Skip to content
1900

Impact of Hydrogen Direct Injection on Engine Combustion and Emissions in a GDI Engine

Abstract

The combustion and emission characteristics of a hydrogen engine were investigated through experimental analysis using a GDI engine. To enable hydrogen in-cylinder direct injection, a specialized hydrogen gas injector was employed. A comparative analysis of the combustion performance between gasoline and hydrogen fuels in a spark-ignited engine was conducted. Additionally, the study experimentally explored the thermal efficiency and emission reduction potential of hydrogen engines in lean combustion modes. The results indicated a significant improvement in the combustion rate when hydrogen fuel was utilized in the spark-ignited engine. However, the effective thermal efficiency was found to be lower than that of gasoline fuel due to the delayed MBF50 under stoichiometric conditions. Furthermore, when compared to gasoline fuel, the reduction of CO and THC emissions was accompanied by an increase in NOx emissions. Nevertheless, optimizing the air dilution ratio in hydrogen engines led to an improvement in the effective thermal efficiency. Specifically, under medium load conditions, a Lambda value of 2.7 resulted in an effective thermal efficiency of 43.5%. Additionally, under ultra-lean conditions (Lambda > 2.3), NOx emissions could be reduced to below 50 ppm, reaching as low as 44 ppm. This study highlights the potential of improving combustion efficiency and reducing emissions by utilizing hydrogen fuel, particularly in lean combustion modes. It contributes to the continuous development of hydrogen engine technology and promotes the implementation of cleaner and more efficient energy solutions.

Funding source: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to express their gratitude for the financial support received from the Key Natural Science Research Projects of the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Project number: KYCX23_0422), Anhui Provincial Higher Education Institutions (Project numbers: 2022AH052431, 2022AH052454), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Project number: Waiting for publication), and the Scientific Research Revitalization Plan Projects of Higher Education Institutions (Project number: ZXTS202202).
Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal6572
2023-09-21
2025-01-09
/content/journal6572
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error