- Home
- A-Z Publications
- Publications
Publications
Enhancing Waste-to-Energy and Hydrogen Production through Urban–Industrial Symbiosis: A Multi-Objective Optimisation Model Incorporating a Bayesian Best-Worst Method
Feb 2024
Publication
A surging demand for sustainable energy and the urgency to lower greenhouse gas emissions is driving industrial systems towards more eco-friendly and cost-effective models. Biogas from agricultural and municipal organic waste is gaining momentum as a renewable energy source. Concurrently the European Hydrogen Strategy focuses on green hydrogen for decarbonising the industrial and transportation sectors. This paper presents a multi-objective network design model for urban–industrial symbiosis incorporating anaerobic digestion cogeneration photovoltaic and hydrogen production technologies. Additionally a Bayesian best-worst method is used to evaluate the weights of the sustainability aspects by decision-makers integrating these into the mathematical model. The model optimises industrial plant locations considering economic environmental and social parameters including the net present value energy consumption and carbon footprint. The model’s functionalities are demonstrated through a real-world case study based in Emilia Romagna Italy. It is subject to sensitivity analysis to evaluate how changes in the inputs affect the outcomes and highlights feasible trade-offs through the exploration of the ϵ-constraint. The findings demonstrate that the model substantially boosts energy and hydrogen production. It is not only economically viable but also reduces the carbon footprint associated with fossil fuels and landfilling. Additionally it contributes to job creation. This research has significant implications with potential future studies intended to focus on system resilience plant location optimisation and sustainability assessment.
Liquid Hydrogen Pool Evaporation Above Four Different Substrates
Sep 2023
Publication
In the frame of the EC-funded project PRESLHY ten experiments on LH2-pool evaporation above four different substrates have been performed with the POOL-facility on a free field test site. Substrates to be investigated comprised concrete sand water and gravel. Four of the experiments were made with artificial side wind of known direction and known velocity to investigate the influence of side wind on hydrogen evaporation and cloud formation above the LH2-pool. The POOL-facility mainly consists of an insulated stainless-steel box with the dimensions 0.5 x 0.5 x 0.2 m³ that is filled up to half the height (0.1 m) with the respective substrate and LH2. The height of the LH2-pool that forms above the substrate can be determined using the weight of the complete facility which is positioned on a scale. Additionally six thermocouples are located in different heights above the substrate surface to indicate the LH2-level as soon as they are covered with LH2. Further measurement equipment used in the tests comprises temperature measurements inside the substrate and several thermocouples in the unconfined space above the pool where also H2-concentration measurements were performed. Using the sensor information pool evaporation rates for the different substrates were determined. The temperature and concentration measurements above the pool were mainly used to define promising ignition positions for subsequent combustion experiments in which the LH2-spills above the different substrates were ignited.
Look-ahead Scheduling of Energy-Water Nexus Integrated with Power2X Conversion Technologies under Multiple Uncertainties
Aug 2023
Publication
Co-optimizing energy and water resources in a microgrid can increase efficiency and improve economic performance. Energy-water storage (EWS) devices are crucial components of a high-efficient energy-water microgrid (EWMG). The state of charge (SoC) at the end of the first day of operation is one of the most significant variables in EWS devices since it is used as a parameter to indicate the starting SoC for the second day which influences the operating cost for the second day. Hence this paper examines the benefits and applicability of a lookahead optimization strategy for an EWMG integrated with multi-type energy conversion technologies and multienergy demand response to supply various energy-water demands related to electric/hydrogen vehicles and commercial/residential buildings with the lowest cost for two consecutive days. In addition a hybrid info-gap/robust optimization technique is applied to cover uncertainties in photovoltaic power and electricity prices as a tri-level optimization framework without generating scenarios and using the probability distribution functions. Duality theory is also used to convert the problem into a single-level MILP so that it can be solved by CPLEX. According to the findings the implemented energy-water storage systems and look-ahead strategy accounted for respectively 4.03% and 0.43% reduction in the total cost.
Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage
Feb 2024
Publication
A novel multi-objective robust optimization model of an integrated energy system with hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon economy operation of the integrated energy system of a park. Firstly the lowest total system cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto front solution set of the objective function is applied by compromise planning and the optimal solution among them is obtained by the maximum–minimum fuzzy method. Furthermore the robust optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally it is demonstrated that the illustrated HIES can significantly reduce the total system cost carbon emissions and abandoned wind and solar power. Meanwhile the effectiveness of the proposed model and solution method is verified by analyzing the influence of multi-objective solutions and a robust coefficient on the Chongli Demonstration Project in Hebei Province.
Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production
Feb 2024
Publication
This research delineates a pivotal advancement in the domain of sustainable energy systems with a focused emphasis on the integration of renewable energy sources—predominantly wind and solar power—into the hydrogen production paradigm. At the core of this scientific endeavor is the formulation and implementation of a deep-learning-based framework for short-term localized weather forecasting specifically designed to enhance the efficiency of hydrogen production derived from renewable energy sources. The study presents a comprehensive evaluation of the efficacy of fully connected neural networks (FCNs) and convolutional neural networks (CNNs) within the realm of deep learning aimed at refining the accuracy of renewable energy forecasts. These methodologies have demonstrated remarkable proficiency in navigating the inherent complexities and variabilities associated with renewable energy systems thereby significantly improving the reliability and precision of predictions pertaining to energy output. The cornerstone of this investigation is the deployment of an artificial intelligence (AI)-driven weather forecasting system which meticulously analyzes data procured from 25 distinct weather monitoring stations across Latvia. This system is specifically tailored to deliver short-term (1 h ahead) forecasts employing a comprehensive sensor fusion approach to accurately predicting wind and solar power outputs. A major finding of this research is the achievement of a mean squared error (MSE) of 1.36 in the forecasting model underscoring the potential of this approach in optimizing renewable energy utilization for hydrogen production. Furthermore the paper elucidates the construction of the forecasting model revealing that the integration of sensor fusion significantly enhances the model’s predictive capabilities by leveraging data from multiple sources to generate a more accurate and robust forecast. The entire codebase developed during this research endeavor has been made available on an open access GIT server.
A Review of Gas Phase Inhibition of Gaseous Hydrogen Embrittlement in Pipeline Steels
Feb 2024
Publication
The addition of small amounts of certain gases such as O2 CO and SO2 may mitigate hydrogen embrittlement in high-pressure gas transmission pipelines that transport hydrogen. To practically implement such inhibition in gas transmission pipelines a comprehensive understanding and quantification of this effect are essential. This review examines the impact of various added gases to hydrogen including typical odorants on gaseous hydrogen embrittlement of steels and evaluates their inhibition effectiveness. O2 CO and SO2 were found to be effective inhibitors of hydrogen embrittlement. Yet the results in the literature have not always been consistent partly because of the diverse range of mechanical tests and their parameters. The absence of systematic studies hinders the evaluation of the feasibility of using gas phase inhibitors for controlling gaseous hydrogen embrittlement. A method to quantify the effectiveness of gas phase inhibition is proposed using gas phase permeation studies.
Real-Time Energy Management Strategy of Hydrogen Fuel Cell Hybrid Electric Vehicles Based on Power Following Strategy–Fuzzy Logic Control Strategy Hybrid Control
Nov 2023
Publication
Fuel cell hybrid electric vehicles have the advantages of zero emission high efficiency and fast refuelling etc. and are one of the key directions for vehicle development. The energy management problem of fuel cell hybrid electric vehicles is the key technology for power distribution. The traditional power following strategy has the advantage of a real-time operation but the power correction is usually based only on the state of charge of a lithium battery which causes the operating point of the fuel cell to be in the region of a low efficiency. To solve this problem this paper proposes a hybrid power-following-fuzzy control strategy where a fuzzy logic control strategy is used to optimise the correction module based on the power following strategy which regulates the state of charge while correcting the output power of the fuel cell towards the efficient operating point. The results of the joint simulation with Matlab + Advisor under the Globally Harmonised Light Vehicle Test Cycle Conditions show that the proposed strategy still ensures the advantages of real-time energy management and for the hydrogen fuel cell the hydrogen consumption is reduced by 13.5% and 4.1% compared with the power following strategy and the fuzzy logic control strategy and the average output power variability is reduced by 14.6% and 5.1% respectively which is important for improving the economy of the whole vehicle and prolonging the lifetime of fuel cell.
Calculating the Fundamental Parameters to Assess the Explosion Risk Due to Crossover in Electrolysers
Sep 2023
Publication
With the predicted high demand of hydrogen projected to support the neutral carbon society transition in the coming years the production of hydrogen is set to increase alongside the demand. As electrolysis is set to be amongst the main solutions for green hydrogen production ensuring the safety of electrolysers during operation will become a central concern. This is mainly due to the crossover risk (hydrogen into oxygen or the other way around) in the separators as throughout the years several cases of incidents have been reported. This study aims to evaluate the methodologies for calculating H2/O2 detonation cell size and laminar flame velocity using detailed kinetic mechanisms at the operating conditions of electrolysers (up to 35 bar and 360 K). Therefore the modeling of H2/O2 and H2/Air shock tube delay times and laminar flame speeds at initial different pressures and temperature based on the GRI mech 3.0 [1] Mevel et al.[2] Li et al.[3] Lutz et al. [4] and Burke et al. [5] kinetic mechanisms were performed and compared with the available experimental data in the literature. In each case a best candidate mechanism was then chosen to build a database for the detonation cell size then for the laminar flame speeds up to the operating conditions of electrolysers (293-360K and 1-35 bar).
A Review on the Research Progress and Application of Compressed Hydrogen in the Marine Hydrogen Fuel Cell Power System
Jan 2024
Publication
The urgency to mitigate greenhouse gas emissions from maritime vessels has intensified due to the increasingly stringent directives set forth by the International Maritime Organization (IMO). These directives specifically address energy efficiency enhancements and emissions reduction within the shipping industry. In this context hydrogen is the much sought after fuel for all the global economies and its applications for transportation and propulsion in particular is crucial for cutting down carbon emissions. Nevertheless the realization of hydrogen-powered vessels is confronted by substantial technical hurdles that necessitate thorough examination. This study undertakes a comprehensive analysis encompassing diverse facets including distinct variations of hydrogen fuel cells hydrogen internal combustion engines safety protocols associated with energy storage as well as the array of policies and commercialization endeavors undertaken globally for the advancement of hydrogen-propelled ships. By amalgamating insights from these multifaceted dimensions this paper adeptly encapsulates the myriad challenges intrinsic to the evolution of hydrogen-fueled maritime vessels while concurrently casting a forward-looking gaze on their prospective trajectory.
Modelling of Hydrogen Dispersion with Effects
Sep 2023
Publication
The paper shows the latest developments of Gexcon’s consequence modelling software EFFECTS with validation based on hydrogen experimental data for different storage conditions and scenarios including liquid hydrogen two-phase jet releases. The effect of atmospheric turbulence on the dispersion and potential worst-case scenarios of hydrogen which are very different from heavy gas releases are discussed. Beside validation for gaseous hydrogen releases a validation study for pressurised liquid hydrogen jet releases including a sensitivity analysis is performed and the results are compared with experimental data.
Comparative Life Cycle Greenhouse Gas Analysis of Clean Hydrogen Pathways: Assessing Domestic Production and Overseas Import in South Korea
Sep 2023
Publication
The development of a Clean Hydrogen Standard based on life-cycle greenhouse gas (GHG) emissions is gaining prominence on the international agenda. Thus a framework for assessing life-cycle GHG emissions for clean hydrogen pathways is necessary. In this study the comprehensive datasets and effects of various scenarios encompassing hydrogen production carriers (liquid hydrogen ammonia methylcyclohexane) carbon capture and storage (CCS) target analysis year (2021 2030) to reflect trends of greening grid electricity and potential import countries on aggregated life-cycle GHG emissions were presented. South Korea was chosen as a case study region and the low-carbon alternatives were suggested for reducing aggregated emissions to meet the Korean standard (5 kgCO2e/kgH2). First capturing and storing nearly entire (>90%) CO2 from fossil- and waste-based production pathways is deemed essential. Second when repurposing the use of hydrogen that was otherwise used internally applying a penalty for substitution is appropriate leading to results notably exceeding the standard. Third for electrolysis-based hydrogen using renewable or nuclear electricity is essential. Lastly when hydrogen is imported in a well-to-point-of-delivery (WtP) perspective using renewable electricity during hydrogen conversion into a carrier and reusing the produced hydrogen for endothermic reconversion reaction are recommended. By implementing the developed calculation framework to other countries' cases it was observed that importing hydrogen to regions having scope of WtP or above (e.g. well-to-wheel) might not meet the threshold due to additional emissions from importation processes. Additionally for hydrogen carriers undergoing the endothermic reconversion the approach to reduce WtP emissions (reusing produced hydrogen) may conflict with the approach to reduce well-to-gate (WtG) emission (using external fossilbased fuel). The discrepancy highlights the need to set a broader scope of emissions assessment to effectively promote the life-cycle emission reduction efforts of hydrogen importers. This study contributes to the field of clean hydrogen GHG emission assessment offering a robust database and calculation framework while addressing the effects of greening grid electricity and CCS implementation proposing low-carbon alternatives and GHG assessment scope to achieve global GHG reduction.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Modelling the Non-adiabatic Blowdown of Pressurised Cryogenic Hydrogen Storage Tank
Sep 2023
Publication
This paper describes a model of hydrogen blowdown dynamics for storage tanks needed for hydrogen safety engineering to accurately represent incident scenarios. Heat transfer through a tank wall affects the temperature and pressure dynamics inside the storage vessel and therefore the characteristics of the resulting hydrogen jet in case of loss of containment. Available non-adiabatic blowdown models are validated only against experiments on hydrogen storages at ambient temperature. Effect of heat transfer for cryo-compressed hydrogen can be more significant due to a larger temperature difference between the stored hydrogen and surrounding atmosphere especially in case of failure of equipment insulation. Previous work by the authors demonstrated that the heat transfer through a discharge pipe wall can significantly affect the mass flow rate of cryogenic hydrogen releases. To the authors’ knowledge thoroughly validated models of non-adiabatic blowdown dynamics for cryo-compressed hydrogen are currently missing. The present work further develops the non-adiabatic blowdown model at ambient temperature using the under-expanded jet theory developed at Ulster University to expand it to cryo-compressed hydrogen storages. The non-ideal behaviour of cryo-compressed hydrogen is accounted through the high-accuracy Helmholtz energy formulations. The developed model includes effect of heat transfer at both the tank and discharge pipe wall. The model is thoroughly validated against sixteen tests performed by Pro-Science on blowdown of hydrogen storage tanks with initial pressure 0.5-20 MPa and temperature 80-310 K through release nozzle of diameter 0.5-4.0 mm. The model well reproduces the experimental pressure and temperature dynamics during the entire blowdown duration.
Energy Sustainability: A Pragmatic Approach and Illustrations
Mar 2009
Publication
Many factors to be appropriately addressed in moving towards energy sustainability are examined. These include harnessing sustainable energy sources utilizing sustainable energy carriers increasing efficiency reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability economic affordability and equity lifestyles land use and aesthetics. Numerous illustrations demonstrate measures consistent with the approach put forward and options for energy sustainability and the broader objective of sustainability. Energy sustainability is of great importance to overall sustainability given the pervasiveness of energy use its importance in economic development and living standards and its impact on the environment.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
QRA of Hydrogen Vehicles in a Road Tunnel
Sep 2023
Publication
Hydrogen energy is recognized by many European governments as an important part of the development to achieve a more sustainable energy infrastructure. Great efforts are spent to build up a hydrogen supply chain to support the increasing number of hydrogen-powered vehicles. Naturally these vehicles will use the common traffic infrastructure. Thus it has to be ensured these infrastructures are capable to withstand the hazards and associated risks that may arise from these new technologies. In order to have an appropriate assessment tool for hydrogen vehicles transport through tunnels a new QRA methodology is developed and presented here. In Europe the PIARC is a very common approach. It is therefore chosen as a starting point for the new methodology. It provides data on traffic statistics accident frequencies tunnel geometries including certain prevention and protection measures. This approach is enhanced by allowing better identification of hazards and their respective sources for hydrogen vehicles. A detailed analysis of the accident scenarios that are unique for hydrogen vehicles hereunder the initiating events severity of collision types that may result in a release of hydrogen gas in a tunnel and the location of such an accident are included. QRA enables the assessment and evaluation of scenarios involving external fires or vehicles that burst into fire because of an accident or other fire sources. Event Tree Analysis is the technique used to estimate the event frequencies. The consequence analysis includes the hazards from blast waves hydrogen jet fires DDT.
An Overview of Hydrogen Valleys: Current Status, Challenges and their Role in Increased Renewable Energy Penetration
Sep 2024
Publication
Renewable hydrogen is a flexible and versatile energy vector that can facilitate the decarbonization of several sectors and simultaneously ease the stress on the electricity grids that are currently being saturated with intermittent renewable power. But hydrogen technologies are currently facing limitations related to existing infrastructure limitations available markets as well as production storage and distribution costs. These challenges will be gradually addressed through the establishment operation and scaling-up of hydrogen valleys. Hydrogen valleys are an important stepping stone towards the full-scale implementation of the hydrogen economy with the target to foster sustainability lower carbon emissions and derisk the associated hydrogen technologies. These hydrogen ecosystems integrate renewable energy sources efficient hydrogen production storage transportation technologies as well as diverse end-users within a defined geographical region. This study offers an overview of the hydrogen valleys concept analyzing the critical aspects of their design and the key segments that constitute the framework of a hydrogen valley. А holistic overview of the key characteristics of a hydrogen valley is provided whereas an overview of key on-going hydrogen valley projects is presented. This work underscores the importance of addressing challenges related to the integration of renewable energy sources into electricity grids as well as scale-up challenges associated with economic and market conditions society awareness and political decision-making.
GT Enclosure Dispersion Analysis with Different CFD Tools
Sep 2023
Publication
A gas turbine is usually installed inside an acoustic enclosure where the fuel gas supply system is also placed. It is common practice using CFD analysis to simulate the accidental fuel gas release inside the enclosure and the consequent dispersion. These numerical studies are used to properly design the gas detection system according to specific safety criteria which are well defined when the fuel gas is a conventional natural gas. Package design is done to prevent that any sparking items and hot surfaces higher than auto-ignition temperature could be a source of ignition in case of leak. Nevertheless it is not possible to exclude that a leakage from a theoretical point of view could be ignited and for this reason a robust design requires that the enclosure structure is able to withstand the overpressure generated by a gas cloud ignition. Moving to hydrogen as fuel gas makes this design constraint much more relevant for its known characteristics of reactiveness large range of flammability maximum burning velocity etc. In such context gas leak and dispersion analysis become even more crucial because a correct prediction of these scenarios can guide the design to a safe configuration. The present work shows a comparison of the dispersion of different leakages inside a gas turbine enclosure carried out with two different CFD tools Ansys CFX and FLACS. This verification is considered essential since dispersion analysis results are used as initial conditions for gas cloud ignition simulations strictly necessary to predict the consequence in term of overpressure without doing experimental tests.
Hydrogen Jet Flame Simulation and Thermal Radiation Damage Estimation for Leakage Accidents in a Hydrogen Refueling Station
Jun 2024
Publication
With the rapid development of hydrogen energy worldwide the number of hydrogen energy facilities such as hydrogen refueling stations has grown rapidly in recent years. However hydrogen is prone to leakage accidents during use which could lead to hazards such as fires and explosions. Therefore research on the safety of hydrogen energy facilities is crucial. In this paper a study of high-pressure hydrogen jet flame accidents is conducted for a proposed integrated hydrogen production and refueling station in China. The effects of leakage direction and leakage port diameter on the jet flame characteristics are analyzed and a risk assessment of the flame accident is conducted. The results showed that the death range perpendicular to the flame direction increased from 2.23 m to 5.5 m when the diameter of the leakage port increased from 4 mm to 10 mm. When the diameter of the leakage port is larger than 8 mm the equipment on the scene will be within the boundaries of the damage. The consequences of fire can be effectively mitigated by a reasonable firewall setup to ensure the overall safety of the integrated station.
It Is Not the Same Green: A Comparative LCA Study of Green Hydrogen Supply Network Pathways
Jul 2024
Publication
Green hydrogen (H2 ) a promising clean energy source garnering increasing attention worldwide can be derived through various pathways resulting in differing levels of greenhouse gas emissions. Notably Green H2 production can utilize different methods such as integrating standard photovoltaic panels thermal photovoltaic or concentrated photovoltaic thermal collectors with electrolyzers. Furthermore it can be conditioned to different states or carriers including liquefied H2 compressed H2 ammonia and methanol and stored and transported using various methods. This paper employs the Life Cycle Assessment methodology to compare 18 different green hydrogen pathways and provide recommendations for greening the hydrogen supply chain. The findings indicate that the production pathway utilizing concentrated photovoltaic thermal panels for electricity generation and hydrogen compression in the conditioning and transportation stages exhibits the lowest environmental impact emitting only 2.67 kg of CO2 per kg of H2 .
Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield
Dec 2023
Publication
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors measuring techniques and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis facilitating more competent inexpensive and feasible green hydrogen production.
Hydrogen Production, Transporting and Storage Processes—A Brief Review
Sep 2024
Publication
This review aims to enhance the understanding of the fundamentals applications and future directions in hydrogen production techniques. It highlights that the hydrogen economy depends on abundant non-dispatchable renewable energy from wind and solar to produce green hydrogen using excess electricity. The approach is not limited solely to existing methodologies but also explores the latest innovations in this dynamic field. It explores parameters that influence hydrogen production highlighting the importance of adequately controlling the temperature and concentration of the electrolytic medium to optimize the chemical reactions involved and ensure more efficient production. Additionally a synthesis of the means of transport and materials used for the efficient storage of hydrogen is conducted. These factors are essential for the practical feasibility and successful deployment of technologies utilizing this energy resource. Finally the technological innovations that are shaping the future of sustainable use of this energy resource are emphasized presenting a more efficient alternative compared to the fossil fuels currently used by society. In this context concrete examples that illustrate the application of hydrogen in emerging technologies are highlighted encompassing sectors such as transportation and the harnessing of renewable energy for green hydrogen production.
Strategic Analysis of Hydrogen Market Dynamics Across Collaboration Models
Oct 2024
Publication
The global energy landscape is experiencing a transformative shift with an increasing emphasis on sustainable and clean energy sources. Hydrogen remains a promising candidate for decarbonization energy storage and as an alternative fuel. This study explores the landscape of hydrogen pricing and demand dynamics by evaluating three collaboration scenarios: market-based pricing cooperative integration and coordinated decision-making. It incorporates price-sensitive demand environmentally friendly production methods and market penetration effects to provide insights into maximizing market share profitability and sustainability within the hydrogen industry. This study contributes to understanding the complexities of collaboration by analyzing those structures and their role in a fast transition to clean hydrogen production by balancing economic viability and environmental goals. The findings reveal that the cooperative integration strategy is the most effective for sustainable growth increasing green hydrogen’s market share to 19.06 % and highlighting the potential for environmentally conscious hydrogen production. They also suggest that the coordinated decision-making approach enhances profitability through collaborative tariff contracts while balancing economic viability and environmental goals. This study also underscores the importance of strategic pricing mechanisms policy alignment and the role of hydrogen hubs in achieving sustainable growth in the hydrogen sector. By highlighting the uncertainties and potential barriers this research offers actionable guidance for policymakers and industry players in shaping a competitive and sustainable energy marketplace.
Component and System Levels Limitations in Power-Hydrogen Systems: Analytical Review
Jun 2024
Publication
This study identifies limitations and research and development (R&D) gaps at both the component and system levels for hydrogen energy systems (HESs) and specifies how these limitations impact HES adoption within the electric power system (EPS) decarbonization roadmap. To trace these limitations and potential solutions an analytical review is conducted in electrification and integration of HESs renewable energy sources (RESs) and multi-carrier energy systems (MCESs) in sequence. The study also innovatively categorizes HES integration challenges into component and system levels. At the component level technological aspects of hydrogen generation storage transportation and refueling are explored. At the system level HES coordination hydrogen market frameworks and adoption challenges are evaluated. Findings highlight R&D gaps including misalignment between HES operational targets and techno-economic development integration insufficiency model deficiencies and challenges in operational complexity. This study provides insights for sustainable energy integration by supporting the transition to a decarbonized energy system.
A Systematic Study on Techno-Economic Evaluation of Hydrogen Production
Sep 2023
Publication
This paper aims to perform a systematic review with a bibliometric approach of the technoeconomic evaluation studies of hydrogen production. To achieve this objective a comprehensive outline of hydrogen production processes from fossil and renewable sources is presented. The results reveal that electrolysis classified as water splitting is the most investigated process in the literature since it contributes to a reduction in greenhouse gas emissions and presents other advantages such as maturity and applicability energy efficiency flexibility and energy storage potential. In addition the processes of gasification classified as thermochemical and steam reforming classified as catalytic reforming are worth mentioning. Regarding the biological category there is a balance between research on photo fermentation and dark fermentation. The literature on the techno-economic evaluation of hydrogen production highlights significant gaps including a scarcity of comprehensive studies a lack of emphasis on commercial viability an absence of sensitivity analysis and the need for comparative analyses between production technologies.
A Review on Liquid Hydrogen Fuel Systems in Aircraft Applications for Gas Turbine Engines
Oct 2024
Publication
The transition from traditional aviation fuels to low-emission alternatives such as hydrogen is a crucial step towards a sustainable future for aviation. Conventional jet fuels substantially contribute to greenhouse gas emissions and climate change. Hydrogen fuel especially "green" hydrogen offers great potential for achieving full sustainability in aviation. Hybrid/electric/fuel cell technologies may be used for shorter flights while longrange aircraft are more likely to combust hydrogen in gas turbines. Liquid hydrogen is necessary to minimize storage tank weight but the required fuel systems are at a low technology readiness level and differ significantly from Jet A-1 systems in architecture operation and performance. This paper provides an in-depth review covering the development of liquid hydrogen fuel system design concepts for gas turbines since the 1950s compares insights from key projects such as NASA studies and ENABLEH2 alongside an analysis of recent publications and patent applications and identifies the technological advancements required for achieving zeroemission targets through hydrogen-fuelled propulsion.
Optimization Strategy for Low-Carbon Economy of Integrated Energy System Considering Carbon Capture-Two Stage Power-to-Gas Hydrogen Coupling
Jun 2024
Publication
To further optimize the low-carbon economy of the integrated energy system (IES) this paper establishes a two-stage P2G hydrogen-coupled electricity–heat–hydrogen–gas IES with carbon capture (CCS). First this paper refines the two stages of P2G and introduces a hydrogen fuel cell (HFC) with a hydrogen storage device to fully utilize the hydrogen energy in the first stage of power-to-gas (P2G). Then the ladder carbon trading mechanism is considered and CCS is introduced to further reduce the system’s carbon emissions while coupling with P2G. Finally the adjustable thermoelectric ratio characteristics of the combined heat and power unit (CHP) and HFC are considered to improve the energy utilization efficiency of the system and to reduce the system operating costs. This paper set up arithmetic examples to analyze from several perspectives and the results show that the introduction of CCS can reduce carbon emissions by 41.83%. In the CCS-containing case refining the P2G two-stage and coupling it with HFC and hydrogen storage can lead to a 30% reduction in carbon emissions and a 61% reduction in wind abandonment costs; consideration of CHP and HFC adjustable thermoelectric ratios can result in a 16% reduction in purchased energy costs.
Towards the Design of a Hydrogen-powered Ferry for Cleaner Passenger Transport
Aug 2024
Publication
The maritime transportation sector is a large and growing contributor of greenhouse gas and other emissions. Therefore stringent measures have been taken by the International Maritime Organization to mitigate the environmental impact of the international shipping. These lead to the adoption of new technical solutions involving clean fuels such as hydrogen and high efficiency propulsion technologies that is fuel cells. In this framework this paper proposes a methodological approach aimed at supporting the retrofit design process of a car-passenger ferry operating in the Greece’s western maritime zone whose conventional powertrain is replaced with a fuel cell hybrid system. To this aim first the energy/power requirements and the expected hydrogen consumption of the vessel are determined basing on a typical operational profile retrieved from data provided by the shipping company. Three hybrid powertrain configurations are then proposed where fuel cell and batteries are balanced out according to different design criteria. Hence a new vessel layout is defined for each of the considered options by taking into account on-board weight and space constraints to allocate the components of the new hydrogen-based propulsion systems. Finally the developed vessel configurations are simulated in a virtual towing tank environment in order to assess their hydrodynamic response and compare them with the original one thus providing crucial insights for the design process of new hydrogen-fueled vessel solutions. Findings from this study reveal that the hydrogen-based configurations of the vessel are all characterized by a slight reduction of the payload mainly due to the space required to allocate the hydrogen storage system; instead the hydrodynamic behavior of the H2 powered vessels is found to be similar to the one of the original Diesel configuration; also from a hydrodynamic point of view the results show that mid load operating conditions get relevance for the design process of the hybrid vessels.
Techno‐Economic Analysis of Hydrogen as a Storage Solution in an Integrated Energy System for an Industrial Area in China
Jun 2024
Publication
This study proposes four kinds of hybrid source–grid–storage systems consisting of pho‐ tovoltaic and wind energy and a power grid including different batteries and hydrogen storage systems for Sanjiao town. HOMER‐PRO was applied for the optimal design and techno‐economic analysis of each case aiming to explore reproducible energy supply solutions for China’s industrial clusters. The results show that the proposed system is a fully feasible and reliable solution for in‐ dustry‐based towns like Sanjiao in their pursuit of carbon neutrality. In addition the source‐side price sensitivity analysis found that the hydrogen storage solution was cost‐competitive only when the capital costs on the storage and source sides were reduced by about 70%. However the hydro‐ gen storage system had the lowest carbon emissions about 14% lower than the battery ones. It was also found that power generation cost reduction had a more prominent effect on the whole system’s NPC and LCOE reduction. This suggests that policy support needs to continue to push for genera‐ tion‐side innovation and scaling up while research on different energy storage types should be en‐ couraged to serve the needs of different source–grid–load–storage systems.
An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System
Jul 2024
Publication
When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines for example high-voltage direct current the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue firstly an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly the sensitivity of the total return on investment to wind speed parameters was investigated and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419% and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted.
A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning
Jul 2024
Publication
This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm specifically a convolutional neural network (CNN) to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE) Mean Squared Error (MSE) Root Mean Square Error (RMSE) and the Correlation Coefficient (R2 ) with comparisons made to a real-world dataset. The CNN model showed outstanding performance with an R2 of 0.96 MSE of 1.97 MAE of 1.003 and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities thereby supporting informed decisionmaking and sustainable energy infrastructure development.
Comparative Analysis of Solar Cells and Hydrogen Fuels: A Mini Review
Jul 2024
Publication
The aim of this mini-review is to compare the effectiveness and potential of solar cells and hydrogen fuel technologies in clean energy generation. Key aspects such as efficiency scalability environmental footprint and technological maturity are examined. Solar cells are analyzed for their ability to convert sunlight into electricity efficiently and their potential for widespread deployment with minimal environmental impact. Hydrogen fuel technologies are assessed based on their efficiency in hydrogen production scalability and overall environmental footprint from production to end use. The review identifies significant challenges including high costs infrastructure needs and policy requirements as well as opportunities for innovation and market growth. The findings provide insights to guide decision-making towards a sustainable energy future.
Fuzzy Logic-Based Energy Management Strategy for Hybrid Fuel Cell Electric Ship Power and Propulsion System
Oct 2024
Publication
The growing use of proton-exchange membrane fuel cells (PEMFCs) in hybrid propulsion systems is aimed at replacing traditional internal combustion engines and reducing greenhouse gas emissions. Effective power distribution between the fuel cell and the energy storage system (ESS) is crucial and has led to a growing emphasis on developing energy management systems (EMSs) to efficiently implement this integration. To address this goal this study examines the performance of a fuzzy logic rule-based strategy for a hybrid fuel cell propulsion system in a small hydrogenpowered passenger vessel. The primary objective is to optimize fuel efficiency with particular attention on reducing hydrogen consumption. The analysis is carried out under typical operating conditions encountered during a river trip. Comparisons between the proposed strategy with other approaches—control based optimization based and deterministic rule based—are conducted to verify the effectiveness of the proposed strategy. Simulation results indicated that the EMS based on fuzzy logic mechanisms was the most successful in reducing fuel consumption. The superior performance of this method stems from its ability to adaptively manage power distribution between the fuel cell and energy storage systems.
Hydrogen Revolution in Europe: Bibliometric Review of Industrial Hydrogen Applications for a Sustainable Future
Jul 2024
Publication
Industrial applications of hydrogen are key to the transition towards a sustainable lowcarbon economy. Hydrogen has the potential to decarbonize industrial sectors that currently rely heavily on fossil fuels. Hydrogen with its unique and versatile properties has several in-industrial applications that are fundamental for sustainability and energy efficiency such as the following: (i) chemical industry; (ii) metallurgical sector; (iii) transport; (iv) energy sector; and (v) agrifood sector. The development of a bibliometric analysis of industrial hydrogen applications in Europe is crucial to understand and guide developments in this emerging field. Such an analysis can identify research trends collaborations between institutions and countries and the areas of greatest impact and growth. By examining the scientific literature and comparing it with final hydrogen consumption in different regions of Europe the main actors and technologies that are driving innovation in industrial hydrogen use on the continent can be identified. The results obtained allow for an assessment of the knowledge gaps and technological challenges that need to be addressed to accelerate the uptake of hydrogen in various industrial sectors. This is essential to guide future investments and public policies towards strategic areas that maximize the economic and environmental impact of industrial hydrogen applications in Europe.
National Gas FutureGrid Phase 1 Closure Report
Jul 2024
Publication
This project an essential part of the National Gas HyNTS programme endeavours to align the NTS with GB’s net zero ambitions by demonstrating the operational viability of the system with varying hydrogen blends using decommissioned assets typical of the natural gas network today ultimately aiming for 100% hydrogen conveyance. Several desktop studies were undertaken within the HyNTS programme to confirm the theoretical potential of the NTS to transport hydrogen safely and reliably. Further to these studies practical demonstration was deemed necessary to bridge the knowledge gaps and ensure the system’s transition maintains the utmost safety and reliability standards. A range of tests on decommissioned assets were conducted offline in a controlled environment to ensure robust outcomes that will ultimately start to build the safety case for a hydrogen network. The key deliverables and testing achievements of FutureGrid included: • Operational testing with natural gas and 2% 5% 20% and 100% hydrogen to verify the network’s ability to transport hydrogen and varying blends. • Standalone offline testing modules complementing evidence gathered on the main test facility. These address specific areas of concern including material permeation flange integrity asset leakage and rupture consequence which are essential for risk mitigation and safety assurance. FutureGrid is a global first facility and a critical part of National Gas’ hydrogen programme providing physical evidence of the capability of our network to transport hydrogen. It provides key evidence for hydrogen blending alongside 100% hydrogen pipelines which are planned under Project Union our Hydrogen Backbone across GB. FutureGrid is pivotal in the journey to reaching Net Zero by 2050 and is a fully operational proven technical demonstrator. FutureGrid’s repurposed assets are representative of today’s live high pressure gas network and have been subjected to testing at different blends of natural gas with hydrogen and 100% hydrogen; this was achieved with no major findings in differences in terms of how the assets interact with hydrogen. The overall project completion date was delayed from November 2023 to February 2024 due to technical issues with the newly built hydrogen re‑compressor. There were no changes made to the project costs.
Advances in Hospital Energy Systems: Genetic Algorithm Optimization of a Hybrid Solar and Hydrogen Fuel Cell Combined Heat and Power
Sep 2024
Publication
This paper presents an innovative Fuel Cell Combined Heat and Power (FC–CHP) system designed to enhance energy efficiency in hospital settings. The system primarily utilizes solar energy captured through photovoltaic (PV) panels for electricity generation. Excess electricity is directed to an electrolyzer for water electrolysis producing hydrogen which is stored in high-pressure tanks. This hydrogen serves a dual purpose: it fuels a boiler for heating and hot water needs and powers a fuel cell for additional electricity when solar production is low. The system also features an intelligent energy management system that dynamically allocates electrical energy between immediate consumption hydrogen production and storage while also managing hydrogen release for energy production. This study focuses on optimization using genetic algorithms to optimize key components including the peak power of photovoltaic panels the nominal power of the electrolyzer fuel cell and storage tank sizes. The objective function minimizes the sum of investment and electricity costs from the grid considering a penalty coefficient. This approach ensures optimal use of renewable energy sources contributing to energy efficiency and sustainability in healthcare facilities.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Storage Integrity During Underground Hydrogen Storage in Depleted Gas Reservoirs
Nov 2023
Publication
The transition from fossil fuels to renewable energy sources particularly hydrogen has emerged as a central strategy for decarbonization and the pursuit of net-zero carbon emissions. Meeting the demand for large-scale hydrogen storage a crucial component of the hydrogen supply chain has led to the exploration of underground hydrogen storage as an economically viable solution to global energy needs. In contrast to other subsurface storage options such as salt caverns and aquifers which are geographically limited depleted gas reservoirs have garnered increasing attention due to their broader distribution and higher storage capacity. However the safe storage and cycling of hydrogen in depleted gas reservoirs require the preservation of high stability and integrity in the caprock reservoir and wellbore. Nevertheless there exists a significant gap in the current research concerning storage integrity in underground hydrogen storage within depleted gas reservoirs and a systematic approach is lacking. This paper aims to address this gap by reviewing the primary challenges associated with storage integrity including geochemical reactions microbial activities faults and fractures and perspectives on hydrogen cycling. The study comprehensively reviews the processes and impacts such as abiotic and biotic mineral dissolution/precipitation reactivation and propagation of faults and fractures in caprock and host-rock wellbore instability due to cement degradation and casing corrosion and stress changes during hydrogen cycling. To provide a practical solution a technical screening tool has been developed considering controlling variables risks and consequences affecting storage integrity. Finally this paper highlights knowledge gaps and suggests feasible methods and pathways to mitigate these risks facilitating the development of large-scale underground hydrogen storage in depleted gas reservoirs.
Hopes and Fears for a Sustainable Energy Future: Enter the Hydrogen Acceptance Matrix
Feb 2024
Publication
Hydrogen-fuelled technologies for home heating and cooking may provide a low-carbon solution for decarbonising parts of the global housing stock. For the transition to transpire the attitudes and perceptions of consumers must be factored into policy making efforts. However empirical studies are yet to explore potential levels of consumer heterogeneity regarding domestic hydrogen acceptance. In response this study explores a wide spectrum of consumer responses towards the prospect of hydrogen homes. The proposed spectrum is conceptualised in terms of the ‘domestic hydrogen acceptance matrix’ which is examined through a nationally representative online survey conducted in the United Kingdom. The results draw attention to the importance of interest and engagement in environmental issues knowledge and awareness of renewable energy technologies and early adoption potential as key drivers of domestic hydrogen acceptance. Critically strategic measures should be taken to convert hydrogen scepticism and pessimism into hope and optimism by recognising the multidimensional nature of consumer acceptance. To this end resources should be dedicated towards increasing the observability and trialability of hydrogen homes in proximity to industrial clusters and hubs where the stakes for consumer acceptance are highest. Progress towards realising a net-zero society can be supported by early stakeholder engagement with the domestic hydrogen acceptance matrix.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Sep 2023
Publication
A wireless near-field hydrogen gas sensor is proposed which detects the leaking hydrogen near its source to achieve fast response and high reliability. The proposed sensor can detect leaking hydrogen in 100ms with nearly no delay due to hydrogen diffusion in space. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results. Over 1 year of maintenance interval is empowered by wireless design based on Bluetooth low energy protocol.
Integration of Different Storage Technologies towards Sustainable Development—A Case Study in a Greek Island
Mar 2024
Publication
The necessity for transitioning to renewable energy sources and the intermittent nature of the natural variables lead to the integration of storage units into these projects. In this research paper wind turbines and solar modules are combined with pumped hydro storage batteries and green hydrogen. Energy management strategies are described for five different scenarios of hybrid renewable energy systems based on single or hybrid storage technologies. The motivation is driven by grid stability issues and the limited access to fresh water in the Greek islands. A RES-based desalination unit is introduced into the hybrid system for access to low-cost fresh water. The comparison of single and hybrid storage methods the exploitation of seawater for the simultaneous fulfillment of water for domestic and agricultural purposes and the evaluation of different energy economic and environmental indices are the innovative aspects of this research work. The results show that pumped hydro storage systems can cover the energy and water demand at the minimum possible price 0.215 EUR/kWh and 1.257 EUR/m3 while hybrid storage technologies provide better results in the loss of load probability payback period and CO2 emissions. For the pumped hydro– hydrogen hybrid storage system these values are 21.40% 10.87 years and 2297 tn/year respectively.
CFD Analysis of Hydrogen Leakage from a Small Hole in a Sloping Roof Hydrogen Refueling Station
Sep 2023
Publication
As a key link in the application of hydrogen energy hydrogen refueling stations are significant for their safe operation. This paper established a three-dimensional 1:1 model for a seaport hydrogen refueling station in Ningbo City. In this work the CFD software FLUENT was used to study the influence of leakage angles on the leakage of high-pressure hydrogen through a small hole. Considering the calculation accuracy and efficiency this paper adopted the pseudo-diameter model. When the obstacle was far from the leakage hole it had almost no obstructive effect on the jet's main body. Still it affected the hydrogen whose momentum in the outer layer of the jet has been significantly decayed. In this condition there would be more hydrogen in stagnation. Thus the volume of the flammable hydrogen cloud was hardly affected while there was a significant increase in the volume of the hazardous hydrogen cloud. When the obstacle was close to the leakage hole it directly affected the jet's main body. Therefore the volume of the flammable hydrogen cloud increased. However the air impeded the hydrogen jet relatively less because the hydrogen jet contacted the obstacle more quickly. The hydrogen jet blocked by the obstacle still has some momentum. Therefore there was no more hydrogen in stagnation and no significant increase in the volume of the hazardous hydrogen cloud.
Potential Cost Savings of Large-scale Blue Hydrogen Production via Sorption-enhanced Steam Reforming Process
Jan 2024
Publication
As countries work towards achieving net-zero emissions the need for cleaner fuels has become increasingly urgent. Hydrogen produced from fossil fuels with carbon capture and storage (blue hydrogen) has the potential to play a significant role in the transition to a low-carbon economy. This study examined the technical and economic potential of blue hydrogen produced at 600 MWth(LHV) and scaled up to 1000 MWth(LHV) by benchmarking sorption-enhanced steam reforming process against steam methane reforming (SMR) autothermal gasheated reforming (ATR-GHR) integrated with carbon capture and storage (CCS) and SMR with CCS. Aspen Plus® was used to develop the process model which was validated using literature data. Cost sensitivity analyses were also performed on two key indicators: levelised cost of hydrogen and CO2 avoidance cost by varying natural gas price electricity price CO2 transport and storage cost and carbon price. Results indicate that at a carbon price of 83 £/tCO2e the LCOH for SE-SR of methane is the lowest at 2.85 £/kgH2 which is 12.58% and 22.55% lower than that of ATR-GHR with CCS and SMR plant with CCS respectively. The LCOH of ATR-GHR with CCS and SMR plant with CCS was estimated to be 3.26 and 3.68 £/kgH2 respectively. The CO2 avoidance cost was also observed to be lowest for SE-SR followed by ATR-GHR with CCS then SMR plant with CCS and was observed to reduce as the plant scaled to 1000 MWth(LHV) for these technologies.
Elevating the Prospects of Green Hydrogen (H2) Production Through Solar-powered Water Splitting Devices: A Systematic Review
May 2024
Publication
As the commercialisation of two contrasting solar-powered water splitting devices with lower TRLs of proton exchange membrane (PEM) electrolyser systems and photoelectrochemical (PEC) systems gains momentum the path towards a sustainable H2 economy is taking shape. Ongoing pilot projects and demonstration plants are proving the feasibility and potential of these technologies in real-world applications. However to ensure their success we must confront the critical challenges of cost reduction and efficiency enhancement making green H2 economically competitive with traditional production methods. To achieve this a collaborative effort among academia industry and policymakers is paramount. This comprehensive review begins by examining traditional water electrolysis methods focusing on the production of green H2 through electrochemical splitting. It delves into crucial components and advancements in the PEM systems addressing challenges related to catalysts membranes gas diffusion layers and bipolar plates. The review also explores solar-driven PEC water splitting emphasizing the significance of efficient photoelectrodes and reactor design. Additionally it discusses the integration of photovoltaic cells with electrochemical or PEC systems for higher H2 yield. Commercialisation is underway and this endeavour necessitates a collaborative approach with active involvement from academia industry and policymakers. This collective effort not only propels us towards greener and more sustainable energy solutions but also represents a transformative step in the global journey towards a sustainable and environmentally conscious economy.
Review on the Thermal Neutrality of Application-orientated Liquid Organic Hydrogen Carrier for Hydrogen Energy Storage and Delivery
Aug 2023
Publication
The depletion and overuse of fossil fuels present formidable challenge to energy supply system and environment. The human society is in great need of clean renewable and sustainable energy which can guarantee the long-term utilization without leading to escalation of greenhouse effect. Hydrogen as an extraordinary secondary energy is capable of realizing the target of environmental protection and transferring the intermittent primary energy to the application terminal while its nature of low volumetric energy density and volatility need suitable storage method and proper carrier. In this context liquid organic hydrogen carrier (LOHC) among a series of storage methods such as compressed and liquefied hydrogen provokes a considerable amount of research interest since it is proven to be a suitable carrier for hydrogen with safety and stability. However the dehydrogenation of hydrogen-rich LOHC materials is an endothermic process and needs large energy consumption which hampers the scale up of the LOHC system. The heat issue is thus essential to be addressed for fulfilling the potential of LOHC. In this work several strategies of heat intensification and management for LOHC system including the microwave irradiation circulation of exhaust heat and direct LOHC fuel cell are summarized and analyzed to provide suggestions and directions for future research.
Thermodynamic Modelling and Optimisation of a Green Hydrogen-blended Syngas-fueled Integrated PV-SOFC System
Sep 2023
Publication
Developing an effective energy transition roadmap is crucial in the face of global commitments to achieve net zero emissions. While renewable power generation systems are expanding challenges such as curtailments and grid constraints can lead to energy loss. To address this surplus electricity can be converted into green hydrogen serving as a key component in the energy transition. This research explores the use of renewable solar energy for powering a proton exchange membrane electrolyser to produce green hydrogen while a downdraft gasifier fed by municipal solid waste generates hydrogen-enriched syngas. The blended fuel is then used to feed a Solid Oxide Fuel Cell (SOFC) system. The study investigates the impact of hydrogen content on the performance of the fuel cell-based power plant from thermodynamics and exergoeconomic perspectives. Multiobjective optimisation using a genetic algorithm identifies optimal operating conditions for the system. Results show that blending hydrogen with syngas increases combined heat and power efficiency by up to 3% but also raises remarkably the unit product cost and reduces carbon dioxide emissions. Therefore the optimal values for hydrogen content current density temperatures and other parameters are determined. These findings contribute to the design and operation of an efficient and sustainable energy generation system.
Optimal Hydrogen Infrastructure Planning for Heat Decarbonisation
Feb 2024
Publication
Energy decarbonisation is essential to achieve Net-Zero emissions goal by 2050. Consequently investments in alternative low-carbon pathways and energy carriers for the heat sector are required. In this study we propose an optimisation framework for the transition of heat sector in Great Britain focusing on hydrogen infrastructure decisions. A spatially-explicit mixed-integer linear programming (MILP) evolution model is developed to minimise the total system’s cost considering investment and operational decisions. The optimisation framework incorporates both long-term planning horizon of 5-year steps from 2035 to 2050 and typical days with hourly resolution. Aiming to alleviate the computational effort of such multiscale model two hierarchical solution approaches are suggested that result in computational time reduction. From the optimisation results it is shown that the installation of gas reforming hydrogen production technologies with CCS and biomass gasification with CCS can provide a cost-effective strategy achieving decarbonisation goal. What-if analysis is conducted to demonstrate further insights for future hydrogen infrastructure investments. Results indicate that as cost is highly dependent on natural gas price Water Electrolysis capacity increases significantly when gas price rises. Moreover the introduction of carbon tax policy can lead to lower CO2 net emissions.
Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables
Jul 2024
Publication
Integrating carbon capture and storage (CCS) technology into an integrated energy system (IES) can reduce its carbon emissions and enhance its low-carbon performance. However the full CCS of flue gas displays a strong coupling between lean and rich liquor as carbon dioxide liquid absorbents. Its integration into IESs with a high penetration level of renewables results in insufficient flexibility and renewable curtailment. In addition integrating split-flow CCS of flue gas facilitates a short capture time giving priority to renewable energy. To address these limitations this paper develops a carbon capture utilization and storage (CCUS) method into which storage tanks for lean and rich liquor and a two-stage power-to-gas (P2G) system with multiple utilizations of hydrogen including a fuel cell and a hydrogen-blended CHP unit are introduced. The CCUS is integrated into an IES to build an electricity–heat–hydrogen–gas IES. Accordingly a deep low-carbon economic optimization strategy for this IES which considers stepwise carbon trading coal consumption renewable curtailment penalties and gas purchasing costs is proposed. The effects of CCUS the twostage P2G system and stepwise carbon trading on the performance of this IES are analyzed through a case-comparative analysis. The results show that the proposed method allows for a significant reduction in both carbon emissions and total operational costs. It outperforms the IES without CCUS with an 8.8% cost reduction and a 70.11% reduction in carbon emissions. Compared to the IES integrating full CCS the proposed method yields reductions of 6.5% in costs and 24.7% in emissions. Furthermore the addition of a two-stage P2G system with multiple utilizations of hydrogen further amplifies these benefits cutting costs by 13.97% and emissions by 12.32%. In addition integrating CCUS into IESs enables the full consumption of renewables and expands hydrogen utilization and the renewable consumption proportion in IESs can reach 69.23%.
A Bibliometric Study on the Research Trends and Hotspots of Proton Exchange Membrane Electrolyzer
Jan 2024
Publication
The application of hydrogen energy produced by proton exchange membrane electrolyzer (PEMEC) is conducive to the solution of the greenhouse effect and the energy crisis. In order to understand the development trends and research hotspot of PEMEC in recent years a total of 1874 research articles related to this field from 2003 to 2023 were obtained from the Web of Science Core Collection (WoS CC) database. The visualization software VOSviewer is used for bibliometric analysis and the research progress hotspots and trends in the PEMEC field are summarized. It was found that in the past two decades literature in the PEMEC field has shown a trend of stable increase at first and then rapidly increasing. And it is in a stage of rapid growth after 2021.Renewable Energy previously published research articles related to PEMEC with the highest frequency of citations. There are a total of 6128 researchers in this field but core authors only account for 4.5% of the total. Although China entered this field later than the United States and Canada it has the largest number of research articles. The research results provide a comprehensive overview of various aspects in the PEMEC field which is beneficial for researchers to grasp the development hotspots of PEMEC.
Sustainability Certification for Renewable Hydrogen: An International Survey of Energy Professionals
Jun 2024
Publication
Hydrogen produced from renewable energy is being promoted to decarbonise global energy systems. To support this energy transition standards certification and labelling schemes (SCLs) aim to differentiate hydrogen products based on their system-wide carbon emissions and method of production characteristics. However being certified as low-carbon clean or green hydrogen does not guarantee broader sustainability across economic environmental social or governance dimensions. Through an international survey of energy-sector and sustainability professionals (n = 179) we investigated the desirable sustainability features for renewable hydrogen SCLs and the perceived advantages and disadvantages of sustainability certification. Our mixed-method study revealed general accordance on the feasible inclusion of diverse sustainability criteria in SCLs albeit with varying degrees of perceived essentiality. Within the confines of the data some differences in viewpoints emerged based on respondents’ geographical and supply chain locations which were associated with the sharing of costs and benefits. Qualitatively respondents found the idea of SCL harmonisation attractive but weighed this against the risks of duplication complicated administrative procedures and contradictory regulation. The implications of this research centre on the need for further studies to inform policy recommendations for an overarching SCL sustainability framework that embodies the principles of harmonisation in the context of multistakeholder governance.
A Review of Electrolyzer-based Systems Providing Grid Ancillary Service: Current Status, Market, Challenges and Future Directions
Feb 2024
Publication
Concerns related to climate change have shifted global attention towards advanced sustainable and decarbonized energy systems. While renewable resources such as wind and solar energy offer environmentally friendly alternatives their inherent variability and intermittency present significant challenges to grid stability and reliability. The integration of renewable energy sources requires innovative solutions to effectively balance supply and demand in the electricity grid. This review explores the critical role of electrolyzer systems in addressing these challenges by providing ancillary services to modern electricity grids. Electrolyzers traditionally used only for hydrogen production have now emerged as versatile tools capable of responding quickly to grid load variations. They can consume electricity during excess periods or when integrated with fuel cells generate electricity during peak demand contributing to grid stability. Therefore electrolyzer systems can fulfill the dual function of producing hydrogen for the end-user and offering grid balancing services ensuring greater economic feasibility. This review paper aims to provide a comprehensive view of the electrolyzer systems’ role in the provision of ancillary services including frequency control voltage control congestion management and black start. The technical aspects market projects challenges and future prospects of using electrolyzers to provide ancillary services in modern energy systems are explored.
Environmental Assessment of Replacing Fossil Fuels with Hydrogen for Motorised Equipment in the Mining Sector
Nov 2023
Publication
To achieve the European milestone of climate neutrality by 2050 the decarbonisation of energy-intensive industries is essential. In 2022 global energy-related CO2 emissions increased by 0.9% or 321 Mt reaching a peak of over 36.8 Gt. A large amount of these emissions is the result of fossil fuel usage in the motorised equipment used in mining. Heavy diesel vehicles like excavators wheel loaders and dozers are responsible for an estimated annual CO2 emissions of 400 Mt of CO2 accounting for approximately 1.1% of global CO2 emissions. In addition exhaust gases of CO2 and NOx endanger the personnel’s health in all mining operations especially in underground environments. To tackle these environmental concerns and enhance environmental health extractive industries are focusing on replacing fossil fuels with alternative fuels of low or zero CO2 emissions. In mining the International Council on Mining and Metals has committed to achieving net zero emissions by 2050 or earlier. Of the various alternative fuels hydrogen (H2 ) has seen a considerable rise in popularity in recent years as H2 combustion accounts for zero CO2 emissions due to the lack of carbon in the burning process. When combusted with pure oxygen it also accounts for zero NOx formation and near-zero emissions overall. To this end this study aims to examine the overall environmental performance of H2 -powered motorised equipment compared to conventional fossil fuel-powered equipment through Life Cycle Assessment. The assessment was conducted using the commercial software Sphera LCA for Experts following the conventionally used framework established by ISO 14040:2006 and 14044:2006/A1:2018 and the International Life Cycle Data Handbook consisting of (1) the goal and scope definition (2) the Life Cycle Inventory (LCI) preparation (3) the Life Cycle Impact Assessment (LCIA) and (4) the interpretation of the results. The results will offer an overview to support decision-makers in the sector.
The Development of a Green Hydrogen Economy: Review
Jun 2024
Publication
Building a hydrogen economy is perceived as a way to achieve the decarbonization goals set out in the Paris Agreement to limit global warming as well as to meet the goals resulting from the European Green Deal for the decarbonization of Europe. This article presents a literature review of various aspects of this economy. The full added value chain of hydrogen was analyzed from its production through to storage transport distribution and use in various economic sectors. The current state of knowledge about hydrogen is presented with particular emphasis on its features that may determine the positives and negatives of its development. It was noted that although hydrogen has been known for many years its production methods are mainly related to fossil fuels which result in greenhouse gas emissions. The area of interest of modern science is limited to green hydrogen produced as a result of electrolysis from electricity produced from renewable energy sources. The development of a clean hydrogen economy is limited by many factors the most important of which are the excessive costs of producing clean hydrogen. Research and development on all elements of the hydrogen production and use chain is necessary to contribute to increasing the scale of production and use of this raw material and thus reducing costs as a result of the efficiencies of scale and experience gained. The development of the hydrogen economy will be related to the development of the hydrogen trade and the centers of this trade will differ significantly from the current centers of energy carrier trade.
Research on the Technical Scheme of Multi-stack Common Rail Fuel Cell Engine Based on the Demand of Commercial Vehicle
Feb 2024
Publication
At present most fuel cell engines are single-stack systems and high-power single-stack systems have bottlenecks in meeting the power requirements of heavy-duty trucks mainly because the increase in the single active area and the excessive number of cells will lead to poor distribution uniformity of water gas and heat in the stack which will cause local attenuation and reduce the performance of the stack. This paper introduces the design concept of internal combustion engine takes three-stack fuel cell engine as an example designs multi-stack fuel cell system scheme and serialized high-voltage scheme. Through Intelligent control technology of independent hydrogen injection based on multi-stack coupling the hydrogen injection inflow of each stack is controlled online according to the real-time anode pressure to achieve accurate fuel injection of a single stack and ensure the consistency between multiple stacks. proves the performance advantage of multi-stack fuel cell engine through theoretical designintelligent control and test verification and focuses on analyzing the key technical problems that may exist in multi-stack consistency. The research results provide a reference for the design of multi-stack fuel cell engines and have important reference value for the powertrain design of long-distance heavy-duty and high-power fuel cell trucks.
Renewable Hydrogen Requirements and Impacts for Network Balancing: A Queensland Cae Study
Dec 2023
Publication
Hydrogen is the gas of the moment: an abundant element that can be created using renewable energy transported in gaseous or liquid form and offering the ability to provide energy with only water vapour as an emission. Hydrogen can also be used in a fuel blend in electricity generation gas turbines providing a low carbon option for providing the peak electricity to cover high demand and firming.<br/>While the electricity grid is itself transforming to decarbonising hard-to-abate industries such as cement and bauxite refineries are slower to reduce emissions constrained by their high temperature process requirements. Hydrogen offers a solution allowing onsite production process heat with waste heat recovery supporting blended gas turbine generation for onsite electricity supply.<br/>This article builds on decarbonisation pathway simulation results from an ANEM model of the electricity grid identifying the amount of peak demand energy required from gas turbines. The research then examines the quantity flow rate storage requirements and emissions reduction if this peak generation were supplied by open cycle hydrogen capable gas turbines.
Assessment of Energy Footprint of Pure Hydrogen-Supplied Vehicles in Real Conditions of Long-Term Operation
Jul 2024
Publication
The desire to maintain CO2 concentrations in the global atmosphere implies the need to introduce ’new’ energy carriers for transport applications. Therefore the operational consumption of each such potential medium in the ’natural’ exploitation of vehicles must be assessed. A useful assessment method may be the vehicle’s energy footprint resulting from the theory of cumulative fuel consumption presented in the article. Using a (very modest) database of long-term use of hydrogen-powered cars the usefulness of this method was demonstrated. Knowing the energy footprint of vehicles of a given brand and type and the statistical characteristics of the footprint elements it is also possible to assess vehicle fleets in terms of energy demand. The database on the use of energy carriers such as hydrogen in the long-term operation of passenger vehicles is still relatively modest; however as it has been shown valuable data can be obtained to assess the energy demand of vehicles of a given brand and type. Access to a larger operational database will allow for wider use of the presented method.
Thermal Design of a System for Mobile Powersupply
Sep 2023
Publication
Ever more stringent emission regulations for vehicles encourage increasing numbers of battery electric vehicles on the roads. A drawback of storing electric energy in a battery is the comparable low energy density low driving range and the higher propensity to deplete the energy storage before reaching the destination especially at low ambient temperatures. When the battery is depleted stranded vehicles can either be towed or recharged with a mobile recharging station. Several technologies of mobile recharging stations already exist however most of them use fossil fuels to recharge battery electric vehicles. The proposed novel zero emission solution for mobile charging is a combined high voltage battery and hydrogen fuel cell charging station. Due to the thermal characteristics of the fuel cell and high voltage battery (which allow only comparable low coolant temperatures) the thermal design for this specific application (available heat exchanger area zero vehicle speed air flow direction) becomes challenging and is addressed in this work. Experimental methods were used to obtain reliable thermal and electric power measurement data of a 30 kW fuel cell system which is used in the Mobile Hydrogen Powersupply. Subsequently simulation methods were applied for the thermal design and optimisation of the coolant circuits and heat exchangers. It is shown that an battery electric vehicle charging power of 22 kW requires a heat exchanger area of 1 m2 of which 60 % is used by the fuel cell heat exchanger and the remainder by the battery heat exchanger to achieve steady state operation at the highest possible ambient temperature of 436 °C. Furthermore the simulation showed that when the charging power of 22 kW is solely provided by the high voltage battery the highest possible ambient temperature is 42 °C. When the charging power is decreased operation up to the maximum ambient temperatures of 45 °C can be achieved. The results of maximum charging power and limiting ambient temperature give insights for further system improvements which are: sizing of fuel cell or battery trailer design and heat exchanger area operation strategy of the system (power split between high voltage battery and fuel cell) as well as possible dynamic operation scenarios.
Techno-economic Analysis of Green-H2@Scale Production
Sep 2023
Publication
The International Energy Agency (IEA) established the "H2 Implementing Agreement (HIA)" to promote H2 transition in various economic sectors. Today less than one percent of the world's H2 production is “Green”. Lack of regulations high production costs and inadequate infrastructure are significant impediments. The U.S. Department of Energy set a "111-target" which translates into $1/kg-H2 in the next decade. Many countries in the Middle East and North Africa (MENA) region have announced ambitious plans to produce green H2. Through techno-economic metrics and the impact of economies of scale this study investigates H2@Scale production. H2 Production Analysis and the System Advisor Model developed by the U.S. Department of Energy were used for analysis. The results demonstrate a significant decrease in the levelized cost of H2 (LCOH) when the production volume is scaled up. It was determined that the key cost drivers are capital cost energy installed balance of the plant and mechanical and electrical subsystems. The studied location is found promising for scaled production and developing its commodity status. The findings could serve as a benchmark for key stakeholders investors policymakers and the developer of relevant strategies in the infrastructure and H2 value chain.
Mid-century Net-zero Emissions Pathways for Japan: Potential Roles of Global Mitigation Scenarios in Informing National Decarbonisation Strategies
Jan 2024
Publication
Japan has formulated a net-zero emissions target by 2050. Existing scenarios consistent with this target generally depend on carbon dioxide removal (CDR). In addition to domestic mitigation actions the import of low-carbon energy carriers such as hydrogen and synfuels and negative emissions credits are alternative options for achieving net-zero emissions in Japan. Although the potential and costs of these actions depend on global energy system transition characteristics which can potentially be informed by the global integrated assessment models they are not considered in current national scenario assessments. This study explores diverse options for achieving Japan's net-zero emissions target by 2050 using a national energy system model informed by international energy trade and emission credits costs estimated with a global energy system model. We found that demand-side electrification and approximately 100 Mt-CO2 per year of CDR implementation equivalent to approximately 10% of the current national CO2 emissions are essential across all net-zero emissions scenarios. Upscaling of domestically generated hydrogen-based alternative fuels and energy demand reduction can avoid further reliance on CDR. While imports of hydrogen-based energy carriers and emission credits are effective options annual import costs exceed the current cost of fossil fuel imports. In addition import dependency reaches approximately 50% in the scenario relying on hydrogen imports. This study highlights the importance of considering global trade when developing national net-zero emissions scenarios and describes potential new roles for global models.
The Race Between Hydrogen and Heat Pumps for Space and Water Heating: A Model-based Scenario Analysis
Nov 2023
Publication
This paper analyses different levels and means of the electrification of space and hot water heating using an explorative modelling approach. The analysis provides guidance to the ongoing discussion on favourable pathways for heating buildings and the role of secondary energy carriers such as hydrogen or synthetic fuels. In total 12 different scenarios were modelled with decarbonisation pathways until 2050 which cover all 27 member states of the European Union. Two highly detailed optimisation models were combined to cover the building stock and the upstream energy supply sector. The analysis shows that decarbonisation pathways for space and water heating based on large shares of heat pumps have at least 11% lower system costs in 2050 than pathways with large shares of hydrogen or synthetic fuels. This translates into system cost savings of around €70 bn. Heat pumps are cost-efficient in decentralised systems and in centralised district heating systems. Hence heat pumps should be the favoured option to achieve a cost-optimal solution for heating buildings. Accordingly the paper makes a novel and significant contribution to understanding suitable and cost-efficient decarbonisation pathways for space and hot water heating via electrification. The results of the paper can provide robust guidance for policymakers.
Design of an Electric Vehicle Charging System Consisting of PV and Fuel Cell for Historical and Tourist Regions
Jun 2024
Publication
One of the most important problems in the widespread use of electric vehicles is the lack of charging infrastructure. Especially in tourist areas where historical buildings are located the installation of a power grid for the installation of electric vehicle charging stations or generating electrical energy by installing renewable energy production systems such as large-sized PV (photovoltaic) and wind turbines poses a problem because it causes the deterioration of the historical texture. Considering the need for renewable energy sources in the transportation sector our aim in this study is to model an electric vehicle charging station using PVPS (photovoltaic power system) and FC (fuel cell) power systems by using irradiation and temperature data from historical regions. This designed charging station model performs electric vehicle charging meeting the energy demand of a house and hydrogen production by feeding the electrolyzer with the surplus energy from producing electrical energy with the PVPS during the daytime. At night when there is no solar radiation electric vehicle charging and residential energy demand are met with an FC power system. One of the most important advantages of this system is the use of hydrogen storage instead of a battery system for energy storage and the conversion of hydrogen into electrical energy with an FC. Unlike other studies in our study fossil energy sources such as diesel generators are not included for the stable operation of the system. The system in this study may need hydrogen refueling in unfavorable climatic conditions and the energy storage capacity is limited by the hydrogen fuel tank capacity.
Optimal Expansion of a Multi-domain Virtual Power Plant for Green Hydrogen Production to Decarbonise Seaborne Passenger Transportation
Nov 2023
Publication
Many industrialised nations recently concentrated their focus on hydrogen as a viable option for the decarbonisation of fossil-intensive sectors including maritime transportation. A sustainable alternative to the conventional production of hydrogen based on fossil hydrocarbons is water electrolysis powered by renewable energy sources. This paper presents a detailed techno-economic optimisation model for sizing an electrolyser and a hydrogen storage embedded in a multi-domain virtual power plant to produce green hydrogen for seaborne passenger transportation. We base our numerical analysis on three years of historical data from a renewable-dominated 60/10 kV substation on the Danish island of Bornholm and on data for ferries to the mainland of Sweden. Our analysis shows that an electrolyser system serves as a valuable flexibility asset on the electrical demand side while supporting the thermal management of the district heating system and contributing to meeting the ferries hydrogen demand. With a sized electrolyser of 9.63 MW and a hydrogen storage of 1.45 t the hydrogen assets are able to take up a large share of the local excess electricity generation. The waste heat of the electrolyser delivers a significant share of 21.4% of the annual district heating demand. Moreover the substation can supply 26% of the hydrogen demand of the ferries from local resources. We further examine the sensitivity of the asset sizing towards investment costs electrolyser efficiency and hydrogen market prices.
Energy Efficiency Analysis of a Fuel Cell Bus Model Using Real Scenarios Generated by Data Collection
Feb 2024
Publication
Modernizing public transportation is crucial given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years the Battery Electric Buses (BEBs) have been the vehicle of choice for public transportation. However an emerging contender in this sector is the Fuel Cell Electric Bus (FCEB). This paper aims to evaluate the way one such vehicle would perform in terms of energy efficiency while being exploited in an urban scenario generated from collected data.
The Heat Transfer Potential of Compressor Vanes on a Hydrogen Fueled Turbofan Engine
Sep 2023
Publication
Hydrogen is a promising fuel for future aviation due to its CO2-free combustion. In addition its excellent cooling properties as it is heated from cryogenic conditions to the appropriate combustion temperatures provides a multitude of opportunities. This paper investigates the heat transfer potential of stator surfaces in a modern high-speed low-pressure compressor by incorporating cooling channels within the stator vane surfaces where hydrogen is allowed to flow and cool the engine core air. Computational Fluid Dynamics simulations were carried out to assess the aerothermal performance of this cooled compressor and were compared to heat transfer correlations. A core air temperature drop of 9.5 K was observed for this cooling channel design while being relatively insensitive to the thermal conductivity of the vane and cooling channel wall thickness. The thermal resistance was dominated by the air-side convective heat transfer and more surface area on the air-side would therefore be required in order to increase overall heat flow. While good agreement with established heat transfer correlations was found for both turbulent and transitional flow the correlation for the transitional case yielded decent accuracy only as long as the flow remains attached and while transition was dominated by the bypass mode. A system level analysis indicated a limited but favorable impact at engine performance level amounting to a specific fuel consumption improvement of up to 0.8% in cruise and an estimated reduction of 3.6% in cruise NOx. The results clearly show that although it is possible to achieve high heat transfer rate per unit area in compressor vanes the impact on cycle performance is constrained by the limited available wetted area in the low-pressure compressor.
Case Study: Quantitative Risk Assessment of Hydrogen Blended Natural Gas for an Existing Distribution Network and End-use Equipment in Fort Saskatchewan, Alberta
Sep 2023
Publication
In a first-of-its-kind project for Alberta ATCO Gas and Pipelines Ltd. (ATCO) began delivering a 5% blend of hydrogen (H2) in natural gas into a subsection of the existing Fort Saskatchewan natural gas distribution system (approximately 2100 customers). The project was commissioned in October 2022 with the intention of increasing the blend to 20% H₂ in 2023. As part of project due diligence ATCO in partnership with DNV undertook Quantitative Risk Assessments (QRAs) to understand any risks associated with the introduction of blended gas into its existing distribution system and to its customers. This paper describes key findings from the QRAs through the comparison of risks associated with H2 blended natural gas at concentrations of 5% and 20% H₂ and the current natural gas configuration. The impact of operating pressure and hydrogen blend composition formed a sensitivity study completed as part of this work. To provide context and to help interpret the results an individual risk (IR) level of 1 × 10-6 per year was utilised as a reference threshold for the limit of the ‘broadly acceptable’ risk level and juxtaposed against comparable risk scenarios. Although adding hydrogen increases the IR of ignited releases from mains services meters regulators and end user appliances the ignited release IR was always well below the broadly acceptable reference criterion for all operating pressures and blend cases considered as part of the project. The IR associated with carbon monoxide poisoning dominates the overall IR and the results demonstrate that the reduction in carbon monoxide poisoning associated with the introduction of H₂ blended natural gas negates any incremental risk associated with ignited releases due to H₂ blended gas. The paper also explains how the results of the QRA were incorporated into Engineering Assessments as per the requirements of CSA Z662:19 [1] to justify the conversion of existing natural gas infrastructure to H₂ blended gas infrastructure.
Internal Combustion Engines and Carbon-Neutral Fuels: A Perspective on Emission Neutrality in the European Union
Mar 2024
Publication
Nowadays there is an intense debate in the European Union (EU) regarding the limits to achieve the European Green Deal to make Europe the first climate-neutral continent in the world. In this context there are also different opinions about the role that thermal engines should play. Furhermore there is no clear proposal regarding the possibilities of the use of green hydrogen in the transport decarbonization process even though it should be a key element. Thus there are still no precise guidelines regarding the role of green hydrogen with it being exclusively used as a raw material to produce E-fuels. This review aims to evaluate the possibilities of applying the different alternative technologies available to successfully complete the process already underway to achieve Climate Neutrality by about 2050 depending on the maturity of the technologies currently available and those anticipated to be available in the coming decades.
A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues
Jan 2024
Publication
The complexity of Fuel Cell (FC) systems demands a profound and sustained understanding of the various phenomena occurring inside of it. Thus far FCs especially Proton Exchange Membrane Fuel Cells (PEMFCs) have been recognized as being among the most promising technologies for reducing Green House Gas (GHG) emissions because they can convert the chemical energy bonded to hydrogen and oxygen into electricity and heat. However their efficiency remains limited. To enhance their efficiency two distinct factors are suggested. First the quality of materials plays a significant role in the development of more robust and efficient FCs. Second the ability to identify mitigate and reduce the occurrence of faults through the use of robust control algorithms is crucial. Therefore more focused on the second point this paper compiles distinguishes and analyzes several publications from the past 25 years related to faults and their diagnostic techniques in FCs. Furthermore the paper presents various schemes outlining different symptoms their causes and corresponding fault algorithms.
Mitigating Risks in Hydrogen-powered Transportation: A Comprehensive Risk Assessment for Hydrogen Refuelling Stations, Vehicles, and Garages
Oct 2024
Publication
Hydrogen is increasingly seen as a viable alternative to fossil fuels in transportation crucial to achieving net-zero energy goals. However the rapid expansion of hydrogen-powered transportation is outpacing safety standards posing significant risks due to limited operational experience involvement of new actors and lack of targeted guidelines. This study addresses the urgent need for a tailored comprehensive risk assessment framework. Using Structured What-If (SWIFT) and bowtie barrier analysis the research evaluates a hypothetical pilot project focusing on hydrogen refuelling stations vehicles and garages. The study identifies critical hazards and assesses the adequacy of current risk mitigation measures. Key findings reveal gaps in safety practices leading to 41 actionable steps and 5 key activities to help new actors manage hydrogen risks effectively. By introducing novel safety guidelines this research contributes to the development of safe hydrogen use and advances the understanding of hydrogen risks ensuring its sustainable integration into transportation systems.
Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models
Nov 2023
Publication
Natural gas is the most growing fossil fuel due to its environmental advantages. For the economical transportation of natural gas to distant markets physical (i.e. liquefaction and compression) or chemical (i.e. direct and indirect) monetisation options must be considered to reduce volume and meet the demand of different markets. Planning natural gas supply chains is a complex problem in today’s turbulent markets especially considering the uncertainties associated with final market demand and competition with emerging renewable and hydrogen energies. This review study evaluates the latest research on mathematical programming (i.e. MILP and MINLP) as a decisionmaking tool for designing and planning natural gas supply chains under different planning horizons. The first part of this study assesses the status of existing natural gas infrastructures by addressing readily available natural monetisation options quantitative tools for selecting monetisation options and single-state and multistate natural gas supply chain optimisation models. The second part investigates hydrogen as a potential energy carrier for integration with natural gas supply chains carbon capture utilisation and storage technologies. This integration is foreseen to decarbonise systems diversify the product portfolio and fill the gap between current supply chains and the future market need of cleaner energy commodities. Since natural gas markets are turbulent and hydrogen energy has the potential to replace fossil fuels in the future addressing stochastic conditions and demand uncertainty is vital to hedge against risks through designing a responsive supply chain in the project’s early design stages. Hence hydrogen supply chain optimisation studies and the latest works on hydrogen–natural gas supply chain optimisation were reviewed under deterministic and stochastic conditions. Only quantitative mathematical models for supply chain optimisation including linear and nonlinear programming models were considered in this study to evaluate the effectiveness of each proposed approach.
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
The Influence of the Changes in Natural Gas Supplies to Poland on the Amount of Hydrogen Produced in the SMR Reactor
Mar 2024
Publication
Thanks to investments in diversifying the supply of natural gas Poland did not encounter any gas supply issues in 2022 when gas imports from Russia were ceased due to the Russian Federation’s armed intervention in Ukraine. Over the past few years the supply of gas from routes other than the eastern route has substantially grown particularly the supplies of liquefied natural gas (LNG) via the LNG terminal in Swinouj´scie. The growing proportion of LNG in Poland’s gas supply ´ leads to a rise in ethane levels in natural gas as verified by the review of data taken at a specific location within the gas system over the years 2015 2020 and 2022. Using measurements of natural gas composition the effectiveness of the steam hydrocarbon reforming process was simulated in the Gibbs reactor via Aspen HYSYS. The simulations confirmed that as the concentration of ethane in the natural gas increased the amount of hydrogen produced and the heat required for reactions in the reformer also increased. This article aims to analyze the influence of the changes in natural gas quality in the Polish transmission network caused by changes in supply structures on the mass and heat balance of the theoretical steam reforming reactor. Nowadays the chemical composition of natural gas may be significantly different from that assumed years ago at the plant’s design stage. The consequence of such a situation may be difficulties in operating especially when controlling the quantity of incoming natural gas to the reactor based on volumetric flow without considering changes in chemical composition.
A SWOT Analysis of the Green Hydrogen Market
Jun 2024
Publication
Since the Industrial Revolution humanity has heavily depended on fossil fuels. Recognizing the negative environmental impacts of the unmoderated consumption of fossil fuels including global warming and consequent climate change new plans and initiatives have been established to implement renewable and sustainable energy sources worldwide. This has led to a rapid increase in the installed solar and wind energy capacity. However considering the fluctuating nature of these renewable energy sources green hydrogen has been proposed as a suitable energy carrier to improve the efficiency of energy production and storage. Thus green hydrogen produced by water electrolysis using renewable electricity is a promising solution for the future energy market. Moreover it has the potential to be used for the decarbonization of the heavy industry and transportation sectors. Research and development (R&D) on green hydrogen has grown considerably over the past few decades aiming to maximize production and expand its market share. The present work uses a SWOT (strengths weaknesses opportunities and threats) analysis to evaluate the current status of the green hydrogen market. The external and internal factors that affect its market position are assessed. The results show that green hydrogen is on the right track to becoming a competitive alternative to fossil fuels soon. Supported by environmental benefits government incentives and carbon taxes roadmaps to position green hydrogen on the energy map have been outlined. Nevertheless increased investments are required for further R&D as costs must be reduced and policies enforced. These measures will gradually decrease global dependency on fossil fuels and ensure that roadmaps are followed through.
Research & Innovation for Climate Neutrality 2050: Challenges, Opportunities & the Path Forward
Jan 2024
Publication
Transforming Europe into a climate neutral economy and society by 2050 requires extraordinary efforts and the mobilisation of all sectors and economic actors coupled with all the creative and brain power one can imagine. Each sector has to fundamentally rethink the way it operates to ensure it can be transformed towards this new net-zero paradigm without jeopardising other environmental and societal objectives both within the EU and globally. Given the scale of the transformation ahead our ability to meet climate neutrality targets directly depends on our ability to innovate. In this context Research & Innovation programmes have a key role to play and it is crucial to ensure they are fit for purpose and well equipped to support the next wave of breakthrough innovations that will be required to achieve climate neutrality in the EU and globally by 2050. The objective of this study is to contribute to these strategic planning discussions by not only identifying high-risk and high-impact climate mitigation solutions but most importantly look beyond individual solutions and consider how systemic interactions of climate change mitigation approaches can be integrated in the development of R&I agendas.
Coupling Green Hydrogen Production to Community Benefits: A Pathway to Social Acceptance?
Feb 2024
Publication
Hydrogen energy technologies are forecasted to play a critical supporting role in global decarbonisation efforts as reflected by the growth of national hydrogen energy strategies in recent years. Notably the UK government published its Hydrogen Strategy in August 2021 to support decarbonisation targets and energy security ambitions. While establishing techno-economic feasibility for hydrogen energy systems is a prerequisite of the prospective transition social acceptability is also needed to support visions for the ‘hydrogen economy’. However to date societal factors are yet to be embedded into policy prescriptions. Securing social acceptance is especially critical in the context of ‘hydrogen homes’ which entails replacing natural gas boilers and hobs with low-carbon hydrogen appliances. Reflecting the nascency of hydrogen heating and cooking technologies the dynamics of social acceptance are yet to be explored in a comprehensive way. Similarly public perceptions of the hydrogen economy and emerging national strategies remain poorly understood. Given the paucity of conceptual and empirical insights this study develops an integrated acceptance framework and tests its predictive power using partial least squares structural equation modelling. Results highlight the importance of risk perceptions trust dynamics and emotions in shaping consumer perceptions. Foremost prospects for deploying hydrogen homes at scale may rest with coupling renewable-based hydrogen production to local environmental and socio-economic benefits. Policy prescriptions should embed societal factors into the technological pursuit of large-scale sustainable energy solutions to support socially acceptable transition pathways.
Path Analysis of Using Hydrogen Energy to Reduce Greenhouse Gas Emissions in Global Aviation
Jul 2024
Publication
The rapid growth of global aviation emissions has significantly impacted the environment leading to an urgent need to use carbon reduction methods. This paper analyzes global aviation’s carbon dioxide (CO2) N2O and CH4 emission changes under different hydrogen energy application paths. The global warming potential over a 100-year period (GWP100) method is used to convert the emissions of N2O and CH4 into CO2-equivalent. Here we report the results: if the global aviation industry begins using hydrogen turbine engines by 2040 it could reduce cumulative CO2-equivalent emissions by 2.217E+10 tons by 2080 which is 2.12% higher than starting hydrogen fuel cell engines in 2045. However adopting hydrogen fuel cell engines 10 years earlier shows greater reduction capabilities than hydrogen turbine engines achieving an accumulated reduction of 3.006E+10 tons of CO2-equivalent emissions. Therefore the timing of adoption notably affects hydrogen fuel cell engines more than hydrogen turbine engines. Delaying adoption makes hydrogen fuel cell engines’ performance lag hydrogen turbine engines.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Nuclear Enabled Hydrogen CO-generation: Safety and Regulatory Insight
Sep 2023
Publication
National Nuclear Laboratory (NNL) is aiming to demonstrate through a research and development programme that nuclear enabled hydrogen can be used to support future clean energy systems. Demonstrating the safe operation of hydrogen facilities co-generating with a nuclear reactor will be key to enabling the deployment and success of nuclear enabled hydrogen technologies in the future. During the deployment continuity of supply will be paramount and possibly requires inter-seasonal storage. Co-generation is a means of using a source of energy in this case a nuclear reactor to efficiently produce power and thermal energy. Since a great deal of the heat energy is lost to the environment in a power plant making use of wasted energy for other useful output like the production of hydrogen and direct heating would be advantageous to plant economics and energy system flexibility. The civil nuclear industry is regulated around the world. This approach ensures that all the activities related to the production of power from nuclear and the hazards associated with ionising radiation are controlled in a manner which protects workers members of the public property and the environment. Nuclear safety assessments follow a rigorous process and are required as part of the Nuclear Site Licence. A fundamental requirement which is cited in the UK legislation is that the risks associated with all activities at the licensed site be reduced to As Low As Reasonably Practicable (ALARP). The principle places a requirement on duty holders to implement measures to reduce risk where doing so is considered reasonable and proportionate. The inclusion of risks for hazardous materials associated with the hydrogen production facilities need to be considered and this requires harmonisation of two different safety and regulatory governance regimes which have not previously interacted in this way. The safety demonstration for nuclear facilities is provided through the Safety Case.
Safe Pipelines for Hydrogen Transport
Jun 2024
Publication
The hydrogen compatibility of two X65 pipeline steels for transport of hydrogen gas is investigated through microstructural characterization hydrogen permeation measurements and fracture mechanical testing. The investigated materials are a quenched and tempered pipeline steel with a fine-grained homogeneously distributed ferrite-bainite microstructure and hot rolled pipeline steel with a ferrite-pearlite banded microstructure. All tests are performed both under electrochemical and gaseous hydrogen charging conditions. A correlation between electrochemical hydrogen charging and gaseous charging is determined. The results point to inherent differences in the interaction between hydrogen and the two material microstructures. Further research is needed to unveil the influence of material microstructure on hydrogen embrittlement.
An Overview of Application-orientated Multifunctional Large-scale Stationary Battery and Hydrogen Hybrid Energy Storage System
Dec 2023
Publication
The imperative to address traditional energy crises and environmental concerns has accelerated the need for energy structure transformation. However the variable nature of renewable energy poses challenges in meeting complex practical energy requirements. To address this issue the construction of a multifunctional large-scale stationary energy storage system is considered an effective solution. This paper critically examines the battery and hydrogen hybrid energy storage systems. Both technologies face limitations hindering them from fully meeting future energy storage needs such as large storage capacity in limited space frequent storage with rapid response and continuous storage without loss. Batteries with their rapid response (90%) excel in frequent short-duration energy storage. However limitations such as a selfdischarge rate (>1%) and capacity loss (~20%) restrict their use for long-duration energy storage. Hydrogen as a potential energy carrier is suitable for large-scale long-duration energy storage due to its high energy density steady state and low loss. Nevertheless it is less efficient for frequent energy storage due to its low storage efficiency (~50%). Ongoing research suggests that a battery and hydrogen hybrid energy storage system could combine the strengths of both technologies to meet the growing demand for large-scale long-duration energy storage. To assess their applied potentials this paper provides a detailed analysis of the research status of both energy storage technologies using proposed key performance indices. Additionally application-oriented future directions and challenges of the battery and hydrogen hybrid energy storage system are outlined from multiple perspectives offering guidance for the development of advanced energy storage systems.
Influence of Air Changes Per Hour on Hydrogen Leaks in Mechanically Ventilated Enclosures
Mar 2024
Publication
The integration of hydrogen energy systems into nearly zero-emission buildings (nZEB) is emerging as a viable strategy to curtail greenhouse gas emissions associated with energy use in these buildings. However the indoor or outdoor placement of certain hydrogen system components or equipment necessitates stringent safety measures particularly in confined environments. This study aims to investigate the dynamics of hydrogen dispersion within an enclosure featuring forced ventilation analyzing the interplay between leakage flow rates and ventilation efficiency both experimentally and numerically. To simulate hydrogen's behavior helium gas which shares similar physical characteristics with hydrogen was utilized in experiments conducted at leakage flows of 4 8 and 10 L/min alongside a ventilation rate of 30 air changes per hour (ACH). The experiments revealed that irrespective of the leakage rate the oxygen concentration returned to its initial level approximately 11 min post-leakage at a ventilation rate of 30 ACH. This study also encompasses a numerical analysis to validate the experimental findings and assess the congruence between helium and hydrogen behaviors. Additionally the impact of varying ACH rates (30 45 60 75) on the concentrations of oxygen and hydrogen was quantified through numerical analysis for different hydrogen leakage rates (4 8 10 20 L/min). The insights derived from this research offer valuable guidance for building facility engineers on designing ventilation systems that ensure hydrogen and oxygen concentrations remain within safe limits in hydrogen-utilizing indoor environments.
Investigation on Implementing Hydrogen Technology in Residential Sector
Jul 2024
Publication
Rapid urbanization and globalization are causing a rise in the energy demand within the residential sector. Currently majority of the energy demand for the residential sector being supplied from fossil fuels these sources account for greenhouse gas emissions responsible for anthropogenic-driven climate change. About 85 % of the world’s energy demands are being met by non-renewable sources of energy. An immediate need to shift towards renewable energy sources to generate electricity is the need of the hour. These long-standing renewable energy sources including solar hydropower and wind energy have been crucial pillars of sustainable energy for years. However as their implementation has matured we are increasingly recognizing their limitations. Issues such as the scarcity of suitable locations and the significant carbon footprint associated with constructing renewable energy infrastructure are becoming more apparent. Hydrogen has been found to play a vital role as an energy carrier in framing the energy picture in the 21st century. Currently about 1 % of the global energy demands are being met by hydrogen energy harnessed through renewable methods. Its low carbon emissions when compared to other methods lower comparative production costs and high energy efficiency of 40–60 % make it a suitable choice. Integrating hydrogen production systems with other renewable source of energy such as solar and wind energy have been discussed in this review in detail. With the concepts of green buildings or net zero energy buildings gaining attraction integration of hydrogen-based systems within residential and office sectors through the use of devices such as micro–Combined Heat and Power devices (mCHP) have proven to be effective and efficient. These devices have been found to save the consumed energy by 22 % along with an effective reduction in carbon emissions of 18 % when used in residential sectors. Using the rejected energy from other processes these mCHP devices can prove to be vital in meeting the energy demands of the residential sector. Through the support of government schemes mCHP devices have been widely used in countries such as Japan and Finland and have benefitted from the same. Hydrogen storage is critical for efficient operation of the integrated renewable systems as improper storage of the hydrogen produced could lead to human and environmental disasters. Using boron hydrides or ammonia (121 kg H2/m3 ) or through organic carriers hydrogen can be stored safely and easily regenerated without loss of material. A thorough comparison of all the renewable sources of energy that are used extensively is required to evaluate the merits of using hydrogen as an energy carrier which has been addressed in this review paper. The need to address the research gap in application of mCHP devices in the residential sector and the benefits they provide has been addressed in this review. With about 2500 GW of energy ready to be harnessed through the mCHP devices globally the potential of mCHP systems globally are discussed in detail in this paper. This review discusses challenges and solutions to hydrogen production storage and ways to implement hydrogen technology in the residential sector. This review allows researchers to build a renewable alternative with hydrogen as a clean energy vector for generating electricity in residential systems.
Evaluating the Economic Viability of Decentralised Solar PV-based Green Hydrogen for Cooking in Ghana
Jul 2024
Publication
Developing countries including Ghana face challenges ensuring access to clean and reliable cooking fuels and technologies. Traditional biomass sources mainly used in most developing countries for cooking contribute to deforestation and indoor air pollution necessitating a shift towards environmentally friendly alternatives. The study’s primary objective is to evaluate the economic viability of using solar PV-based green hydrogen as a sustainable fuel for cooking in Ghana. The study adopted well-established equations to investigate the economic performance of the proposed system. The findings revealed that the levelized cost of hydrogen using the discounted cash flow approach is about 89% 155% and 190% more than electricity liquefied petroleum gas (LPG) and charcoal. This implies that using the hydrogen produced for cooking fuel is not cost-competitive compared to LPG charcoal and electricity. However with sufficient capital subsidies to lower the upfront costs the analysis suggests solar PV-based hydrogen could become an attractive alternative cooking fuel. In addition switching from firewood to solar PVbased hydrogen for cooking yields the highest carbon dioxide (CO2) emissions savings across the cities analysed. Likewise replacing charcoal with hydrogen also offers substantial CO2 emissions savings though lower than switching from firewood. Correspondingly switching from LPG to hydrogen produces lower CO2 emissions savings than firewood and charcoal. The study findings could contribute to the growing body of knowledge on sustainable energy solutions offering practical insights for policymakers researchers and industry stakeholders seeking to promote clean cooking adoption in developing economies.
Energy Transition Technology Comes With New Process Safety Challenges and Risks
Jul 2023
Publication
This paper intends to give an impression of new technologies and processes that are in development for application to achieve decarbonization and about which less or no experience on associated hazards exists in the process industry. More or less an exception is hydrogen technology because its hazards are relatively known and there is industry experience in handling it safely but problems will arise when it is produced stored and distributed on a large scale. So when its use spreads to communities and it becomes as common as natural gas now measures to control the risks will be needed. And even with hydrogen surprise findings have been shown lately e.g. its BLEVE behavior when in a liquified form stored in a vessel heated externally. Substitutes for hydrogen are not without hazard concern either. The paper will further consider the hazards of energy storage in batteries and the problems to get those hazards under control. Relatively much attention will be paid to the electrification of the process industry. Many new processes are being researched which given green energy will be beneficial to reduce greenhouse gases and enhance sustainability but of which hazards are rather unknown. Therefore as last chapter the developments with respect to the concept of hazard identification and scenario definition will be considered in quite detail. Improvements in that respect are also being possible due to the digitization of the industry and the availability of data and considering the entire life cycle all facilitated by the data model standard ISO 15926 with the scope of integration of life-cycle data for process plants including oil and gas production facilities. Conclusion is that the new technologies and processes entail new process and personal hazards and that much effort is going into renewal but safety analyses are scarce. Right in a period of process renewal attention should be focused on possibilities to implement inherently safer design.
Thermal Sprayed Protective Coatings for Bipolar Plates of Hydrogen Fuel Cells and Water Electrolysis Cells
Mar 2024
Publication
As one core component in hydrogen fuel cells and water electrolysis cells bipolar plates (BPs) perform multiple important functions such as separating the fuel and oxidant flow providing mechanical support conducting electricity and heat connecting the cell units into a stack etc. On the path toward commercialization the manufacturing costs of bipolar plates have to be substantially reduced by adopting low-cost and easy-to-process metallic materials (e.g. stainless steel aluminum or copper). However these materials are susceptible to electrochemical corrosion under harsh operating conditions resulting in long-term performance degradation. By means of advanced thermal spraying technologies protective coatings can be prepared on bipolar plates so as to inhibit oxidation and corrosion. This paper reviews several typical thermal spraying technologies including atmospheric plasma spraying (APS) vacuum plasma spraying (VPS) and high-velocity oxygen fuel (HVOF) spraying for preparing coatings of bipolar plates particularly emphasizing the effect of spraying processes on coating effectiveness. The performance of coatings relies not only on the materials as selected or designed but also on the composition and microstructure practically obtained in the spraying process. The temperature and velocity of in-flight particles have a significant impact on coating quality; therefore precise control over these factors is demanded.
Assessment of Selected Alternative Fuels for Spanish Navy Ships According to Multi-Criteria Decision Analysis
Dec 2023
Publication
Climate change and environmental degradation are growing concerns in today’s society which has led to greater awareness and responsibility regarding the need to adopt sustainable practices. The European Union has established the goal of achieving climate neutrality by 2050 which implies a significant reduction in greenhouse gas emissions in all sectors. To achieve this goal renewable energies the circular economy and energy efficiency are being promoted. A major source of emissions is the use of fossil fuels in different types of ships (from transport ships to those used by national navies). Among these it highlights the growing interest of the defense sector in trying to reduce these emissions. The Spanish Ministry of Defense is also involved in this effort and is taking steps to reduce the carbon footprint in military operations and improve sustainability in equipment acquisition and maintenance. The objective of this study is to identify the most promising alternative fuel among those under development for possible implementation on Spanish Navy ships in order to reduce greenhouse gas emissions and improve its capabilities. To achieve this a multi-criteria decision-making method will be used to determine the most viable fuel option. The data provided by the officers of the Spanish Navy is of great importance thanks to their long careers in front of the ships. The analysis revealed that hydrogen was the most suitable fuel with the highest priority ahead of LNG and scored the highest in most of the sections of the officials’ ratings. These fuels are less polluting and would allow a significant reduction in emissions during the navigation of ships. However a further study would also have to be carried out on the costs of adapting to their use and the safety of their use.
The Effect of Natural Ventilation through Roof Vents Following Hydrogen Leaks in Confined Spaces
Sep 2023
Publication
Hydrogen energy is gaining global popularity as a green energy source and its use is increasing. However hydrogen has a rapid diffusion rate and a broad combustion range; thus it is vital to take safety precautions during its storage. In this study we examined the change of hydrogen concentration in a confined space exposed to a hydrogen leak according to the size of the leakage hole and the leakage flow rate assuming an extreme situation. In addition we investigated rectangular vents (that serve as explosion panels in the event of an explosion) to assess their ventilation performance according to the area of the vent when used for emergency natural ventilation. The vent areas tested represented 12% 24% and 36% of the floor area and they were installed in the ceiling of the test enclosure. When exposed to a simulated hydrogen leak the enclosure acquired a hydrogen concentration of 1% which is 25% of the lower flammability limit (LFL) in less than 6 s across all test cases. The time to LFL varied from approximately 4–81 s. In an assessment of the emergency ventilation duration the ventilation time required to reach safe hydrogen concentrations decreased and showed less deviation as the vent size was increased. For the largest vent size tested the LFL was reached in <1 min; it took 145.6 s to acquire a 1 vol% of hydrogen which is relatively fast. However there were no significant differences between the performance of large and medium-sized vent areas. Therefore through the results we found that it is reasonable to apply the area Kv = 3.31 (24% of the floor area) or less when considering the design of a roof vent that can serve as both an emergency ventilation and an explosion vent. This suggests that it is difficult to expect an improvement in ventilation performance by simply increasing the area of the vent beyond a certain area. Through these results this study proposes a practical and novel method for future design and parameters of safety functions that protect areas where hydrogen is present.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Temporal Regulation of Renewable Supply of Electrolytic Hydrogen
Feb 2024
Publication
Electrolytic hydrogen produced using renewable electricity can help lower carbon dioxide emissions in sectors where feedstocks reducing agents dense fuels or high temperatures are required. This study investigates the implications of various standards being proposed to certify that the grid electricity used is renewable. The standards vary in how strictly they match the renewable generation to the electrolyser demand in time and space. Using an energy system model we compare electricity procurement strategies to meet a constant hydrogen demand for selected European countries in 2025 and 2030. We compare cases where no additional renewable generators are procured with cases where the electrolyser demand is matched to additional supply from local renewable generators on an annual monthly or hourly basis. We show that local additionality is required to guarantee low emissions. For the annually and monthly matched case we demonstrate that baseload operation of the electrolysis leads to using fossil-fuelled generation from the grid for some hours resulting in higher emissions than the case without hydrogen demand. In the hourly matched case hydrogen production does not increase system-level emissions but baseload operation results in high costs for providing constant supply if only wind solar and short-term battery storage are available. Flexible operation or buffering hydrogen with storage either in steel tanks or underground caverns reduces the cost penalty of hourly versus annual matching to 7%–8%. Hydrogen production with monthly matching can reduce system emissions if the electrolysers operate flexibly or the renewable generation share is large. The largest emission reduction is achieved with hourly matching when surplus electricity generation can be sold to the grid. We conclude that flexible operation of the electrolysis should be supported to guarantee low emissions and low hydrogen production costs.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
Gas Storage in Geological Formations: A Comparative Review on Carbon Dioxide and Hydrogen Storage
Feb 2024
Publication
Carbon dioxide and hydrogen storage in geological formations at Gt scale are two promising strategies toward net-zero carbon emissions. To date investigations into underground hydrogen storage (UHS) remain relatively limited in comparison to the more established knowledge body of underground carbon dioxide storage (UCS). Despite their analogous physical processes can be used for accelerating the advancements in UHS technology the existing distinctions possibly may hinder direct applicability. This review therefore contributes to advancing our fundamental understanding on the key differences between UCS and UHS through multi-scale comparisons. These comparisons encompass key factors influencing underground gas storage including storage media trapping mechanisms and respective fluid properties geochemical and biochemical reactions and injection scenarios. They provide guidance for the conversion of our existing knowledge from UCS to UHS emphasizing the necessity of incorporating these factors relevant to their trapping and loss mechanisms. The article also outlines future directions to address the crucial knowledge gaps identified aiming to enhance the utilisation of geological formations for hydrogen and carbon dioxide storage.
Helping the Climate by Replacing Liquefied Natural Gas with Liquefied Hydrogen or Ammonia?
Apr 2024
Publication
The war in Ukraine caused Europe to more than double its imports of liquefied natural gas (LNG) in only one year. In addition imported LNG remains a crucial source of energy for resource-poor countries such as Japan where LNG imports satisfy about a quarter of the country’s primary energy demand. However an increasing number of countries are formulating stringent decarbonization plans. Liquefied hydrogen and liquefied ammonia coupled with carbon capture and storage (LH2-CCS LNH3-CCS) are emerging as the front runners in the search for low-carbon alternatives to LNG. Yet little is currently known about the full environmental profile of LH2-CCS and LNH3-CCS because several characteristics of the two alternatives have only been analyzed in isolation in previous work. Here we show that the potential of these fuels to reduce greenhouse gas (GHG) emissions throughout the supply chain is highly uncertain. Our best estimate is that LH2-CCS and LNH3-CCS can reduce GHG emissions by 25%–61% relative to LNG assuming a 100 year global warming potential. However directly coupling LNG with CCS would lead to substantial GHG reductions on the order of 74%. Further under certain conditions emissions from LH2-CCS and LNH3-CCS could exceed those of LNG by up to 44%. These results question the suitability of LH2-CCS and LNH3-CCS for stringent decarbonization purposes.
Optimal Planning of Renewable Energy Park for Green Hydrogen Production Using Detailed Cost and Efficiency Curves of PEM Electrolyzer
Jul 2024
Publication
Installing multi-renewable energy (RE) power plants at designated locations known as RE parks is a promising solution to address their intermittent power. This research focuses on optimizing RE parks for three scenarios: photovoltaic (PV)-only wind-only and hybrid PV-wind with the aim of generating green hydrogen in locations with different RE potentials. To ensure rapid response to RE fluctuations a Proton Exchange Membrane (PEM) electrolyzer is employed. Furthermore this research proposes detailed models for manufacturer-provided wind power curves electrolyzer efficiency against its operating power and electrolyzer cost towards its capacity. Two optimization cases are conducted in MATLAB evaluating the optimum sizes of the plants in minimizing levelized cost of hydrogen (LCOH) using classical discrete combinatorial method and determining the ideal PV-to-wind capacity ratio for operating PEM electrolyzer within hybrid PV-wind parks using particle swarm optimization. Numerical simulations show that wind power-based hydrogen production is more cost-effective than PV-only RE parks. The lowest LCOH $4.26/kg H2 and the highest LCOH $14.378/kg H2 are obtained from wind-only and PV-only configurations respectively. Both occurred in Adum-Kirkeby Denmark as it has highest average wind speed and lowest irradiance level. Notably LCOH is reduced with the hybrid PV-wind configuration. The results suggest the optimum PV-to-wind capacity ratio is 65:35 on average and indicate that LCOH is more sensitive to electrolyzer’s cost than to electricity tariff variation. This study highlights two important factors i.e. selecting the suitable location based on the available RE resources and determining the optimum size ratio between the plants within the RE park.
An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines
Feb 2024
Publication
The utilization of hydrogen fuel in gas turbines brings significant changes to the thermophysical properties of flue gas including higher specific heat capacities and an enhanced steam content. Therefore hydrogen-fueled gas turbines are susceptible to health degradation in the form of steam-induced corrosion and erosion in the hot gas path. In this context the fault diagnosis of hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge there is a scarcity of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The present study however develops an artificial neural network (ANN)-based fault diagnosis model using the MATLAB environment. Prior to the fault detection isolation and identification modules physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the fault detection and isolation. Moreover the feedforward neural network-based regression algorithm showed quite good training testing and validation accuracies in terms of the root mean square error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms thereby prompting other incorrect faults during the fault detection and isolation modules. Additionally the performance of the fault identification module for the hydrogen fuel scenario was found to be marginally lower than that of the natural gas case due to assumption of small magnitudes of faults arising from hydrogen-induced corrosion.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
Mitigating Emissions in the Global Steel Industry: Representing CCS and Hydrogen Technologies in Integrated Assessment Modelling
Dec 2023
Publication
We conduct a techno-economic assessment of two low-emissions steel production technologies and evaluate their deployment in emissions mitigation scenarios utilizing the MIT Economic Projection and Policy Analysis (EPPA) model. Specifically we assess direct reduced iron-electric arc furnace with carbon capture and storage (DRI-EAF with CCS) and H2-based direct reduced iron-electric arc furnace (H2 DRI-EAF) which utilizes low carbon hydrogen to reduce CO2 emissions. Our techno-economic analysis based on the current state of technologies found that DRI-EAF with CCS increased costs ~7% relative to the conventional steel technology. H2 DRI-EAF increased costs by ~18% when utilizing Blue hydrogen and ~79% when using Green hydrogen. The exact pathways for hydrogen production in different world regions including the extent of CCS and hydrogen deployment in steelmaking are highly speculative at this point. In illustrative scenarios using EPPA we find that using base cost assumptions switching from BF-BOF to DRI-EAF or scrap EAF can provide significant emissions mitigation within steelmaking. With further reductions in the cost of advanced steelmaking we find a greater role for DRI-EAF with CCS whereas reductions in both the cost of advanced steelmaking and hydrogen production lead to a greater role for H2 DRI-EAF. Our findings can be used to help decision-makers assess various decarbonization options and design economically efficient pathways to reduce emissions in the steel industry. Our cost evaluation can also be used to inform other energy-economic and integrated assessment models designed to provide insights about future decarbonization pathways.
Effect of Methane Addition on Transition to Detonation in Hydrogen-Air Mixtures Due to Shock Wave Focussing in a 90 - Degree Corner
Sep 2023
Publication
The main purpose of this work is to investigate the influence of methane addition in methane-hydrogen-air mixture (φ = 0.8 – 1.6) on the critical conditions for transition to detonation in a 90-deg wedge corner. Similar to hydrogen-air mixtures investigated previously [1] methane-hydrogen-air mixtures results showed three ignition modes weak ignition followed by deflagration with ignition delay time higher than 1 μs strong ignition with instantaneous transition to detonation and third with deflagrative ignition and delayed transition to detonation. Methane addition caused an increase in the range of 3.25 – 5.03% in the critical shock wave velocity necessary for transition to detonation for all mixtures considered. For example in stoichiometric mixture with 5% methane in fuel (95% hydrogen in fuel) in air the transition to detonation velocity was approx. 752 m/s (an increase of 37 m/s from hydrogen-air) corresponding to M = 1.89 (an increase of 0.14 from hydrogen-air) and 75.7% (an increase of 4.7% from hydrogen-air) of speed of sound in products. Also similar to hydrogen-air mixture the transition to detonation velocity increased for leaner and richer mixture. Moreover it was observed that methane addition in general increased the pressure limit at the corner necessary for transition to detonation.
Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location
Feb 2024
Publication
This paper presents a new economic profitability model for a power-to-gas plant producing green hydrogen at the site of an existing wind power plant injected into the gas grid. The model is based on a 42 MW wind power plant for which an optimal electrolyzer of 10 MW was calculated based on the 2500 equivalent full load hours per year and the projection of electricity prices. The model is calculated on an hourly level for all variables of the 25 years of the model. With the calculated breakeven electricity price of 74.23 EUR/MWh and the price of green hydrogen production of 99.44 EUR/MWh in 2045 the wind power plant would produce 22410 MWh of green hydrogen from 31% of its total electricity production. Green hydrogen injected into the gas system would reduce the level of CO2 emissions by 4482 tons. However with the projected prices of natural gas and electricity the wind power plant would cover only 20% of the income generated by the electricity delivered to the grid by producing green hydrogen. By calculating different scenarios in the model the authors concluded that the introduction of a premium subsidy model is necessary to accelerate deployment of electrolyzers at the site of an existing wind power plant in order to increase the wind farm profitability.
A Renewable Power System for an Off-grid Sustainable Telescope Fueled by Solar Power, Batteries and Green Hydrogen
Jul 2023
Publication
A large portion of astronomy’s carbon footprint stems from fossil fuels supplying the power demand of astronomical observatories. Here we explore various isolated low-carbon power system setups for the newly planned Atacama Large Aperture Submillimeter Telescope and compare them to a business-as-usual diesel power generated system. Technologies included in the designed systems are photovoltaics concentrated solar power diesel generators batteries and hydrogen storage. We adapt the electricity system optimization model highRES to this case study and feed it with the telescope’s projected energy demand cost assumptions for the year 2030 and site-specific capacity factors. Our results show that the lowest-cost system with LCOEs of $116/MWh majorly uses photovoltaics paired with batteries and fuel cells running on imported and on-site produced green hydrogen. Some diesel generators run for backup. This solution would reduce the telescope’s power-side carbon footprint by 95% compared to the businessas-usual case.
Net-zero Energy Management through Multi-criteria Optimizations of a Hybrid Solar-Hydrogen Energy Production System for an Outdoor Laboratory in Toronto
Apr 2024
Publication
Hydrogen production and storage in hybrid systems is a promising solution for sustainable energy transition decoupling the energy generation from its end use and boosting the deployment of renewable energy. Nonetheless the optimal and cost-effective design of hybrid hydrogen-based systems is crucial to tackle existing limitations in diffusion of these systems. The present study explores net-zero energy management via a multi-objective optimization algorithm for an outdoor test facility equipped with a hydrogen-based hybrid energy production system. Aimed at enabling efficient integration of hydrogen fuel cell system the proposed solution attempts to maximize the renewable factor (RF) and carbon mitigation in the hybrid system as well as to minimize the grid dependency and the life cycle cost (LCC) of the system. In this context the techno-enviroeconomic optimization of the hybrid system is conducted by employing a statistical approach to identify optimal design variables and conflictive objective functions. To examine interactions in components of the hybrid system a series of dynamic simulations are carried out by developing a TRNSYS code coupled with the OpenStudio/EnergyPlus plugin. The obtained results indicate a striking disparity in the monthly RF values as well as the hydrogen production rate and therefore in the level of grid dependency. It is shown that the difference in LCC between optimization scenarios suggested by design of experiments could reach $15780 corresponding to 57% of the mean initial cost. The LCOE value yielded for optimum scenarios varies between 0.389 and 0.537 $/kWh. The scenario with net-zero target demonstrates the lowest LCOE value and the highest carbon mitigation i.e. 828 kg CO2/yr with respect to the grid supply case. However the LCC in this scenario exceeds $57370 which is the highest among all optimum scenarios. Furthermore it was revealed that the lowest RF in optimal scenarios is equal to 66.2% and belongs to the most economical solution.
No more items...