<br/>not just fossil-based hydrogen in current (industrial) uses but also other fossil-based energies such as petrol diesel and hydrocarbon fuels in the transport sector coal /coke in the steel sector natural gas in the heating sector and other polluting and emitting fuels and feedstocks. <br/><br/>WE ARE TALKING ABOUT A SYSTEMIC CHANGE.<br/>The use of clean hydrogen needs adaptations in production schemes in the infrastructure and in the deployment of hydrogen by the end users. This cannot – of course –be done in a day. Yet we should not wait for the implementation of the different hydrogen strategies on private municipal regional national or European level until other geographies worldwide race ahead.<br/><br/>
Deep Decarbonisation Pathways for Scottish Industries: Research Report
Dec 2020
Publication
The following report is a research piece outlining the potential pathways for decarbonisation of Scottish Industries. Two main pathways are considered hydrogen and electrification with both resulting in similar costs and levels of carbon reduction.
Hydrogen to Support Electricity Systems
Jan 2020
Publication
The Department of Environment Land Water and Planning (DELWP) engaged GHD Advisory and ACIL Allen to assess the roles opportunities and challenges that hydrogen might play in the future to support Australia’s power systems and to determine whether the relevant electricity system regulatory frameworks are compatible with both enabling an industrial-scale1 hydrogen production capability and the use of hydrogen for power generation.
You can read the full report on the website of the Australian Government at this link
You can read the full report on the website of the Australian Government at this link
Hydrogen Valleys. Insights Into the Emerging Hydrogen Economies Around the World
Jun 2021
Publication
Clean hydrogen is universally considered an important energy vector in the global efforts to limit greenhouse gas emissions to the "well below 2 °C scenario" as agreed by more than 190 states in the 2015 Paris Agreement. Hydrogen Valleys – regional ecosystems that link hydrogen production transportation and various end uses such as mobility or industrial feedstock – are important steps towards enabling the development of a new hydrogen economy.<br/><br/>This report has been issued during the setup of the "Mission Innovation Hydrogen Valley Platform" which was commissioned by the European Union and developed by the Fuel Cells and Hydrogen Joint Undertaking. The global information sharing platform to date already features 30+ global Hydrogen Valleys with a cumulative investment volume of more than EUR 30 billion. The projects provide a first-of-its kind look into the global Hydrogen Valley project landscape its success factors and remaining barriers. This report summarizes the findings and presents identified best practices for successful project development as well as recommendations for policymakers on how to provide a favourable policy environment that paves the way to reach the Hydrogen Valleys' full potential as enablers of the global hydrogen economy.
Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
Dec 2022
Publication
Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage transmission and distribution and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day which will use an 8 MW offshore turbine system off the coast of Nova Scotia Canada as the main power source. The P2A system consists of a reverse osmosis system a proton exchange membrane (PEM) electrolyser a hydrogen storage tank a nitrogen generator a set of compressors and heat exchangers an autothermal Haber-Bosch reactor and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios which is larger than the traditional fossil-fuel based ammonia production when using the grid in provinces like Nova Scotia even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne−1 for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system reducing the reliance on the electricity grid increasing service life and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.
Evaluation of Decarbonization Technologies for ASEAN Countries via an Integrated Assessment Tool
May 2022
Publication
A new assessment tool for evaluating decarbonization technologies that considers each technology’s sustainability security affordability readiness and impact for a specific country is proposed. This tool is applied to a set of decarbonization technologies for the power transport and industry sectors for the ten Southeast Asian countries that constitute ASEAN. This results in a list of the most promising decarbonization technologies as well as the remaining issues that need more research and development. This study reveals several common themes for ASEAN’s decarbonization. First carbon capture and storage (CCS) is a key technology for large-scale CO2 emission. Second for countries that rely heavily on coal for power generation switching to gas can halve their CO2 emission in the power sector and should be given high priority. Third hydropower and bioenergy both have high potential for the majority of ASEAN countries if their sustainability issues can be resolved satisfactorily. Fourth replacing conventional vehicles by electric vehicles is the overarching theme in the road transport sector but will result in increased demand for electricity. In the medium to long term the use of hydrogen for marine fuel and biofuels for aviation fuel are preferred solutions for the marine and aviation transport sectors. Fifth for the industry sector installing CCS in industrial plants should be given priority but replacing fossil fuels by blue hydrogen for high-temperature heating is the preferred long-term solution.
Holistic Energy Efficiency and Environmental Friendliness Model for Short-Sea Vessels with Alternative Power Systems Considering Realistic Fuel Pathways and Workloads
Apr 2022
Publication
Energy requirements push the shipping industry towards more energy-efficient ships while environmental regulations influence the development of environmentally friendly ships by replacing fossil fuels with alternatives. Current mathematical models for ship energy efficiency which set the analysis boundaries at the level of the ship power system are not able to consider alternative fuels as a powering option. In this paper the energy efficiency and emissions index are formulated for ships with alternative power systems considering three different impacts on the environment (global warming acidification and eutrophication) and realistic fuel pathways and workloads. Besides diesel applications of alternative powering options such as electricity methanol liquefied natural gas hydrogen and ammonia are considered. By extending the analysis boundaries from the ship power system to the complete fuel cycle it is possible to compare different ships within the considered fleet or a whole shipping sector from the viewpoint of energy efficiency and environmental friendliness. The applicability of the model is illustrated on the Croatian ro-ro passenger fleet. A technical measure of implementation of alternative fuels in combination with an operational measure of speed reduction results in an even greater emissions reduction and an increase in energy efficiency. Analysis of the impact of voluntary speed reduction for ships with different power systems resulted in the identification of the optimal combination of alternative fuel and speed reduction by a specific percentage from the ship design speed.
Environmentally Assisted Cracking Behavior of S420 and X80 Steels Containing U-notches at Two Different Cathodic Polarization Levels: An Approach from the Theory of Critical Distances
May 2019
Publication
This paper analyzes using the theory of critical distances the environmentally assisted cracking behaviour of two steels (S420 and API X80) subjected to two different aggressive environments. The propagation threshold for environmentally assisted cracking (i.e. the stress intensity factor above which crack propagation initiates) in cracked and notched specimens (KIEAC and KNIEAC) has been experimentally obtained under different environmental conditions. Cathodic polarization has been employed to generate the aggressive environments at 1 and 5 mA/cm2 causing hydrogen embrittlement on the steels. The point method and the line method both belonging to the theory of critical distances have been applied to verify their capacity to predict the initiation of crack propagation. The results demonstrate the capacity of the theory of critical distances to predict the crack propagation onset under the different combinations of material and aggressive environments.
Gas Switching Reforming for Flexible Power and Hydrogen Production to Balance Variable Renewables
May 2019
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
When and How to Regulate Hydrogen Networks?
Feb 2021
Publication
This European Green Deal Regulatory White Paper provides the views of Europe’s energy regulators represented by ACER and CEER on when and how to regulate the hydrogen networks in the future.
With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
To realise the European Green Deal's ambitions for hydrogen the right regulatory framework must be created to facilitate a hydrogen economy in a cost-effective way.
European energy regulators (ACER and CEER) have published a set of recommendations on when and how to regulate pure hydrogen networks. The need and scope of hydrogen network regulation will depend on its structure and evolution.
This paper is the first in our new series of ACER-CEER European Green Deal Regulatory White Papers. This hydrogen paper examines:
The aim is to deepen understanding on the regulatory aspects of Green Deal issues and to assist the European Commission in assessing various options as part of the preparations for legislation on hydrogen and energy system integration. With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
The Full report can be found on the ACER website
With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
To realise the European Green Deal's ambitions for hydrogen the right regulatory framework must be created to facilitate a hydrogen economy in a cost-effective way.
European energy regulators (ACER and CEER) have published a set of recommendations on when and how to regulate pure hydrogen networks. The need and scope of hydrogen network regulation will depend on its structure and evolution.
This paper is the first in our new series of ACER-CEER European Green Deal Regulatory White Papers. This hydrogen paper examines:
- The circumstances under which regulating hydrogen networks is needed;
- How to treat existing hydrogen network infrastructure;
- How to address regulatory challenges related to the repurposing of gas infrastructure for dedicated hydrogen transport.
The aim is to deepen understanding on the regulatory aspects of Green Deal issues and to assist the European Commission in assessing various options as part of the preparations for legislation on hydrogen and energy system integration. With the EU goal of becoming a carbon neutral continent by 2050 hydrogen is set to play a key role in decarbonising Europe's economy.
The Full report can be found on the ACER website
Hydrogen Accumulation and Distribution in Pipeline Steel in Intensified Corrosion Conditions
Apr 2019
Publication
Hydrogen accumulation and distribution in pipeline steel under conditions of enhanced corrosion has been studied. The XRD analysis optical spectrometry and uniaxial tension tests reveal that the corrosion environment affects the parameters of the inner and outer surface of the steel pipeline as well as the steel pipeline bulk. The steel surface becomes saturated with hydrogen released as a reaction product during insignificant methane dissociation. Measurements of the adsorbed hydrogen concentration throughout the steel pipe bulk were carried out. The pendulum impact testing of Charpy specimens was performed at room temperature in compliance with national standards. The mechanical properties of the steel specimens were found to be considerably lower and analogous to the properties values caused by hydrogen embrittlement.
Hydrogen Induced Damage in Heavily Cold-Drawn Wires of Lean Duplex Stainless Steel
Sep 2017
Publication
The paper addresses the sensitivity to hydrogen embrittlement of heavily cold-drawn wires made of the new generation of lower alloyed duplex stainless steels often referred to as lean duplex grades. It includes comparisons with similar data corresponding to cold-drawn eutectoid and duplex stainless steels. For this purpose fracture tests under constant load were carried out with wires in the as-received condition and fatigue-precracked in air and exposed to ammonium thiocyanate solution. Microstructure and fractographic observations were essential means for the cracking analysis. The effect of hydrogen-assisted embrittlement on the damage tolerance of lean duplex steels was assessed regarding two macro-mechanical damage models that provide the upper bounds of damage tolerance and accurately approximate the failure behavior of the eutectoid and duplex stainless steels wires.
Exploring the Capability of Mayenite (12CaO·7Al2O3) as Hydrogen Storage Material
Mar 2021
Publication
We utilized nanoporous mayenite (12CaO·7Al2O3) a cost-effective material in the hydride state (H−) to explore the possibility of its use for hydrogen storage and transportation. Hydrogen desorption occurs by a simple reaction of mayenite with water and the nanocage structure transforms into a calcium aluminate hydrate. This reaction enables easy desorption of H− ions trapped in the structure which could allow the use of this material in future portable applications. Additionally this material is 100% recyclable because the cage structure can be recovered by heat treatment after hydrogen desorption. The presence of hydrogen molecules as H− ions was confirmed by 1H-NMR gas chromatography and neutron diffraction analyses. We confirmed the hydrogen state stability inside the mayenite cage by the first-principles calculations to understand the adsorption mechanism and storage capacity and to provide a key for the use of mayenite as a portable hydrogen storage material. Further we succeeded in introducing H− directly from OH− by a simple process compared with previous studies that used long treatment durations and required careful control of humidity and oxygen gas to form O2 species before the introduction of H−.
Recovery Through Reform: Advancing a Hydrogen Economy While Minimizing Fossil Fuel Subsidies
Feb 2021
Publication
This brief explores recent momentum on hydrogen and evaluates potential implications for subsidies for fossil fuel-based hydrogen given the government's commitments on fossil fuel subsidies.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
- Ensure that any subsidies for hydrogen are in line with the government’s commitments to phase out inefficient fossil fuel subsidies by 2025 and meet net-zero by 2050.
- Thoroughly evaluate the potential efficiency of subsidies for hydrogen against robust social environmental and economic criteria. • Improve transparency by publicly reporting on direct spending and tax expenditures for hydrogen production.
- Follow international best practices being set by Canada’s peers. For example Germany and Spain have laid out hydrogen strategies prioritizing green hydrogen.
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Advancing Hydrogen: Learning from 19 Plans to Advance Hydrogen from Across the Globe
Jul 2019
Publication
Hydrogen as the International Energy Agency (IEA 2019) notes has experienced a number of ‘false dawns’ - in the 1970s 1990s and early 2000s - which subsequently faded. However this time there is reason to think that hydrogen will play a substantial role in the global energy system. The most important factor driving this renewed focus is the ability of hydrogen to support deep carbon abatement by assisting in those sectors where abatement with non-carbon electricity has so far proven difficult. Hydrogen can also address poor urban air quality energy security and provides a good means of shifting energy supply between regions and between seasons.
In response to these changed conditions many countries states and even cities have developed hydrogen strategies while various interest groups have developed industry roadmaps which fulfil a similar role.
This report summarises 19 hydrogen strategies and aims to help readers understand how nations regions and industries are thinking about opportunities to become involved in this emerging industry. Its prime purpose is to act as a resource to assist those involved in long-term energy policy planning in Australia including those involved in the development of Australia’s hydrogen strategy
The full report can be read on the Energy Network website at this link here
In response to these changed conditions many countries states and even cities have developed hydrogen strategies while various interest groups have developed industry roadmaps which fulfil a similar role.
This report summarises 19 hydrogen strategies and aims to help readers understand how nations regions and industries are thinking about opportunities to become involved in this emerging industry. Its prime purpose is to act as a resource to assist those involved in long-term energy policy planning in Australia including those involved in the development of Australia’s hydrogen strategy
The full report can be read on the Energy Network website at this link here
The Role of Hydrogen in Achieving Net Zero: Parliamentary Inquiry
Mar 2021
Publication
A key component of the Government's recently announced ‘Ten Point Plan for a Green Industrial Revolution’ is 'Driving the Growth of Low Carbon Hydrogen'. The plan outlined a range of measures to support the development and adoption of hydrogen including a £240 million 'Net Zero Hydrogen Fund'. Noting this and the further £81 million allocated for hydrogen heating trials in the 2020 Spending Review the House of Commons Science and Technology Committee is today launching a new inquiry into the role of hydrogen in achieving Net Zero.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
No more items...