- Home
- A-Z Publications
- Publications
Publications
Hydrogen Fast Filling to a Type IV Tank Developed for Motorcycles
Oct 2015
Publication
If Hydrogen is expected to be highly valuable some improvements should be conducted mainly regarding the storage safety. To prevent from high pressure hydrogen composite tanks bursting the comprehension of the thermo-mechanics phenomena in the case of fire should be improved. To understand the kinetic of strength loss the heat flux produced by fire of various intensities should be assessed. This is the objective of this real scale experimental campaign which will allow studying in future works the strength loss of composite high-pressure vessels in similar fire conditions to the ones determined in this study. Fire calibration tests were performed on metallic cylinder vessels. These tests with metallic cylinders are critical in the characterization of the thermal load of various fire sources (pool fire propane gas fire hydrogen gas fire) so as to evaluate differences related to different thermal load. Radiant panels were also used as thermal source for reference of pure radiation heat transfer. The retained thermal load might be representative of accidental situations in worst case scenarios and relevant for a standardized testing protocol. The tests performed show that hydrogen gas fires and heptane pool fire allow reaching the target in terms of absorbed energy regarding the results of risk analysis performed previously. Other considerations can be taken into account that will led to retain an hydrogen gas fire for further works. Firstly hydrogen gas fire is the more realistic scenario: Hydrogen is the combustible that we every time find near an hydrogen storage. Secondly as one of the objectives of the project is to make recommendations for standardization issues it's important to note that gas fires are not too complex to calibrate control and reproduce. Finally due to previous considerations Hydrogen gas fire will be retained for thermal load of composite cylinders in future works.
Metal Hydride Hydrogen Compressors
Feb 2014
Publication
Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage hydrogen sorption kinetics and effective thermal conductivity) the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors reduction of slope of the isotherms and hysteresis increase of cycling stability and life time together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.<br/>The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal–hydrogen systems suitable for the hydrogen compression; and (b) applied aspects including their consideration from the applied thermodynamic viewpoint system design features and performances of the metal hydride compressors and major applications.
Communicating Leakage Risk in the Hydrogen Economy: Lessons Already Learned from Geoenergy Industries
Sep 2019
Publication
Hydrogen may play a crucial part in delivering a net zero emissions future. Currently hydrogen production storage transport and utilisation are being explored to scope opportunities and to reduce barriers to market activation. One such barrier could be negative public response to hydrogen technologies. Previous research around socio-technical risks finds that public acceptance issues are particularly challenging for emerging remote technical sensitive uncertain or unfamiliar technologies - such as hydrogen. Thus while the hydrogen value chain could offer a range of potential environmental economic and social benefits each will have perceived risks that could challenge the introduction and subsequent roll-out of hydrogen. These potential issues must be identified and managed so that the hydrogen sector can develop adapt or respond appropriately. Geological storage of hydrogen could present challenges in terms of perceived safety. Valuable lessons can be learned from international research and practice of CO2 and natural gas storage in geological formations (for carbon capture and storage CCS and for power respectively). Here we explore these learnings. We consider the similarities and differences between these technologies and how these may affect perceived risks. We also reflect on lessons for effective communication and community engagement. We draw on this to present potential risks to the perceived safety of - and public acceptability of – the geological storage of hydrogen. One of the key lessons learned from CCS and natural gas storage is that progress is most effective when risk communication and public acceptability is considered from the early stages of technology development.
Vented Hydrogen Deflagrations in Containers: Effect of Congestion for Homogeneous Mixtures
Sep 2017
Publication
This paper presents results from an experimental study of vented hydrogen deflagrations in 20-foot ISO containers. The scenarios investigated include 14 tests with explosion venting through the doors of the containers and 20 tests with venting through openings in the roof. The parameters investigated include hydrogen concentration vent area type of venting device and the level of congestion inside the containers. All tests involved homogeneous and initially quiescent hydrogen-air mixtures. The results demonstrate the strong effect of congestion on the maximum reduced explosion pressures which typically is not accounted for in current standards and guidelines for explosion protection. The work is a deliverable from work package 2 (WP2) in the project “Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations” or HySEA which receives funding from the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) under grant agreement no. 671461.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Hazard Identification Study for Risk Assessment of a Hybrid Gasoline-hydrogen Fueling Station with an Onsite Hydrogen Production System Using Organic Hydride
Oct 2015
Publication
Hydrogen infrastructures are important for the commercialization of fuel cell vehicles. Hydrogen storage and transportation are significant topics because it is difficult to safely and effectively treat large amounts of hydrogen because of hydrogen hazards. An organic chemical hydride method keeps and provides hydrogen using hydrogenation and dehydrogenation chemical reactions with aromatic compounds. This method has advantages in that the conventional petrochemical products are used as a hydrogen carrier and petrochemicals are more easily treated than hydrogen because of low hazards. Hydrogen fueling stations are also crucial infrastructures for hydrogen supply. In Japan hybrid gasoline-hydrogen fuelling stations are needed for effective space utilization in urban areas. It is essential to address the safety issues of hybrid fueling stations for inherently safer station construction. We focused on a hybrid gasoline-hydrogen fuelling station with an on-site hydrogen production system using methylcyclohexane as an organic chemical hydride. The purpose of this study is to reveal unique hybrid risks in the station with a hazard identification study (HAZID study). As a result of the HAZID study we identified 314 accident scenarios involving gasoline and organic chemical hydride systems. In addition we suggested improvement safety measures for uniquely worst-case accident scenarios to prevent and mitigate the scenarios.
Design of an Efficient, High Purity Hydrogen Generation Apparatus and Method for a Sustainable, Closed Clean Energy Cycle
Jul 2015
Publication
In this paper we present a detailed design study of a novel apparatus for safely generating hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The apparatus consists of a first pressure vessel filled with liquid H2O with an overpressure of nitrogen (N2) gas above the H2O reactant and a second pressure vessel that stores solid Na reactant. Hydrogen gas is generated above the solid Na when H2O reactant is introduced using a regulator that senses when the downstream pressure of H2 gas above the solid Na reactant has dropped below a threshold value. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant.
Threshold Stress Intensity Factor for Hydrogen Assisted Cracking of Cr-Mo Steel Used as Stationary Storage Buffer of a Hydrogen Refueling Station
Oct 2015
Publication
In order to determine appropriate value for threshold stress intensity factor for hydrogen-assisted cracking (KIH) constant-displacement and rising-load tests were conducted in high-pressure hydrogen gas for JIS-SCM435 low alloy steel (Cr-Mo steel) used as stationary storage buffer of a hydrogen refuelling station with 0.2% proof strength and ultimate tensile strength equal to 772 MPa and 948 MPa respectively. Thresholds for crack arrest under constant displacement and for crack initiation under rising load were identified. The crack arrest threshold under constant displacement was 44.3 MPa m1/2 to 44.5 MPa m1/2 when small-scale yielding and plane-strain criteria were satisfied and the crack initiation threshold under rising load was 33.1 MPa m1/2 to 41.1 MPa m1/2 in 115 MPa hydrogen gas. The crack arrest threshold was roughly equivalent to the crack initiation threshold although the crack initiation threshold showed slightly more conservative values. It was considered that both test methods could be suitable to determine appropriate value for KIH for this material.
Alloy and Composition Dependence of Hydrogen Embrittlement Susceptibility in High-strength Steel Fasteners
Jun 2017
Publication
High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility which increases significantly above 1200 MPa and is characterized by a ductile--brittle transition. For a given concentration of hydrogen and at equal strength the critical strength above which the ductile–brittle transition begins can vary due to second-order effects of chemistry tempering temperature and sub-microstructure. Additionally non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa non-conforming quality is often the root cause of real-life failures.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Development of Hydrogen Behavior Simulation Code System
Oct 2015
Publication
In the Fukushima Daiichi Nuclear Power Station (NPS) accident hydrogen generated by oxidation reaction of the cladding and water etc. was leaked into the NPS building and finally led to occurrence of hydrogen explosion in the building. This resulted in serious damage to the environment. To improve the safety performance of the NPS especially on the hydrogen safety under severe accident conditions a simulation code system has been developed to analyze hydrogen behaviour including diffusion combustion explosion and structural integrity evaluation. This developing system consists of CFD and FEM tools in order to support various hydrogen user groups consisting of students researchers and engineers. Preliminary analytical results obtained with above mentioned tools especially with open source codes including buoyancy turbulent model and condensation model agreed well with the existing test data.
Kinetic Model of Incipient Hydride Formation in Zr Clad under Dynamic Oxide Growth Conditions
Feb 2020
Publication
The formation of elongated zirconium hydride platelets during corrosion of nuclear fuel clad is linked to its premature failure due to embrittlement and delayed hydride cracking. Despite their importance however most existing models of hydride nucleation and growth in Zr alloys are phenomenological and lack sufficient physical detail to become predictive under the variety of conditions found in nuclear reactors during operation. Moreover most models ignore the dynamic nature of clad oxidation which requires that hydrogen transport and precipitation be considered in a scenario where the oxide layer is continuously growing at the expense of the metal substrate. In this paper we perform simulations of hydride formation in Zr clads with a moving oxide/metal boundary using a stochastic kinetic diffusion/reaction model parameterized with state-of-the-art defect and solute energetics. Our model uses the solutions of the hydrogen diffusion problem across an increasingly-coarse oxide layer to define boundary conditions for the kinetic simulations of hydrogen penetration precipitation and dissolution in the metal clad. Our method captures the spatial dependence of the problem by discretizing all spatial derivatives using a stochastic finite difference scheme. Our results include hydride number densities and size distributions along the radial coordinate of the clad for the first 1.6 h of evolution providing a quantitative picture of hydride incipient nucleation and growth under clad service conditions.
Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New‐Generation Steelmaking
Jan 2022
Publication
The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional routes.
Improvement of Low Temperature Activity and Stability of Ni Catalysts with Addition of Pt for Hydrogen Production Via Steam Reforming of Ethylene Glycol
Nov 2018
Publication
Hydrogen production by steam reforming of ethylene glycol (EG) at 300 °C was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C—C bond rupture and water gas shift reactions; and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.
Thermal Hydrogen: An Emissions Free Hydrocarbon Economy
Apr 2017
Publication
Envisioned below is an energy system named Thermal Hydrogen developed to enable economy-wide decarbonization. Thermal Hydrogen is an energy system where electric and/or heat energy is used to split water (or CO2) for the utilization of both by-products: hydrogen as energy storage and pure oxygen as carbon abatement. Important advantages of chemical energy carriers are long term energy storage and extended range for electric vehicles. These minimize the need for the most capital intensive assets of a fully decarbonized energy economy: low carbon power plants and batteries. The pure oxygen pre-empts the gas separation process of “Carbon Capture and Sequestration” (CCS) and enables hydrocarbons to use simpler more efficient thermodynamic cycles. Thus the “externality” of water splitting pure oxygen is increasingly competitive hydrocarbons which happen to be emissions free. Methods for engineering economy-wide decarbonization are described below as well as the energy supply carrier and distribution options offered by the system.
Study on Fuel Cells Hydrogen Trucks
Dec 2020
Publication
Fuel cell and hydrogen (FCH) technology is a very promising zero-emission powertrain solution for the heavy-duty trucking industry. The FCH 2 JU subcontracted this study to analyse the state-of-the-art of the technology its surrounding policy and regulatory regime ongoing trial and demonstrations projects and its total cost of ownership and market potential. Furthermore specific case studies and industry experts identified remaining technological and non-technological barriers for FCH technology in different trucking use cases.
The study projects a potential fuel cell trucks sales share of approx. 17% of new trucks sold in 2030 based on a strong technology cost-reduction trajectory. With scaled-up production of FCH trucks and hydrogen offered below 6 EUR/kg FCH heavy-duty trucks (FCH HDT) provide the operational performance most comparable to diesel trucks regarding daily range refuelling time payload capacity and TCO. Nine case studies were developed as first tangible business opportunity blueprints for the industry. They also provide a view on current limitations of real-life operations. In conclusion 22 barriers have been identified that successfully tackled will unlock the full commercial potential of FCH HDT for the trucking and logistics industry. The study proposes tailored R&I projects and policy recommendations that address such remaining barriers in the short-term.
The study projects a potential fuel cell trucks sales share of approx. 17% of new trucks sold in 2030 based on a strong technology cost-reduction trajectory. With scaled-up production of FCH trucks and hydrogen offered below 6 EUR/kg FCH heavy-duty trucks (FCH HDT) provide the operational performance most comparable to diesel trucks regarding daily range refuelling time payload capacity and TCO. Nine case studies were developed as first tangible business opportunity blueprints for the industry. They also provide a view on current limitations of real-life operations. In conclusion 22 barriers have been identified that successfully tackled will unlock the full commercial potential of FCH HDT for the trucking and logistics industry. The study proposes tailored R&I projects and policy recommendations that address such remaining barriers in the short-term.
Evaluating Uncertainty in Accident Rate Estimation at Hydrogen Refueling Station Using Time Correlation Model
Nov 2018
Publication
Hydrogen as a future energy carrier is receiving a significant amount of attention in Japan. From the viewpoint of safety risk evaluation is required in order to increase the number of hydrogen refuelling stations (HRSs) implemented in Japan. Collecting data about accidents in the past will provide a hint to understand the trend in the possibility of accidents occurrence by identifying its operation time However in new technology; accident rate estimation can have a high degree of uncertainty due to absence of major accident direct data in the late operational period. The uncertainty in the estimation is proportional to the data unavailability which increases over long operation period due to decrease in number of stations. In this paper a suitable time correlation model is adopted in the estimation to reflect lack (due to the limited operation period of HRS) or abundance of accident data which is not well supported by conventional approaches. The model adopted in this paper shows that the uncertainty in the estimation increases when the operation time is long owing to the decreasing data.
Hydrogen Assisted Fracture of 30MnB5 High Strength Steel: A Case Study
Nov 2020
Publication
When steel components fail in service due to the intervention of hydrogen assisted cracking discussion of the root cause arises. The failure is frequently blamed on component design working conditions the manufacturing process or the raw material. This work studies the influence of quench and tempering and hot-dip galvanizing on the hydrogen embrittlement behavior of a high strength steel. Slow strain rate tensile testing has been employed to assess this influence. Two sets of specimens have been tested both in air and immersed in synthetic seawater at three process steps: in the delivery condition of the raw material after heat treatment and after heat treatment plus hot-dip galvanizing. One of the specimen sets has been tested without further manipulation and the other set has been tested after applying a hydrogen effusion treatment. The outcome for this case study is that fracture risk issues only arise due to hydrogen re-embrittlement in wet service.
Designing Optimal Integrated Electricity Supply Configurations for Renewable hydrogen Generation in Australia
Jun 2021
Publication
The high variability and intermittency of wind and solar farms raise questions of how to operate electrolyzers reliably economically and sustainably using pre-dominantly or exclusively variable renewables. To address these questions we develop a comprehensive cost framework that extends to include factors such as performance degradation efficiency financing rates and indirect costs to assess the economics of 10 MW scale alkaline and proton-exchange membrane electrolyzers to generate hydrogen. Our scenario analysis explores a range of operational configurations considering (i) current and projected wholesale electricity market data from the Australian National Electricity Market (ii) existing so-lar/wind farm generation curves and (iii) electrolyzer capital costs/performance to determine costs of H2production in the near (2020–2040) and long term(2030–2050). Furthermore we analyze dedicated off-grid integrated electro-lyzer plants as an alternate operating scenario suggesting oversizing renewable nameplate capacity with respect to the electrolyzer to enhance operational capacity factors and achieving more economical electrolyzer operation.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
Methanol as a Carrier of Hydrogen and Carbon in Fossil-free Production of Direct Reduced Iron
Jul 2020
Publication
Steelmaking is responsible for around 7% of the global emissions of carbon dioxide and new steelmaking processes are necessary to reach international climate targets. As a response to this steelmaking processes based on the direct reduction of iron ore by hydrogen produced via water electrolysis powered by renewable electricity have been suggested. Here we present a novel variant of hydrogen-based steelmaking incorporating methanol as a hydrogen and carbon carrier together with high-temperature co-electrolysis of water and carbon dioxide and biomass oxy-fuel combustion. The energy and mass balances of the process are analyzed. It is found that this methanol-based direct reduction process may potentially offer a number of process-related advantages over a process based on pure hydrogen featuring several process integration options. Notably the electricity and total energy use of the steelmaking process could be reduced by up to 25% and 8% compared to a reference pure hydrogen process respectively. The amount of high-temperature (> 200 °C) heat that must be supplied to the process could also be reduced by up to approximately 34% although the demand for medium-temperature heat is substantially increased. Furthermore the suggested process could allow for the production of high-quality direct reduced iron with appropriate carburization to alleviate downstream processing in an electric arc furnace which is not the case for a process based on pure hydrogen.
No more items...