- Home
- A-Z Publications
- Publications
Publications
A Roadmap for Financing Hydrogen Refueling Networks – Creating Prerequisites for H2-based Mobility
Sep 2014
Publication
Fuel cell electric vehicles (FCEVs) are zero tailpipe emission vehicles. Their large-scale deployment is expected to play a major role in the de-carbonization of transportation in the European Union (EU) and is therefore an important policy element at EU and Member State level.<br/>For FCEVs to be introduced to the market a network of hydrogen refuelling stations (HRS) first has to exist. From a technological point of view FCEVs are ready for serial production already: Hyundaiand Toyota plan to introduce FCEVs into key markets from 2015 and Daimler Ford and Nissan plan to launch mass-market FCEVs in 2017.<br/>At the moment raising funds for building the hydrogen refuelling infrastructure appears to be challenging.<br/>This study explores options for financing the HRS rollout which facilitate the involvement of private lenders and investors. It presents a number of different financing options involving public-sector bank loans funding from private-sector strategic equity investors commercial bank loans private equity and funding from infrastructure investors. The options outline the various requirements forn accessing these sources of funding with regard to project structure incentives and risk mitigation. The financing options were developed on the basis of discussions with stakeholders in the HRS rollout from industry and with financiers.<br/>This study was prepared by Roland Berger in close contact with European Investment banks and a series of private banks.<br/>This study explores in details the business cases for HRS in Germany and UK. The conclusion can be easily extrapolate to other countries.
A Hybrid Energy Storage System Using Compressed Air and Hydrogen as the Energy Carrier
Feb 2020
Publication
In this paper an innovative concept of an energy storage system that combines the idea of energy storage through the use of compressed air and the idea of energy storage through the use of hydrogen (with its further conversion to synthetic natural gas) has been proposed. The thermal integration of two sub-systems allows for efficient storage of large amounts of energy based on the use of pressure tanks with limited volumes. A thermodynamic assessment of the integrated hybrid system was carried out. For the assumed operation parameters an energy storage efficiency value of 38.15% was obtained which means the technology is competitive with intensively developed pure hydrogen energy storage technologies. The results obtained for the hybrid system were compared to the results obtained for three reference systems each of which uses hydrogen generators. The first is a typical Power-to-H2-to-Power system which integrates hydrogen generators with a fuel cell system. The other two additionally use a compressed air energy storage installation. In the first case the compressed air energy storage system consists of a diabatic system. In the second case the compressed air energy storage system is adiabatic. The article has discussed the disadvantages and advantages of all the analyzed systems.
Net Zero and Geospheric Return: Actions Today for 2030 and Beyond
Sep 2020
Publication
In a report co-authored by Columbia University’s Centre on Global Energy Policy (CGEP) and the Global CCS Institute titled ‘Net Zero and Geospheric Return: Actions today for 2030’ findings reveal that climate finance policies and the development of carbon dioxide removal technologies need to grow rapidly within the next 10 years in order to curb climate change and hit net-zero targets.
The report unveils key climate actions required to avoid climate catastrophe:
With 2020 set to close the hottest decade on record CO2 emissions need to drop by 50% to achieve net-zero climate goals by 2030 The rapid deployment of climate mitigating infrastructure needs to occur including the expansion of CO2 pipelines from the current 8000 km to 43000 km by 2030 Clear climate polices which reduce the financial and regulatory risk of CO2 capture and storage and increase CO2 storage options need to be quickly developed and implemented.
Link to document on Global CCS Institute Website
The report unveils key climate actions required to avoid climate catastrophe:
With 2020 set to close the hottest decade on record CO2 emissions need to drop by 50% to achieve net-zero climate goals by 2030 The rapid deployment of climate mitigating infrastructure needs to occur including the expansion of CO2 pipelines from the current 8000 km to 43000 km by 2030 Clear climate polices which reduce the financial and regulatory risk of CO2 capture and storage and increase CO2 storage options need to be quickly developed and implemented.
Link to document on Global CCS Institute Website
Study on the Use of Fuel Cells and Hydrogen in the Railway Environment
Jun 2019
Publication
This study outlines a pathway for commercialisation of stationary fuel cells in distributed generation across Europe. It has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) a public-private partnership between the European Commission the fuel cell and hydrogen industry and a number of research bodies and associations. The FCH JU supports research technology development and demonstration activities in the field of fuel cell and hydrogen technologies in Europe. The study explores how stationary fuel cells can benefit users how they can be brought to the market what hurdles still exist and how their diffusion may foster Europe's transition into a new energy age.
Design and Dynamics Simulations of Small Scale Solid Oxide Fuel Cell Trigeneration System
Dec 2018
Publication
This paper presents the design of a solid oxide fuel cell (SOFC) tri-generation system that consists of an SOFC-combined heat and power subsystem an adsorption refrigeration subsystem and coupling devices between the two subsystems. Whereas typical extant designs use absorption techniques the proposed design employs adsorption refrigeration. In this paper the dynamics of adsorption refrigeration are reported in detail to evaluate the feasibility of the tri-generation system design. The design of the coupling devices and instrumentation strategies of the overall system are discussed in detail. Simulation results indicate that the proposed SOFC trigeneration system can output 4.35 kW of electrical power 2.448 kW of exhaust heat power and 1.348 kW of cooling power. The energy efficiency is 64.9% and the coefficient of performance of the refrigeration is 0.32. Varying the electrical output power results in the variation of exhaust heat power but not the cooling power; varying the cooling power affects the exhaust heat power but not the electrical power. These favorable features can be attributed to the proposed heat exchange sequence and active temperature controls of the system.
Kinetics Study and Modelling of Steam Methane Reforming Process Over a NiO/Al2O3 Catalyst in an Adiabatic Packed Bed Reactor
Dec 2016
Publication
Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/α-Al2O3 catalyst are presented in the temperature range of 300–700 °C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor developed on gPROMS model builder 4.1.0®. The mathematical model of SMR process was simulated and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature pressure and steam to carbon ratio on fuel and water conversion (%) H2 yield (wt. % of CH4) and H2 purity was modelled and compared with the equilibrium values.
Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters
Jun 2020
Publication
Power-to-gas technology plays a key role in the success of the energy transformation. This paper addresses issues related to the legal and technical regulations specifying the rules for adding hydrogen to the natural gas network. The main issue reviewed is the effects of the addition of hydrogen to natural gas on the durability of diaphragm gas meters. The possibility of adding hydrogen to the gas network requires confirmation of whether within the expected hydrogen concentrations long-term operation of gas meters will be ensured without compromising their metrological properties and operational safety. Methods for testing the durability of gas meters applied at test benches and sample results of durability tests of gas meters are presented. Based on these results a metrological and statistical analysis was carried out to establish whether the addition of hydrogen affects the durability of gas meters over time. The most important conclusion resulting from the conducted study indicates that for the tested gas meter specimens there was no significant metrological difference between the obtained changes of errors of indications after testing the durability of gas meters with varying hydrogen content (from 0% to 15%).
City Blood: A Visionary Infrastructure Solution for Household Energy Provision through Water Distribution Networks
May 2013
Publication
This paper aims to expand current thinking about the future of energy and water utility provision by presenting a radical idea: it proposes a combined delivery system for household energy and water utilities which is inspired by an analogy with the human body. It envisions a multi-functional infrastructure for cities of the future modelled on the human circulatory system. Red blood cells play a crucial role as energy carriers in biological energy distribution; they are suspended in the blood and distributed around the body to fuel the living cells. So why not use an analogous system e an urban circulatory system or “city blood” e to deliver energy and water simultaneously via one dedicated pipeline system? This paper focuses on analysing the scientific technological and economic feasibilities and hurdles which would need to be overcome in order to achieve this idea.<br/>We present a rationale for the requirement of an improved household utility delivery infrastructure and discuss the inspirational analogy; the technological components required to realise the vignette are also discussed. We identify the most significant advance requirement for the proposal to succeed: the utilisation of solid or liquid substrate materials delivered through water pipelines; their benefits and risks are discussed.
Using the Jet Stream for Sustainable Airship and Balloon Transportation of Cargo and Hydrogen
Jul 2019
Publication
The maritime shipping sector is a major contributor to CO2 emissions and this figure is expected to rise in coming decades. With the intent of reducing emissions from this sector this research proposes the utilization of the jet stream to transport a combination of cargo and hydrogen using airships or balloons at altitudes of 10–20 km. The jet streams flow in the mid-latitudes predominantly in a west–east direction reaching an average wind speed of 165 km/h. Using this combination of high wind speeds and reliable direction hydrogen-filled airships or balloons could carry hydrogen with a lower fuel requirement and shorter travel time compared to conventional shipping. Jet streams at different altitudes in the atmosphere were used to identify the most appropriate circular routes for global airship travel. Round-the-world trips would take 16 days in the Northern Hemisphere and 14 in the Southern Hemisphere. Hydrogen transport via the jet stream due to its lower energy consumption and shorter cargo delivery time access to cities far from the coast could be a competitive alternative to maritime shipping and liquefied hydrogen tankers in the development of a sustainable future hydrogen economy.
Numerical Investigation of Hydrogen-air Deflagrations in a Repeated Pipe Congestion
Sep 2019
Publication
Emerging hydrogen energy technologies are creating new avenues for bring hydrogen fuel usage into larger public domain. Identification of possible accidental scenarios and measures to mitigate associated hazards should be well understood for establishing best practice guidelines. Accidentally released hydrogen forms flammable mixtures in a very short time. Ignition of such a mixture in congestion and confinements can lead to greater magnitudes of overpressure catastrophic for both structure and people around. Hence understanding of the permissible level of confinements and congestion around the hydrogen fuel handling and storage unit is essential for process safety. In the present study numerical simulations have been performed for the hydrogen-air turbulent deflagration in a well-defined congestion of repeated pipe rig experimentally studied by [1]. Large Eddy Simulations (LES) have been performed using the in-house modified version of the OpenFOAM code. The Flame Surface Wrinkling Model in the LES context is used for modelling deflagrations. Numerical predictions concerning the effects of hydrogen concentration and congestion on turbulent deflagration overpressure are compared with the measurements [1] to provide validation of the code. Further insight about the flame propagation and trends of the generated overpressures over the range of concentrations are discussed.
Biomass Derived Porous Nitrogen Doped Carbon for Electrochemical Devices
Mar 2017
Publication
Biomass derived porous nanostructured nitrogen doped carbon (PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization pyrolysis and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption improve the electronic conductivity increase the bonding between carbon and sulfur and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries high energy density Li–S batteries supercapacitors metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution oxygen reduction and evolution as promising electrodes for electrochemical devices including battery technologies fuel cell and electrolyzer.
Development of Water Electrolysis in the European Union
Feb 2014
Publication
In view of the recent interest in the transformation of renewable energy into a new energy vector that did not produce by combustion greenhouse gases emissions the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the industrial perspectives of water electrolysis in Europe. and the role that public support has in that evolution.
Catalytic Transfer Hydrogenolysis as an Efficient Route in Cleavage of Lignin and Model Compounds
Aug 2018
Publication
Cleavage of aromatic ether bonds through hydrogenolysis is one of the most promising routes for depolymerisation and transformation of lignin into value-added chemicals. Instead of using pressurized hydrogen gas as hydrogen source some reductive organic molecules such as methanol ethanol isopropanol as well as formates and formic acid can serve as hydrogen donor is the process called catalytic transfer hydrogenolysis. This is an emerging and promising research field but there are very few reports. In this paper a comprehensive review of the works is presented on catalytic transfer hydrogenolysis of lignin and lignin model compounds aiming to breakdown the aromatic ethers including α-O-4 β-O-4 and 4-O-5 linkages with focus on reaction mechanisms. The works are organised regarding to different hydrogen donors used to gain an in-depth understanding of the special role of various hydrogen donors in this process. Perspectives on current challenges and opportunities of future research to develop catalytic transfer hydrogenolysis as a competitive and unique strategy for lignin valorisation are also provided.
Dynamic Simulation of Different Transport Options of Renewable Hydrogen to a Refinery in a Coupled Energy System Approach
Sep 2018
Publication
Three alternative transport options for hydrogen generated from excess renewable power to a refinery of different scales are compared to the reference case by means of hydrogen production cost overall efficiency and CO2 emissions. The hydrogen is transported by a) the natural gas grid and reclaimed by the existing steam reformer b) an own pipeline and c) hydrogen trailers. The analysis is applied to the city of Hamburg Germany for two scenarios of installed renewable energy capacities. The annual course of excess renewable power is modelled in a coupled system approach and the replaceable hydrogen mass flow rate is determined using measurement data from an existing refinery. Dynamic simulations are performed using an open-source Modelica® library. It is found that in all three alternative hydrogen supply chains CO2 emissions can be reduced and costs are increased compared to the reference case. Transporting hydrogen via the natural gas grid is the least efficient but achieves the highest emission reduction and is the most economical alternative for small to medium amounts of hydrogen. Using a hydrogen pipeline is the most efficient option and slightly cheaper for large amounts than employing the natural gas grid. Transporting hydrogen by trailers is not economical for single consumers and realizes the lowest CO2 reductions.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2014 Final Report
Apr 2015
Publication
The 2014 Review is the fourth review of the FCH JU project portfolio. The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the FCH JU project portfolio as a whole fulfilled the objectives of the Multi-Annual Implementation or Work Plan.
Comparing Exergy Losses and Evaluating the Potential of Catalyst-filled Plate-fin and Spiral-wound Heat Exchangers in a Large-scale Claude Hydrogen Liquefaction Process
Jan 2020
Publication
Detailed heat exchanger designs are determined by matching intermediate temperatures in a large-scale Claude refrigeration process for liquefaction of hydrogen with a capacity of 125 tons/day. A comparison is made of catalyst filled plate-fin and spiral-wound heat exchangers by use of a flexible and robust modelling framework for multi-stream heat exchangers that incorporates conversion of ortho-to para-hydrogen in the hydrogen feed stream accurate thermophysical models and a distributed resolution of all streams and wall temperatures. Maps of the local exergy destruction in the heat exchangers are presented which enable the identification of several avenues to improve their performances.<br/>The heat exchanger duties vary between 1 and 31 MW and their second law energy efficiencies vary between 72.3% and 96.6%. Due to geometrical constraints imposed by the heat exchanger manufacturers it is necessary to employ between one to four parallel plate-fin heat exchanger modules while it is possible to use single modules in series for the spiral-wound heat exchangers. Due to the lower surface density and heat transfer coefficients in the spiral-wound heat exchangers their weights are 2–14 times higher than those of the plate-fin heat exchangers.<br/>In the first heat exchanger hydrogen feed gas is cooled from ambient temperature to about 120 K by use of a single mixed refrigerant cycle. Here most of the exergy destruction occurs when the high-pressure mixed refrigerant enters the single-phase regime. A dual mixed refrigerant or a cascade process holds the potential to remove a large part of this exergy destruction and improve the efficiency. In many of the heat exchangers uneven local exergy destruction reveals a potential for further optimization of geometrical parameters in combination with process parameters and constraints.<br/>The framework presented makes it possible to compare different sources of exergy destruction on equal terms and enables a qualified specification on the maximum allowed pressure drops in the streams. The mole fraction of para-hydrogen is significantly closer to the equilibrium composition through the entire process for the spiral-wound heat exchangers due to the longer residence time. This reduces the exergy destruction from the conversion of ortho-hydrogen and results in a higher outlet mole fraction of para-hydrogen from the process.<br/>Because of the higher surface densities of the plate-fin heat exchangers they are the preferred technology for hydrogen liquefaction unless a higher conversion to heat exchange ratio is desired.
Exploring the Evidence on Potential Issues Associated with Trialling Hydrogen Heating in Communities
Dec 2020
Publication
Replacing natural gas with hydrogen in an everyday setting – piping hydrogen to homes and businesses through the existing gas network – is a new and untested proposition. At the same time piloting this proposition is an essential ingredient to a well-managed low carbon transition.<br/>The Department of Business Energy and Industrial Strategy (BEIS) has commissioned CAG Consultants to undertake a literature review and conduct a set of four focus groups to inform the development of work to assess issues associated with setting up a hypothetical community hydrogen trial. This report sets out the findings from the research and presents reflections on the implications of the findings for any future community hydrogen heating trials.<br/>The literature review was a short focused review aimed at identifying evidence relevant to members of the public being asked to take part in a hypothetical community trial. Based primarily on Quick Scoping Review principles the review involved the analysis of evidence from 26 items of literature. The four focus groups were held in-person in two city locations Manchester and Birmingham in November 2019. They involved consumers who either owned or rented houses (i.e. not flats) connected to the gas grid. Two of the focus groups involved owner-occupiers one was with private landlords and the other was with a mixture of tenants (private social and student).<br/>This report was produced in October 2019 and published in December 2020.
Cohesive Zone Modelling of Hydrogen Assisted Fatigue Crack Growth: The Role of Trapping
Apr 2022
Publication
We investigate the influence of microstructural traps in hydrogen-assisted fatigue crack growth. To this end a new formulation combining multi-trap stress-assisted diffusion mechanism-based strain gradient plasticity and a hydrogen- and fatigue-dependent cohesive zone model is presented and numerically implemented. The results show that the ratio of loading frequency to effective diffusivity governs fatigue crack growth behaviour. Increasing the density of beneficial traps not involved in the fracture process results in lower fatigue crack growth rates. The combinations of loading frequency and carbide trap densities that minimise embrittlement susceptibility are identified providing the foundation for a rational design of hydrogen-resistant alloys.
Contrasting European Hydrogen Pathways: An Analysis of Differing Approaches in Key Markets
Mar 2021
Publication
European countries approach the market ramp-up of hydrogen very differently. In some cases the economic and political starting points differ significantly. While the probability is high that some countries such as Germany or Italy will import hydrogen in the long term other countries such as United Kingdom France or Spain could become hydrogen exporters. The reasons for this are the higher potential for renewable energies but also a technology-neutral approach on the supply side.
UV Assisted on Titanium Doped Electrode for Hydrogen Evolution from Artificial Wastewater
Jul 2018
Publication
Formaldehyde (H2CO) is the harmful chemical that used in variety of industries. However there are many difficulties to treat discharged H2CO in the wastewater. Hydrogen energy is arising as a one of the renewable energy that can replace fossil fuel. Many researches have been conducted on hydrogen production from electrolysis using expensive metal electrodes and catalysts such as platinum (Pt) and palladium (Pd). However they are expensive and have obstacles to directly use from the production. We used copper (Cu) as an electrode substrate because it has a good current density. To avoid corrosion issue of Cu substrate we used commercially available carbon (C) coated Cu substrate and synthesized titanium (Ti) on C/Cu substrate. We found that Ti was well synthesized and stayed on substrate after hydrogen evolution reaction (HER) in artificial wastewater. Moreover we quantified hydrogen production from the wastewater and compared it to pure water. Hydrogen production was enhanced in wastewater and H2CO was decomposed after reaction. We expected to use Ti-C/Cu electrode for hydrogen production of wastewater by electrolysis.
No more items...