- Home
- A-Z Publications
- Publications
Publications
Experimental Evaluation of Dynamic Operating Concepts for Alkaline Water Electrolyzers Powered by Renewable Energy
Dec 2021
Publication
Synthetic current density profiles with wind and photovoltaic power characteristics were calculated by autoregressive-moving-average (ARMA) models for the experimental evaluation of dynamic operating concepts for alkaline water electrolyzers powered by renewable energy. The selected operating concepts included switching between mixed and split electrolyte cycles and adapting the liquid electrolyte volume flow rate depending on the current density. All experiments were carried out at a pressure of 7 bar a temperature of 60 °C and with an aqueous potassium hydroxide solution with 32 wt.% KOH as the electrolyte. The dynamic operating concepts were compared to stationary experiments with mixed electrolyte cycles and the experimental evaluation showed that the selected operating concepts were able to reduce the gas impurity compared to the reference operating conditions without a noticeable increase of the cell potential. Therefore the overall system efficiency and process safety could be enhanced by this approach.
Additive Manufacturing for Proton Exchange Membrane (PEM) Hydrogen Technologies: Merits, Challenges, and Prospects
Jul 2023
Publication
With the growing demand for green technologies hydrogen energy devices such as Proton Exchange Membrane (PEM) fuel cells and water electrolysers have received accelerated developments. However the materials and manufacturing cost of these technologies are still relatively expensive which impedes their widespread commercialization. Additive Manufacturing (AM) commonly termed 3D Printing (3DP) with its advanced capabilities could be a potential pathway to solve the fabrication challenges of PEM parts. Herein in this paper the research studies on the novel AM fabrication methods of PEM components are thoroughly reviewed and analysed. The key performance properties such as corrosion and hydrogen embrittlement resistance of the additively manufactured materials in the PEM working environment are discussed to emphasise their reliability for the PEM systems. Additionally the major challenges and required future developments of AM technologies to unlock their full potential for PEM fabrication are identified. This paper provides insights from the latest research developments on the significance of advanced manufacturing technologies in developing sustainable energy systems to address the global energy challenges and climate change effects.
A Cost Comparison of Various Hourly-reliable and Net-zero Hydrogen Production Pathways in the United States
Nov 2023
Publication
Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors but to maximize emission reductions supplied hydrogen must be reliable low-emission and low-cost. Here we build a model that enables direct comparison of the cost of producing net-zero hourly-reliable hydrogen from various pathways. To reach net-zero targets we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California Texas and New York) model results indicate nextdecade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/ kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However when omitting the net-zero emission constraint and considering the U.S. regulatory environment electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.
Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas
Sep 2016
Publication
Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen) while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes such as in Fischer–Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500– 1000 °C) while different ionic agents can be electrochemically transferred during the electrolysis process (OH− H+ O2− ). Singular requirements apply in each of the electrolysis technologies (alkaline polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst–electrode materials on the electrolyzer’s performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed.
Environmental and Material Criticality Assessment of Hydrogen Production via Anion Exchange Membrane Electrolysis
Oct 2023
Publication
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work prospective life cycle assessment and criticality assessment are applied first to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and second to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view the catalyst spraying process heavily dominates the ozone depletion impact category while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded subject to the expected technical progress for this technology.
Hydrogen Quality in Used Natual Gas Pipelines: An Experimental Investigation of Contaminants According to ISO 14687:2019 Standard
Sep 2023
Publication
The transport of hydrogen in used natural gas pipelines is a strategic key element of a pan-European hydrogen infrastructure. At the same time accurate knowledge of the hydrogen quality is essential in order to be able to address a wide application range. Therefore an experimental investigation was carried out to find out which contaminants enter into the hydrogen from the used natural gas pipelines. Pipeline elements from the high pressure gas grid of Austria were exposed to hydrogen. Steel pipelines built between 1960 and 2018 which were operated with odorised and pure natural gas were examined. The hydrogen was analysed according to requirements of ISO14687: 2019 Grade D measurement standard. The results show that based on age odorization and sediments different contimenants are introduced. Odorants hydrocarbons but also sulphur compounds ammonia and halogenated hydrogen compounds were identified. Sediments are identified as the main source of impurities. However the concentrations of the introduced contaminants were low (6 nmol/mol to 10 μmol/mol). Quality monitoring with a wide range of detection options for different components (sulphur halogenated compounds hydrocarbons ammonia and atmospheric components) is crucial for real operation. The authors deduce that a Grade A hydrogen quality can be safely achieved in real operation.
Renewable Hydrogen: Modular Concepts from Production over Storage to the Consumer
Jan 2021
Publication
A simulation tool called HYDRA to optimize individual hydrogen infrastructure layouts is presented. The different electrolyzer technologies namely proton exchange membrane electrolysis anion exchange membrane electrolysis alkaline electrolysis and solid oxide electrolysis as well as hydrogen storage possibilities are described in more detail and evaluated. To illustrate the application opportunities of HYDRA three project examples are discussed. The examples include central and decentral applications while taking the usage of hydrogen into account.
A Newly Proposed Method for Hydrogen Storage in a Metal Hydride Storage Tank Intended for Maritime and Inland Shipping
Aug 2023
Publication
The utilisation of hydrogen in ships has important potential in terms of achieving the decarbonisation of waterway transport which produces approximately 3% of the world’s total emissions. However the utilisation of hydrogen drives in maritime and inland shipping is conditioned by the efficient and safe storage of hydrogen as an energy carrier on ship decks. Regardless of the type the constructional design and the purpose of the aforesaid vessels the preferred method for hydrogen storage on ships is currently high-pressure storage with an operating pressure of the fuel storage tanks amounting to tens of MPa. Alternative methods for hydrogen storage include storing the hydrogen in its liquid form or in hydrides as adsorbed hydrogen and reformed fuels. In the present article a method for hydrogen storage in metal hydrides is discussed particularly in a certified low-pressure metal hydride storage tank—the MNTZV-159. The article also analyses the 2D heat conduction in a transversal cross-section of the MNTZV-159 storage tank for the purpose of creating a final design of the shape of a heat exchanger (intensifier) that will help to shorten the total time of hydrogen absorption into the alloy i.e. the filling process. Based on the performed 3D calculations for heat conduction the optimisation and implementation of the intensifier into the internal volume of a metal hydride alloy will increase the performance efficiency of the shell heat exchanger of the MNTZV-159 storage tank. The optimised design increased the cooling power by 46.1% which shortened the refuelling time by 41% to 2351 s. During that time the cooling system which comprised the newly designed internal heat transfer intensifier was capable of eliminating the total heat from the surface of the storage tank thus preventing a pressure increase above the allowable value of 30 bar.
Prospects of Hydrogen Application as a Fuel for Large-Scale Compressed-Air Energy Storages
Jan 2024
Publication
A promising method of energy storage is the combination of hydrogen and compressed-air energy storage (CAES) systems. CAES systems are divided into diabatic adiabatic and isothermal cycles. In the diabatic cycle thermal energy after air compression is discharged into the environment and the scheme implies the use of organic fuel. Taking into account the prospects of the decarbonization of the energy industry it is advisable to replace natural gas in the diabatic CAES scheme with hydrogen obtained by electrolysis using power-to-gas technology. In this article the SENECA-1A project is considered as a high-power hybrid unit using hydrogen instead of natural gas. The results show that while keeping the 214 MW turbines powered the transition to hydrogen reduces carbon dioxide emissions from 8.8 to 0.0 kg/s while the formation of water vapor will increase from 17.6 to 27.4 kg/s. It is shown that the adiabatic CAES SENECA-1A mode compared to the diabatic has 0.0 carbon dioxide and water vapor emission with relatively higher efficiency (71.5 vs. 62.1%). At the same time the main advantage of the diabatic CAES is the possibility to produce more power in the turbine block (214 vs. 131.6 MW) having fewer capital costs. Thus choosing the technology is a subject of complex technical economic and ecological study.
Current and Future role of Haber–Bosch Ammonia in a Carbon-free Energy Landscape
Dec 2019
Publication
The future of a carbon-free society relies on the alignment of the intermittent production of renewable energy with our continuous and increasing energy demands. Long-term energy storage in molecules with high energy content and density such as ammonia can act as a buffer versus short-term storage (e.g. batteries). In this paper we demonstrate that the Haber–Bosch ammonia synthesis loop can indeed enable a second ammonia revolution as energy vector by replacing the CO2 intensive methane-fed process with hydrogen produced by water splitting using renewable electricity. These modifications demand a redefinition of the conventional Haber–Bosch process with a new optimisation beyond the current one which was driven by cheap and abundant natural gas and relaxed environmental concerns during the last century. Indeed the switch to electrical energy as fuel and feedstock to replace fossil fuels (e.g. methane) will lead to dramatic energy efficiency improvements through the use of high efficiency electrical motors and complete elimination of direct CO2 emissions. Despite the technical feasibility of the electrically-driven Haber–Bosch ammonia the question still remains whether such revolution will take place. We reveal that its success relies on two factors: increased energy efficiency and the development of small-scale distributed and agile processes that can align to the geographically isolated and intermittent renewable energy sources. The former requires not only higher electrolyser efficiencies for hydrogen production but also a holistic approach to the ammonia synthesis loop with the replacement of the condensation separation step by alternative technologies such as absorption and catalysis development. Such innovations will open the door to moderate pressure systems the development and deployment of novel ammonia synthesis catalysts and even more importantly the opportunity for integration of reaction and separation steps to overcome equilibrium limitations. When realised green ammonia will reshape the current energy landscape by directly replacing fossil fuels in transportation heating electricity etc. and as done in the last century food.
Reversible Molten Catalytic Methane Cracking Applied to Commercial Solar-Thermal Receivers
Nov 2020
Publication
When driven by sunlight molten catalytic methane cracking can produce clean hydrogen fuel from natural gas without greenhouse emissions. To design solar methane crackers a canonical plug flow reactor model was developed that spanned industrially relevant temperatures and pressures (1150–1350 Kelvin and 2–200 atmospheres). This model was then validated against published methane cracking data and used to screen power tower and beam-down reactor designs based on “Solar Two” a renewables technology demonstrator from the 1990s. Overall catalytic molten methane cracking is likely feasible in commercial beam-down solar reactors but not power towers. The best beam-down reactor design was 9% efficient in the capture of sunlight as fungible hydrogen fuel which approaches photovoltaic efficiencies. Conversely the best discovered tower methane cracker was only 1.7% efficient. Thus a beam-down reactor is likely tractable for solar methane cracking whereas power tower configurations appear infeasible. However the best simulated commercial reactors were heat transfer limited not reaction limited. Efficiencies could be higher if heat bottlenecks are removed from solar methane cracker designs. This work sets benchmark conditions and performance for future solar reactor improvement via design innovation and multiphysics simulation.
Techno-economic Feasibility of Distributed Waste-to-hydrogen Systems to Support Green Transport in Glasgow
Mar 2022
Publication
Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock hydrogen production reactors and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included inter alia direct cost data on construction maintenance operations infrastructure and storage along with indirect cost data comprising environmental impacts and externalities cost of pollution carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development.
A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq
Mar 2023
Publication
The study proposes a comprehensive framework to support the development of green hydrogen production including the establishment of legal and regulatory frameworks investment incentives and public-private partnerships. Using official and public data from government agencies the potential of renewable energy sources is studied and some reasonable assumptions are made so that a full study and evaluation of hydrogen production in the country can be done. The information here proves beyond a doubt that renewable energy makes a big difference in making green hydrogen. This makes the country a leader in the field of making green hydrogen. Based on what it found this research suggests a way for the country to have a green hydrogen economy by 2050. It is done in three steps: using green hydrogen as a fuel for industry using green hydrogen in fuel cells and selling hydrogen. On the other hand the research found that making green hydrogen that can be used in Iraq and other developing countries is hard. There are technological economic and social problems as well as policy consequences that need to be solved.
Operating Characteristics Analysis and Capacity Configuration Optimization of Wind-Solar-Hydrogen Hybrid Multi-energy Complementary System
Dec 2023
Publication
Wind and solar energy are the important renewable energy sources while their inherent natures of random and intermittent also exert negative effect on the electrical grid connection. As one of multiple energy complementary route by adopting the electrolysis technology the wind-solar-hydrogen hybrid system contributes to improving green power utilization and reducing its fluctuation. Therefore the moving average method and the hybrid energy storage module are proposed which can smooth the wind-solar power generation and enhance the system energy management. Moreover the optimization of system capacity configuration and the sensitive analysis are implemented by the MATLAB program platform. The results indicate that the 10-min grid-connected volatility is reduced by 38.7% based on the smoothing strategy and the internal investment return rate can reach 13.67% when the electricity price is 0.04 $/kWh. In addition the annual coordinated power and cycle proportion of the hybrid energy storage module are 80.5% and 90% respectively. The developed hybrid energy storage module can well meet the annual coordination requirements and has lower levelized cost of electricity. This method provides reasonable reference for designing and optimizing the wind-solar-hydrogen complementary system.
Navigating Turbulence: Hydrogen's Role in the Decarbonization of the Aviation Sector
Jan 2024
Publication
This paper offers a comprehensive analysis of the historical evolution and the current state of the aviation industry with a particular emphasis on the critical need for this sector to decarbonize. It delves into emerging propulsion technologies such as battery electric and hydrogen-based systems assessing their potential impact on sustainability within the aviation sector. Special attention is devoted to the global regulatory framework notably carbon offsetting and emission reduction scheme for international aviation which encapsulates initiatives such as lower carbon aviation fuels and sustainable aviation fuels. Examining the environmental challenges facing aviation the paper underscores the necessity for a balanced and comprehensive strategy that integrates various approaches to achieve sustainable solutions. By addressing both the historical context and contemporary advances the paper aims to provide a nuanced understanding of the complexities surrounding aviation's decarbonization journey acknowledging the industry's strides while recognizing the ongoing challenges in the pursuit of sustainability.
Carbon-negative Hydrogen: Exploring the Techno-economic Potential of Biomass Co-gasification with CO2 Capture
Sep 2021
Publication
The hydrogen economy is receiving increasing attention as a complement to electrification in the global energy transition. Clean hydrogen production is often viewed as a competition between natural gas reforming with CO2 capture and electrolysis using renewable electricity. However solid fuel gasification with CO2 capture presents another viable alternative especially when considering the potential of biomass to achieve negative CO2 emissions. This study investigates the techno-economic potential of hydrogen production from large-scale coal/ biomass co-gasification plants with CO2 capture. With a CO2 price of 50 €/ton the benchmark plant using commercially available technologies achieved an attractive hydrogen production cost of 1.78 €/kg with higher CO2 prices leading to considerable cost reductions. Advanced configurations employing hot gas clean-up membrane-assisted water-gas shift and more efficient gasification with slurry vaporization and a chemical quench reduced the hydrogen production cost to 1.50–1.62 €/kg with up to 100% CO2 capture. Without contingencies added to the pre-commercial technologies the lowest cost reduces to 1.43 €/kg. It was also possible to recover waste heat in the form of hot water at 120 ◦C for district heating potentially unlocking further cost reductions to 1.24 €/kg. In conclusion gasification of locally available solid fuels should be seriously considered next to natural gas and electrolysis for supplying the emerging hydrogen economy.
Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport
Jan 2024
Publication
The storage and transfer of energy require a safe technology to mitigate the global environmental issues resulting from the massive application of fossil fuels. Fuel cells have used hydrogen as a clean and efficient energy source. Nevertheless the storage and transport of hydrogen have presented longstanding problems. Recently liquid organic hydrogen carriers (LOHCs) have emerged as a solution to these issues. The hydrogen storage technique in LOHCs is more attractive than those of conventional energy storage systems like liquefaction compression at high pressure and methods of adsorption and absorption. The release and acceptance of hydrogen should be reversible by LOHC molecules following favourable reaction kinetics. LOHCs comprise liquid and semi-liquid organic compounds that are hydrogenated to store hydrogen. These hydrogenated molecules are stored and transported and finally dehydrogenated to release the required hydrogen for supplying energy. Hydrogenation and dehydrogenation are conducted catalytically for multiple cycles. This review elaborates on the characteristics of different LOHC molecules based on their efficacy as energy generators. Additionally different catalysts used for both hydrogenation and dehydrogenation are discussed.
Application of Passive Autocatalytic Recombiners for Hydrogen Mitigation: 2D Numerical Modeling and Experimental Validation
Sep 2023
Publication
The widespread production and use of hydrogen (H2) requires safe handling due to its wide range of flammability and low ignition energy. In confined and semi-confined areas such as garages and tunnels a hydrogen leak will create a potential accumulation of flammable gases. Hence forced ventilation is required in such confined spaces to prevent hydrogen hazards. However this practice may incur higher operating costs and could become ineffective during a power outage. Passive Autocatalytic Recombiners (PARs) are defined as safety devices for preventing hydrogen accumulation in confined spaces. PARs have been widely adopted for hydrogen mitigation in nuclear containment buildings in worst case accident scenarios where forced ventilation is not feasible. PARs are equipped with catalyst plates that self-start due to hydrogen reacting with oxygen at relatively low concentrations (<2 vol. % H2 in air). The heat generated from the reaction creates a self-sustained flow continuously supplying the catalyst surface with fresh hydrogen and oxygen. In this study a 2D transient numerical model has been developed in COMSOL Multiphysics to simulate the operation of PARs. The model was used to analyze the effect of surface reactions on the catalyst temperature flow dynamics self-start behaviour forced versus natural convective flow and steady-state hydrogen recombination rates. The model was also used to simulate carbon monoxide poisoning and its influence on the catalyst performance. Experimental data were used for model calibration and validation showing good agreement for different conditions. Overall the model provides novel insights into PARs operation such as radiation and poisoning effects on the catalyst plate. As a next step assessment of the effectiveness of PARs is underway to mitigate hydrogen hazards in selected confined and semi-confined areas including nuclear and non-nuclear applications.
Subsurface Renewable Energy Storage Capcity for Hydrogen, Methane and Compress Air - A Performance Assessment Study from the North German Basin
Jul 2021
Publication
The transition to renewable energy sources to mitigate climate change will require large-scale energy storage to dampen the fluctuating availability of renewable sources and to ensure a stable energy supply. Energy storage in the geological subsurface can provide capacity and support the cycle times required. This study investigates hydrogen storage methane storage and compressed air energy storage in subsurface porous formations and quantifies potential storage capacities as well as storage rates on a site-specific basis. For part of the North German Basin used as the study area potential storage sites are identified employing a newly developed structural geological model. Energy storage capacities estimated from a volume-based approach are 6510 TWh and 24544 TWh for hydrogen and methane respectively. For a consistent comparison of storage capacities including compressed air energy storage the stored exergy is calculated as 6735 TWh 25795 TWh and 358 TWh for hydrogen methane and compressed air energy storage respectively. Evaluation of storage deliverability indicates that high deliverability rates are found mainly in two of the three storage formations considered. Even accounting for the uncertainty in geological parameters the storage potential for the three considered storage technologies is significantly larger than the predicted demand and suitable storage rates are achievable in all storage formations.
Carbon Footprint and Energy Transformation Analysis of Steel Produced via a Direct Reduction Plant with an Integrated Electric Melting Unit
Aug 2022
Publication
The production of fat steel products is commonly linked to highly integrated sites which include hot metal generation via the blast furnace basic oxygen furnace (BOF) continuous casting and subsequent hot-rolling. In order to reach carbon neutrality a shift away from traditional carbon-based metallurgy is required within the next decades. Direct reduction (DR) plants are capable to support this transition and allow even a stepwise reduction in CO2 emissions. Nevertheless the implementation of these DR plants into integrated metallurgical plants includes various challenges. Besides metallurgy product quality and logistics special attention is given on future energy demand. On the basis of carbon footprint methodology (ISO 14067:2019) diferent scenarios of a stepwise transition are evaluated and values of possible CO2equivalent (CO2eq) reduction are coupled with the demand of hydrogen electricity natural gas and coal. While the traditional blast furnace—BOF route delivers a surplus of electricity in the range of 0.7 MJ/kg hot-rolled coil; this surplus turns into a defcit of about 17 MJ/ kg hot-rolled coil for a hydrogen-based direct reduction with an integrated electric melting unit. On the other hand while the product carbon footprint of the blast furnace-related production route is 2.1 kg CO2eq/kg hot-rolled coil; this footprint can be reduced to 0.76 kg CO2eq/kg hot-rolled coil for the hydrogen-related route provided that the electricity input is from renewable energies. Thereby the direct impact of the processes of the integrated site can even be reduced to 0.15 kg CO2eq/ kg hot-rolled coil. Yet if the electricity input has a carbon footprint of the current German or European electricity grid mix the respective carbon footprint of hot-rolled coil even increases up to 3.0 kg CO2eq/kg hot-rolled coil. This underlines the importance of the availability of renewable energies.
No more items...