- Home
- A-Z Publications
- Publications
Publications
Numerical Study of Highly Turbulent Under-expanded Hydrogen Jet Flames Impinging Walls
Sep 2023
Publication
Heat flux on walls from under-expanded H2/AIR jet flames have been numerically investigated. The thermal behaviour of a plate close to different under-expanded jet flames has been compared with rear-face plate temperature measurements. In this study two straight nozzles with millimetric diameter were selected with H2 reservoir pressure in a range from 2 to 10 bar. The CFD study of these two quite different horizontal jet flames employs the Large Eddy Simulation (LES) formalism to capture the turbulent flame-wall interaction. The results demonstrated a good agreement with experimental wall heat fluxes computed from plate temperature measurements. The present study assesses the prediction capability of LES for flame-wall heat transfer.
Ammonia Decomposition in the Process Chain for a Renewable Hydrogen Supply
Jun 2022
Publication
This review article deals with the challenge to identify catalyst materials from literature studies for the ammonia decomposition reaction with potential for application in large-scale industrial processes. On the one hand the requirements on the catalyst are quite demanding. Of central importance are the conditions for the primary reaction that have to be met by the catalyst. Likewise the catalytic performance i.e. an ideally quantitative conversion and a high lifetime are critical as well as the consideration of requirements on the product properties in terms of pressure or by-products for potential follow-up processes in this case synthesis gas applications. On the other hand the evaluation of the multitude of literature studies poses difficulties due to significant varieties in catalytic testing protocols.
Influence of Capillary Threshold Pressure and Injection Well Location on the Dynamic CO2 and H2 Storage Capacity for the Deep Geological Structure
Jul 2021
Publication
The subject of this study is the analysis of influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the Lower Jurassic reservoir of the Sierpc structure from central Poland. The results of injection modeling allowed us to compare the amount of CO2 and H2 that the considered structure can store safely over a given time interval. The modeling was performed using a single well for 30 different locations considering that the minimum capillary pressure of the cap rock and the fracturing pressure should not be exceeded for each gas separately. Other values of capillary threshold pressure for CO2 and H2 significantly affect the amount of a given gas that can be injected into the reservoir. The structure under consideration can store approximately 1 Mt CO2 in 31 years while in the case of H2 it is slightly above 4000 tons. The determined CO2 storage capacity is limited; the structure seems to be more prospective for underground H2 storage. The CO2 and H2 dynamic storage capacity maps are an important element of the analysis of the use of gas storage structures. A much higher fingering effect was observed for H2 than for CO2 which may affect the withdrawal of hydrogen. It is recommended to determine the optimum storage depth particularly for hydrogen. The presented results important for the assessment of the capacity of geological structures also relate to the safety of use of CO2 and H2 underground storage space.
The Trajectory of Hybrid and Hydrogen Technologies in North American Heavy Haul Operations
Jul 2021
Publication
The central aim of this paper is to provide an up-to-date snapshot of hybrid and hydrogen technology-related developments and activities in the North American heavy haul railway setting placed in the context of the transportation industry more broadly. An overview of relevant alternative propulsion technologies is provided including a discussion of applicability to the transportation sector in general and heavy haul freight rail specifically. This is followed by a discussion of current developments and research in alternative and blended fuels discussed again in both general and specific settings. Key factors and technical considerations for heavy haul applications are reviewed followed by a discussion of non-technical and human factors that motivate a move toward clean energy in North American Heavy Haul systems. Finally current project activities are described to provide a clear understanding of both the status and trajectory of hybrid and hydrogen technologies in the established context.
Hydrogen Production from Renewable Energy Resources: A Case Study
May 2024
Publication
In the face of increasing demand for hydrogen a feasibility study is conducted on its production by using Renewable Energy Resources (RERs) especially from wind and solar sources with the latter preferring photovoltaic technology. The analysis performed is based on climate data for the Province of Brindisi Apulia Italy. The various types of electrolyzers will be analyzed ultimately choosing the one that best suits the case study under consideration. The technical aspect of the land consumption for RER exploitation until 2050 is analyzed for the Italian case of study and for the Apulia Region. For both the 200 MW and 100 MW RER Power Plants an economic analysis is carried out on the opportunities for using hydrogen. In the last part of the economic analysis the trade-off between the high specific investment cost and the Capacity Factor of Wind technologies is also investigated. The results show the affordability of building high-scale Wind Farms harnessing the existing scale economies. The lowest Hydrogen selling price is achieved by the 200 MW Wind Farms equal to 222 €/MWh against 232 €/MWh of the 200 MW Photovoltaic (PV) Farm. Finally the feasibility analysis considers also the greenhouse gas emission reduction by including in the economic analysis the carbon dioxide (CO2) Average Auction Clearing Price leading for the 200 MW Wind Farms to a hydrogen selling price equal to 191.2 €/MWh against 201 €/MWh of the 200 MW Photovoltaic Farm.
Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing
Oct 2021
Publication
Water electrolysis to obtain hydrogen in combination with intermittent renewable energy resources is an emerging sustainable alternative to fossil fuels. Among the available electrolyzer technologies anion exchange membrane water electrolysis (AEMWE) has been paid much attention because of its advantageous behavior compared to other more traditional approaches such as solid oxide electrolyzer cells and alkaline or proton exchange membrane water electrolyzers. Recently very promising results have been obtained in the AEMWE technology. This review paper is focused on recent advances in membrane electrode assembly components paying particular attention to the preparation methods for catalyst coated on gas diffusion layers which has not been previously reported in the literature for this type of electrolyzers. The most successful methodologies utilized for the preparation of catalysts including co-precipitation electrodeposition sol–gel hydrothermal chemical vapor deposition atomic layer deposition ion beam sputtering and magnetron sputtering deposition techniques have been detailed. Besides a description of these procedures in this review we also present a critical appraisal of the efficiency of the water electrolysis carried out with cells fitted with electrodes prepared with these procedures. Based on this analysis a critical comparison of cell performance is carried out and future prospects and expected developments of the AEMWE are discussed.
Underground Hydrogen Storage Safety: Experimental Study of Hydrogen Diffusion through Caprocks
Jan 2024
Publication
Underground Hydrogen Storage (UHS) provides a large-scale and safe solution to balance the fluctuations in energy production from renewable sources and energy consumption but requires a proper and detailed characterization of the candidate reservoirs. The scope of this study was to estimate the hydrogen diffusion coefficient for real caprock samples from two natural gas storage reservoirs that are candidates for underground hydrogen storage. A significant number of adsorption/desorption tests were carried out using a Dynamic Gravimetric Vapor/Gas Sorption System. A total of 15 samples were tested at the reservoir temperature of 45 °C and using both hydrogen and methane. For each sample two tests were performed with the same gas. Each test included four partial pressure steps of sorption alternated with desorption. After applying overshooting and buoyancy corrections the data were then interpreted using the early time approximation of the solution to the diffusion equation. Each interpretable partial pressure step provided a value of the diffusion coefficient. In total more than 90 estimations of the diffusion coefficient out of 120 partial pressure steps were available allowing a thorough comparison between the diffusion of hydrogen and methane: hydrogen in the range of 1 × 10−10 m2 /s to 6 × 10−8 m2 /s and methane in the range of 9 × 10−10 m2 /s to 2 × 10−8 m2 /s. The diffusion coefficients measured on wet samples are 2 times lower compared to those measured on dry samples. Hysteresis in hydrogen adsorption/desorption was also observed.
Techno-economic Assessment of Blue and Green Ammonia as Energy Carriers in a Low-carbon Future
Feb 2022
Publication
Ammonia is an industrial chemical and the basic building block for the fertilizer industry. Lately attention has shifted towards using ammonia as a carbon-free energy vector due to the ease of transportation and storage in liquid state at − 33 ◦C and atmospheric pressure. This study evaluates the prospects of blue and green ammonia as future energy carriers; specifically the gas switching reforming (GSR) concept for H2 and N2 co-production from natural gas with inherent CO2 capture (blue) and H2 generation through an optimized value chain of wind and solar power electrolysers cryogenic N2 supply and various options for energy storage (green). These longer term concepts are benchmarked against conventional technologies integrating CO2 capture: the Kellogg Braun & Root (KBR) Purifier process and the Linde Ammonia Concept (LAC). All modelled plants utilize the same ammonia synthesis loop for a consistent comparison. A cash flow analysis showed that the GSR concept achieved an attractive levelized cost of ammonia (LCOA) of 332.1 €/ton relative to 385.1–385.9 €/ton for the conventional plants at European energy prices (6.5 €/GJ natural gas and 60 €/MWh electricity). Optimal technology integration for green ammonia using technology costs representative of 2050 was considerably more expensive: 484.7–772.1 €/ton when varying the location from Saudi Arabia to Germany. Furthermore the LCOA of the GSR technology drops to 192.7 €/ton when benefitting from low Saudi Arabian energy costs (2 €/GJ natural gas and 40 €/MWh electricity). This cost difference between green and blue ammonia remained robust in sensitivity analyses where input energy cost (natural gas or wind/solar power) was the most influential parameter. Given its low production costs and the techno-economic feasibility of international ammonia trade advanced blue ammonia production from GSR offers an attractive pathway for natural gas exporting regions to contribute to global decarbonization.
Split Injection Strategies for a High-pressure Hydrogen Direct Injection in a Small-bore Dual-fuel Diesel Engine
Jan 2024
Publication
Hydrogen-diesel dual direct-injection (H2DDI) engines present a promising pathway towards cleaner and more efficient transportation. In this study hydrogen split injection strategies were explored in an automotive-size single-cylinder compression ignition (CI) engine with a focus on varying the injection timings and energy fractions. The engine was operated at an intermediate load with fixed combustion phasing through adjustments of pilot diesel injection timing. An energy substitution principle guided the variation in energy fraction between the two hydrogen injections and then diesel injection while keeping the total energy input constant. The findings demonstrate that early first hydrogen injection timings lead to characteristics indicative of premixed combustion reflecting a high homogeneity of the hydrogen-air mixture. In contrast hydrogen stratification levels were predominantly influenced by later second injection timings with mixing-controlled combustion behaviour apparent for very late injections near top dead centre or when the second hydrogen injection held high energy fractions which led to decreased nitrogen oxides (NOx: NO and NO2) emissions. The carbon dioxide (CO2) emissions did not show high sensitivity to the hydrogen split injection strategies exhibiting about 77 % reduction compared to the diesel baseline due primarily to increased hydrogen energy fraction of up to 90 %
Explosion Mitigation Techniques in Tunnels and their Applicability to Scenarios of Hydrogen Tank Rupture in a Fire
Sep 2023
Publication
This paper presents a comprehensive review of existing explosion mitigation techniques for tunnels and evaluates their applicability in scenarios of hydrogen tank rupture in a fire. The study provides an overview of the current state of the art in tunnel explosion mitigation and discusses the challenges associated with hydrogen explosions in the context of fire incidents. The review shows that there are several approaches available to decrease the effects of explosions including wrapping the tunnel with a flexible and compressible barrier and introducing energy-absorbing flexible honeycomb elements. However these methods are limited to the mitigation of the action and do not consider either the mitigation of the structural response or the effects on the occupants. The study highlights how the structural response is affected by the duration of the action and the natural period of the structural elements and how an accurate design of the element stiffness can be used in order to mitigate the structural vulnerability to the explosion. The review also presents various passive and active mitigation techniques aimed at mitigating the explosion effects on the occupants. Such techniques include tunnel branching ventilation openings evacuation lanes right-angled bends drop-down perforated plates or high-performance fibre-reinforced cementitious composite (HPFRCC) panels for blast shielding. While some of these techniques can be introduced during the tunnel's construction phase others require changes to the already working tunnels. To simulate the effect of blast wave propagation and evaluate the effectiveness of these mitigation techniques a CFD-FEM study is proposed for future analysis. The study also highlights the importance of considering these mitigation techniques to ensure the safety of the public and first responders. Finally the study identifies the need for more research to understand blast wave mitigation by existing structural elements in the application for potential accidents associated with hydrogen tank rupture in a tunnel.
Thermocouple Thermal Inertia During Refuelling of Hydrogen Tanks: CFD Validation
Sep 2023
Publication
Fueling and defueling of hydrogen composite tanks is an important issue for the safe handling of hydrogen. To prevent temperature rise during refuelling (maximum allowed T=+85°C) the rate of fueling must be carefully controlled. Using Computational Fluid Dynamics (CFD) we simulate the temperature and velocity distribution inside the tank during these processes including cases where thermal stratification occurs. Simulations of two tank configurations with tilted injectors are presented along with experimental data validation. A model is proposed to account for the thermal inertia of the thermocouples making it possible to compare more reliably CFD results with experimental measurements.
Multi-Objective Optimization for Solar-Hydrogen-Battery-Integrated Electric Vehicle Charging Stations with Energy Exchange
Oct 2023
Publication
The importance of electric vehicle charging stations (EVCS) is increasing as electric vehicles (EV) become more widely used. EVCS with multiple low-carbon energy sources can promote sustainable energy development. This paper presents an optimization methodology for direct energy exchange between multi-geographic dispersed EVCSs in London UK. The charging stations (CSs) incorporate solar panels hydrogen battery energy storage systems and grids to support their operations. EVs are used to allow the energy exchange of charging stations. The objective function of the solar-hydrogen-battery storage electric vehicle charging station (SHS-EVCS) includes the minimization of both capital and operation and maintenance (O&M) costs as well as the reduction in greenhouse gas emissions. The system constraints encompass the power output limits of individual components and the need to maintain a power balance between the SHS-EVCSs and the EV charging demand. To evaluate and compare the proposed SHS-EVCSs two multi-objective optimization algorithms namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) are employed. The findings indicate that NSGA-II outperforms MOEA/D in terms of achieving higher-quality solutions. During the optimization process various factors are considered including the sizing of solar panels and hydrogen storage tanks the capacity of electric vehicle chargers and the volume of energy exchanged between the two stations. The application of the optimized SHS-EVCSs results in substantial cost savings thereby emphasizing the practical benefits of the proposed approach.
Analyzing the Future Potential of Defossilizing Industrial Specialty Glass Production with Hydrogen by LCA
Mar 2022
Publication
The glass industry is part of the energy-intensive industry with most of the energy needed to melt the raw materials. To produce glass temperatures between 1000 and 1600 °C are necessary. Presently mostly fossil natural gas is the dominant energy source. As direct electrification is not always possible in this paper a Life Cycle Assessment (LCA) for specialty glass production is conducted where the conventional fossil-based reference process is compared to a hydrogen-fired furnace. This hydrogen can be produced on-site in an water electrolyzer using not only the hydrogen for the combustion but also the produced oxygen. Hydrogen can be produced alternatively off-site in a large scale electrolyzer to facilitate economy of scale. For the transport and distribution of this hydrogen different options are available. A rather new option are liquid organic hydrogen carriers (LOHC) which bind the hydrogen in a chemical substance. However temperatures around 300 °C are necessary to separate the hydrogen from the LOHC after transport. At the glass trough waste heat is available at the required temperature level to facilitate the dehydrogenation. The comparison is completed by the production of off-site hydrogen transported to the glass trough as conventional liquefied hydrogen in cooling tanks by truck or in hydrogen pipelines. In this assessment to power the electrolyzers the national grid mix of Germany is used. A time frame from 2020 till 2050 and its changing energy system towards defossilisation is analyzed. Regarding climate change on-site hydrogen production causes the least impact for specialty glass production in 2050. However negative trade-offs for other environmental impact categories e.g. Metal depletion are recorded.
Hydrogen Dispersion Following Blowdown Releases into a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. The test programme investigating hydrogen dispersion in tunnels involved simulating releases analogous to Thermally activated Pressure Relief Devices (TPRDs) typically found on hydrogen vehicles into the HSE Tunnel facility. The releases were scaled and based upon four scenarios: cars buses and two different train designs. The basis for this scaling was the size of the tunnel and the expected initial mass flow rates of the releases scenarios. The results of the 12 tests completed have been analysed in two ways: the initial mass flow rates of the tests were calculated based upon facility measurements and the Able-Noble equations of state for comparison to the intended initial flow rate; and observations of the hydrogen dispersion in the tunnel were made based on 15 hydrogen sensors arrayed along the tunnel. The calculated mass flow rates showed reasonable agreement with the intended initial conditions showing that the scaling methodology can be used to interpret the data based on the full-scale tunnel of interest. Observations of the hydrogen dispersion show an initial turbulent mixing followed by a movement of the mixed hydrogen/air cloud down the tunnel. No vertical stratification of the cloud was observed but this effect could be possible in longer tunnels or tunnels with larger diameters. Higher ventilation rates in the tunnel resulted in a reduction of the residence time of the hydrogen and a slight increase in the dilution.
Critical Mineral Demands May Limit Scaling of Green Hydrogen Production
Jan 2024
Publication
Hydrogen (H2) is widely viewed as critical to the decarbonization of industry and transportation. Water electrolysis powered by renewable electricity commonly referred to as green H2 can be used to generate H2 with low carbon dioxide emissions. Herein we analyze the critical mineral and energy demands associated with green H2 production under three different hypothetical future demand scenarios ranging from 100–1000 Mtpa H2. For each scenario we calculate the critical mineral demands required to build water electrolyzers (i.e. electrodes and electrolyte) and to build dedicated or additional renewable electricity sources (i.e. wind and solar) to power the electrolyzers. Our analysis shows that scaling electrolyzer and renewable energy technologies that use platinum group metals and rare earth elements will likely face supply constraints. Specifically larger quantities of lanthanum yttrium or iridium will be needed to increase electrolyzer capacity and even more neodymium silicon zinc molybdenum aluminum and copper will be needed to build dedicated renewable electricity sources. We find that scaling green H2 production to meet projected netzero targets will require ~24000 TWh of dedicated renewable energy generation which is roughly the total amount of solar and wind projected to be on the grid in 2050 according to some energy transition models. In summary critical mineral constraints may hinder the scaling of green H2 to meet global net-zero emissions targets motivating the need for the research and development of alternative lowemission methods of generating H2
CFD Dispersion Simulations of Compressed Hydrogen Releases through TPRD Inside Scaled Tunnel
Sep 2023
Publication
To achieve the net zero carbon emissions goals by 2050 the transition to cleaner forms and carriers of energy should be accelerated without though jeopardizing the public safety. Although hydrogen has been deemed to play significant role in the energy transition for years now there are still concerns for its risks that hamper its widespread implementation in several applications like for instance automobile applications. Hydrogen-powered vehicles raise concerns about their safety especially inside confined spaces like tunnels and thus research on that topic has been intensified during the last years. In this context experiments have been conducted by UK HSE within the EU-funded project HyTunnel-CS to examine hydrogen dispersion and deflagration inside a scaled tunnel resulting from fuel cell car bus and train release.<br/>In this work that was also carried out within the HyTunnel-CS we present the Computational Fluid Dynamics (CFD) simulations of the HSE unignited experiments. Blowdown tests related to high-pressure hydrogen releases through Thermal Pressure Relief Device (TPRD) installed in car and in train were modeled using the ADREA-HF code. The scope of these simulations was two-fold: a) contribute to the design of the experiments (e.g. indicate sensor positioning ignition point etc.) and the interpretation of hydrogen behavior and b) validate the CFD code. For the former pre-test simulations preceded the experiments to provide design recommendations. When the experiments were conducted the measurements were used for the code validation. Overall the CFD results are in satisfactory agreement with the experiments. Finally simulations with different ventilation rates and with model vehicles inside the tunnel were conducted to examine their effect on mixture dispersion and tunnel safety.
Economic Modelling of Mixing Hydrogen with Natural Gas
Jan 2024
Publication
As global efforts intensify to transition toward cleaner and more sustainable energy sources the blending of hydrogen with natural gas emerges as a promising strategy to reduce carbon emissions and enhance energy security. This study employs a systematic approach to assess the economic viability of hydrogen blending considering factors such as gas costs and heat values. Various hydrogen blending scenarios are analyzed to determine the optimal blend ratios taking into account both technical feasibility and economic considerations. The study discusses potential economic benefits challenges and regulatory implications associated with the widespread adoption of hydrogen–natural gas mixtures. Furthermore the study explores the impact of this integration on existing natural gas infrastructure exploring the potential for enhanced energy storage and delivery. The findings of this research contribute valuable insights to policymakers industry stakeholders and researchers engaged in the ongoing energy transition by providing a nuanced understanding of the economic dimensions of hydrogen blending within the natural gas sector.
Green Fleet: A Prototype Biogas and Hydrogen Refueling Management System for Private Fleet Stations
Aug 2023
Publication
Biogas and hydrogen (H2 ) are breaking through as alternative energy sources in road transport specifically for heavy-duty vehicles. Until a public network of service stations is deployed for such vehicles the owners of large fleets will need to build and manage their own refueling facilities. Fleet refueling management and remote monitoring at these sites will become key business needs. This article describes the construction of a prototype system capable of solving those needs. During the design and development process of the prototype the standard industry protocols involved in these installations have been considered and the latest expertise in information technology systems has been applied. This prototype has been essential to determine the Strengths Challenges Opportunities and Risks (SCOR) of such a system which is the first step of a more ambitious project. A second stage will involve setting up a pilot study and developing a commercial system that can be widely installed to provide a real solution for the industry.
A Study on the Viability of Fuel Cells as an Alternative to Diesel Fuel Generators on Ships
Jul 2023
Publication
This study investigates methods for reducing air pollution in the shipping sector particularly in port areas. The study examines the use of fuel cells as an alternative to diesel generators. Environmental pollution at ports remains a critical issue so using fuel cells as an alternative to conventional energy systems warrants further research. This study compares commercial fuel cell types that can be used on a case study very large crude carrier (VLCC) vessel specifically although the technology is applicable to other vessels and requirements. Seven different fuel cell types were ranked based on five criteria to accomplish this. The proton-exchange membrane cell type was found to be the most suitable fuel cell type for the case study vessel. Based on the input fuel ammonia-based hydrogen storage has been identified as the most promising option along with using an ammonia reforming unit to produce pure hydrogen. Furthermore this study provides an integrated fuel cell module and highlights the economic environmental and maintenance aspects of implementing the proton-exchange membrane fuel cell module for this case study. It also calculates the required space as a crucial constraint of implementing fuel cell technology at sea.
Characterization of the Hydrogen Combustion Process in a Scramjet Engine
May 2024
Publication
In this paper by using a large eddy simulation we study the combustion process in the HyShot II scramjet combustor. By conducting a detailed analysis of the mass-fraction distributions of the main species such as H2 H2O and the radicals OH and HO2 of the mass source terms of these main species and of the chemical source term of the energy equation we detect the regions where chemical reactions occur through a diffusion process and the regions where auto-ignition and premixed combustion may develop. The analysis indicates that the combustion process is mainly of diffusive type along a thin shear layer enveloping the hydrogen plume whereas there could be some auto-ignition and/or premixed combustion cores inside the plume.
No more items...