- Home
- A-Z Publications
- Publications
Publications
Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine
Jun 2023
Publication
The hydrogen supply system is one of the important components of a hydrogen fuel cell engine and its performance has an important impact on the economy and power of the engine system. In this paper a hydrogen supply system based on cyclic mode is designed for a hydrogen fuel cell stack with a full load power of 150 kW and the corresponding hydrogen fuel cell engine simulation model is built and validated. The control strategy of the fuel cell hydrogen supply system is developed and its effect is verified through bench tests. The results show that the developed control strategy can keep the volume fraction of nitrogen below 6% the hydrogen excess ratio does not exceed 1.5 under medium and high operating conditions the anode pressure is relatively stable and the stack can operate efficiently and reliably.
Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects
Jun 2023
Publication
Conventional transportation systems are facing many challenges related to reducing fuel consumption noise and pollutants to satisfy rising environmental and economic criteria. These requirements have prompted many researchers and manufacturers in the transportation sector to look for cleaner more efficient and more sustainable alternatives. Powertrains based on fuel cell systems could partially or completely replace their conventional counterparts used in all modes of transport starting from small ones such as scooters to large mechanisms such as commercial airplanes. Since hydrogen fuel cells (HFCs) emit only water and heat as byproducts and have higher energy conversion efficiency in comparison with other conventional systems it has become tempting for many scholars to explore their potential for resolving the environmental and economic concerns associated with the transportation sector. This paper thoroughly reviews the principles and applications of fuel cell systems for the main transportation schemes including scooters bicycles motorcycles cars buses trains and aerial vehicles. The review showed that fuel cells would soon become the powertrain of choice for most modes of transportation. For commercial long-rage airplanes however employing fuel cells will be limited due to the replacement of the axillary power unit (APU) in the foreseeable future. Using fuel cells to propel such large airplanes would necessitate redesigning the airplane structure to accommodate the required hydrogen tanks which could take a bit more time.
A Control Strategy Study of a Renewable CCHP Energy System Integrated Hydrogen Production Unit - A Case Study of an Industrial Park in Jiangsu Province
Aug 2023
Publication
This paper describes a renewable energy system incorporating a hydrogen production unit to address the imbalance between energy supply and demand. The system utilizes renewable energy and hydrogen production energy to release energy to fill the power gap during peak demand power supply for demand peaking and valley filling. The system is optimized by analyzing marine predator behavioral logic and optimizing the system for maximum operational efficiency and best economic value. The results of the study show that after the optimized scheduling of the hydrogen production coupled renewable energy integrated energy system using the improved marine predator optimization algorithm the energy distribution of the whole energy system is good with the primary energy saving rate maintained at 24.75% the CO2 emission reduction rate maintained at 42.32% and the cost saving rate maintained at 0.78%. In addition this paper uses the Adaboost-BP prediction model to predictively analyze the system. The results show that as the price of natural gas increases the advantages of the combined hydrogen production renewable integrated energy system proposed in this paper become more obvious and the cumulative cost over three years is better than other related systems. These research results provide an important reference for the application and development of the system.
The Bio Steel Cycle: 7 Steps to Net-Zero CO2 Emissions Steel Production
Nov 2022
Publication
CO2 emissions have been identified as the main driver for climate change with devastating consequences for the global natural environment. The steel industry is responsible for ~7–11% of global CO2 emissions due to high fossil-fuel and energy consumption. The onus is therefore on industry to remedy the environmental damage caused and to decarbonise production. This desk research report explores the Bio Steel Cycle (BiSC) and proposes a seven-step-strategy to overcome the emission challenges within the iron and steel industry. The true levels of combined CO2 emissions from the blast-furnace and basic-oxygen-furnace operation at 4.61 t of CO2 emissions/t of steel produced are calculated in detail. The BiSC includes CO2 capture implementing renewable energy sources (solar wind green H2 ) and plantation for CO2 absorption and provision of biomass. The 7-step-implementation-strategy starts with replacing energy sources develops over process improvement and installation of flue gas carbon capture and concludes with utilising biogas-derived hydrogen as a product from anaerobic digestion of the grown agrifood in the cycle. In the past CO2 emissions have been seemingly underreported and underestimated in the heavy industries and implementing the BiSC using the provided seven-steps-strategy will potentially result in achieving net-zero CO2 emissions in steel manufacturing by 2030.
A Comparative Environmental Life Cycle Assessment Study of Hydrogen Fuel Electricity and Diesel Fuel for Public Buses
Aug 2023
Publication
Hydrogen fuel and electricity are energy carriers viewed as promising alternatives for the modernization and decarbonization of public bus transportation fleets. In order to choose development pathways that will lead transportation systems toward a sustainable future the authors developed an environmental model based on the Life Cycle Assessment approach. The model tested the impact of energy carrier consumption during driving as well as the electricity origin employed to power electric buses and produce hydrogen. Energy sources such as wind solar waste and grid electricity were investigated. The scope of the study included the life cycles of the energy carrier and the necessary infrastructure. The results were presented from two perspectives: the total environmental impact and global warming potential. In order to create a roadmap an original method for choosing sustainable development pathways was prepared. It was shown that the modernization of conventional bus fleets using hydrogen and electrical pathways can provide significant environmental benefits from both perspectives but especially in terms of global warming potential. It was emphasized that attention should be paid to the use of low- and zero-emission energy sources because their impact often strongly influenced the final environmental judgment. The energy carrier consumption also had a strong impact on the results obtained and that is why efforts should be made to reduce it. In addition it was confirmed that hydrogen and electricity production systems based on electricity generated by a waste-to-energy plant could be an environmentally reasonable dual solution for both sustainable waste management and meeting transport needs.
A Multi-stage Framework for Coordinated Scheduling of Networked Microgrids in Active Distribution Systems with Hydrogen Refueling and Charging Stations
May 2024
Publication
Due to the increase in electric energy consumption and the significant growth in the number of electric vehicles (EV) at the level of the distribution network new networks have started using new fuels such as hydrogen to improve environmental indicators and at the same time better efficiency from the excess capacity of renewable resources. In this article the services that can be provided by hydrogen refueling stations and charging electric vehicles in the optimal performance of microgrids have been investigated. The model proposed in this paper includes a two-stage stochastic framework for scheduling resources in microgrids especially hydrogen refueling stations and electric vehicle charging. In this model two main goals of cost minimization and greenhouse gas emissions are considered. In the proposed framework and in the first stage the service range of microgrids is determined precisely according to the electrical limitations of distribution systems in emergency situations. Then in the second stage the problem of energy management in each microgrid will be solved centrally. In this situation various indicators including the output energy of renewable sources smart charging of hydrogen and electric vehicle charging stations (EV/FCV) and flexible loads (FL) are evaluated. The final mathematical model is implemented as a multivariate integer multiple linear problem (MILP) using the GUROBI solver in GAMS software. The simulation results on the modified IEEE 118-Bus network show the positive effect of the presence of flexible loads and smart charging strategies by charging stations. Also the numerical derivation shows that the operating costs of the entire system can be reduced by 4.77% and the use of smart charging strategies can reduce greenhouse gas emissions by 49.13%.
An Overview on the Technologies Used to Storage Hydrogen
Aug 2023
Publication
Hydrogen energy has a significant potential in mitigating the intermittency of renewable energy generation by converting the excess of renewable energy into hydrogen through many technologies. Also hydrogen is expected to be used as an energy carrier that contribute to the global decarbonization in transportation industrial and building sectors. Many technologies have been developed to store hydrogen energy. Hydrogen can be stored to be used when needed and thus synchronize generation and consumption. The current paper presents a review on the different technologies used to store hydrogen. The storage capacity advantages drawbacks and development stages of various hydrogen storage technologies were presented and compared.
Future Swiss Energy Economy: The Challenge of Storing Renewable Energy
Feb 2022
Publication
Fossil fuels and materials on Earth are a finite resource and the disposal of waste into the air on land and into water has an impact on our environment on a global level. Using Switzerland as an example the energy demand and the technical challenges and the economic feasibility of a transition to an energy economy based entirely on renewable energy were analyzed. Three approaches for the complete substitution of fossil fuels with renewable energy from photovoltaics called energy systems (ES) were considered i.e. a purely electric system with battery storage (ELC) hydrogen (HYS) and synthetic hydrocarbons (HCR). ELC is the most energy efficient solution; however it requires seasonal electricity storage to meet year-round energy needs. Meeting this need through batteries has a significant capital cost and is not feasible at current rates of battery production and expanding pumped hydropower to the extent necessary will have a big impact on the environment. The HYS allows underground hydrogen storage to balance seasonal demand but requires building of a hydrogen infrastructure and applications working with hydrogen. Finally the HCR requires the largest photovoltaic (PV) field but the infrastructure and the applications already exist. The model for Switzerland can be applied to other countries adapting the solar irradiation the energy demand and the storage options.
Towards Defossilised Steel: Supply Chain Options for a Green European Steel Industry
Mar 2023
Publication
As the European Union intensifies its response to the climate emergency increased focus has been placed on the hard-to-abate energy-intensive industries. Primary among these is the steel industry a cornerstone of the European economy and industry. With the emergence of new hydrogen-based steelmaking options particularly through hydrogen direct reduction the structure of global steel production and supply chains will transition from being based on low-cost coal resources to that based on low-cost electricity and therefore hydrogen production. This study examines the techno-economic options for three European countries of Germany Spain and Finland under five different steel supply chain configurations compared to local production. Results suggest that the high costs of hydrogen transportation make a European steelmaking supply chain cost competitive to steel produced with imported hydrogen with local production costs ranging from 465-545 €/t of crude steel (CS) and 380-494 €/tCS for 2030 and 2040 respectively. Conversely imports of hot briquetted iron and crude steel from Morocco become economically competitive with European supply chains. Given the capital and energy intensive nature of the steel industry critical investment decisions are required in this decade and this research serves to provide a deeper understanding of supply chain options for Europe.
Hydrogen Technology Development and Policy Status by Value Chain in South Korea
Nov 2022
Publication
Global transitions from carbon- to hydrogen-based economies are an essential component of curbing greenhouse gas emissions and climate change. This study provides an investigative review of the technological development trends within the overall hydrogen value chain in terms of production storage transportation and application with the aim of identifying patterns in the announcement and execution of hydrogen-based policies both domestically within Korea as well as internationally. The current status of technological trends was analyzed across the three areas of natural hydrogen carbon dioxide capture utilization and storage technology linked to blue hydrogen and green hydrogen production linked to renewable energy (e.g. water electrolysis). In Korea the establishment of underground hydrogen storage facilities is potentially highly advantageous for the storage of domestically produced and imported hydrogen providing the foundations for large-scale application as economic feasibility is the most important national factor for the provision of fuel cells. To realize a hydrogen economy pacing policy and technological development is essential in addition to establishing a roadmap for efficient policy support. In terms of technological development it is important to prioritize that which can connect the value chain all of which will ultimately play a major role in the transformation of human energy consumption.
Hydrogen Europe Podcast: Wind and Hydrogen - Delivering REPower EU
Jun 2022
Publication
In this episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with Wind Europe's CEO Giles Dickson. Starting off on how Giles joined Wind Europe the two CEOs discuss the responsibilities their industries have in the new energy strategy set in the REPowerEU as well as the fruitful synergies between hydrogen and wind.
Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning
Nov 2022
Publication
The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro solar and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is mostly harvested in coastal areas and little work has been done on energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a less attractive renewable energy source. However an energy storage method may be added to store harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence techniques. To this end a site was selected latitude 33.64◦ N longitude 72.98◦ N and elevation 500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed wind direction and wind gust was collected at 10 min intervals. Subsequently long short-term memory (LSTM) support vector regression (SVR) and linear regression models were trained on the empirically collected data to estimate daily hydrogen production. The results reveal that the overall prediction performance of LSTM was best compared to that of SVR and linear regression models. Furthermore we found that an average of 6.76 kg/day of hydrogen can be produced by a 1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for time-series data to classify process and predict.
Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success
May 2021
Publication
Many initiatives and policies attempt to make our air cleaner by reducing the carbon foot imprint on our planet. Most of the existing and planned initiatives have as their objectives the reduction of carbon dependency and the enhancement of newer or better technologies in the near future. However numerous policies exist for electric vehicles (EVs) and only some policies address specific issues related to fuel cell electric vehicles (FCEV). The lack of a distinction between the policies for EVs and FCEVs provides obstacles for the advancement of FCEV-related technologies that may otherwise be successful and competitive in the attempt to create a cleaner planet. Unfortunately the lack of this distinction is not always based on intellectual or scientific evidence. Therefore governments may need to introduce clearer policy distinctions in order to directly address FCEV-related challenges that may not pertain to other EVs. Unfortunately lobbyism continues to exist that supports the maintenance of the status quo as new technologies may threaten traditional less sustainable approaches to provide opportunities for a better environment. This lobbyism has partially succeeded in hindering the advancement of new technologies partially because the development of new technologies may reduce profit and business opportunities for traditionalists. However these challenges are slowly overcome as the demand for cleaner air and lower carbon emissions has increased and a stronger movement toward newer and cleaner technologies has gained momentum. This paper will look at policies that have been either implemented or are in the process of being implemented to address the challenge of overcoming traditional obstacles with respect to the automobile industry. The paper reviewed synthesized and discussed policies in the USA Japan and the European Union that helped implement new technologies with a focus on FCEVs for larger mass markets. These regions were the focus of this paper because of their particular challenges. South Korea and China were not included in this discussion as these countries already have equal or even more advanced policies and initiatives in place.
Does Time Matter? A Multi-level Assessment of Delayed Energy Transitions and Hydrogen Pathways in Norway
Mar 2023
Publication
The Russian invasion of Ukraine has undeniably disrupted the EU's energy system and created a window of opportunity for an acceleration of the low-carbon energy transition in Europe. As the trading bloc's biggest gas supplier Norway faces the imminent threat of fast-depleting gas reserves and declining value for its exports. Norway is trying to beat the clock by aggressively exploring more petroleum therefore delaying its energy transition. In anticipation of the future drop in gas prices Norway is counting on blue hydrogen to valorise its gas resources before gradually shifting to green hydrogen export. Against this background this article seeks to understand how changes in the EU's energy landscape have affected the energy export sector and low-carbon hydrogen export developments in Norway from a multi-level perspective. Using the exploratory scenario approach the article assesses the implications of the different petroleum exploration outcomes on the development of the low-carbon hydrogen export market in Norway. The findings show that despite gas discoveries there is an urgent need for a phase-out plan for the Norwegian petroleum sector. For low-carbon hydrogen to play an important role in Norway's energy transition time is of the essence and action needs to be taken during this window of opportunity. An industrial sector and its value chain could take 25 years to transform which means that actions and policies for a full transformation pathway need to take place in Norway by 2025 to be ready for a climate-neutral Europe in 2050.
Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production
Apr 2023
Publication
Hydrogen is known to be the carbon-neutral alternative energy carrier with the highest energy density. Currently more than 95% of hydrogen production technologies rely on fossil fuels resulting in greenhouse gas emissions. Water electrolysis is one of the most widely used technologies for hydrogen generation. Nuclear power a renewable energy source can provide the heat needed for the process of steam electrolysis for clean hydrogen production. This review paper analyses the recent progress in hydrogen generation via high-temperature steam electrolysis through solid oxide electrolysis cells using nuclear thermal energy. Protons and oxygen-ions conducting solid oxide electrolysis processes are discussed in this paper. The scope of this review report covers a broad range including the recent advances in material development for each component (i.e. hydrogen electrode oxygen electrode electrolyte interconnect and sealant) degradation mechanisms and countermeasures to mitigate them.
Seasonal Hydrogen Storage for Residential On- and Off-grid Solar Photovoltaics Prosumer Applications: Revolutionary Solution or Niche Market for the Energy Transition until 2050?
Apr 2023
Publication
Appropriate climate change mitigation requires solutions for all actors of the energy system. The residential sector is a major part of the energy system and solutions for the implementation of a seasonal hydrogen storage system in residential houses has been increasingly discussed. A global analysis of prosumer systems including seasonal hydrogen storage with water electrolyser hydrogen compressor storage tank and a fuel cell studying the role of such a seasonal household storage in the upcoming decades is not available. This study aims to close this research gap via the improved LUT-PROSUME model which models a fully micro sector coupled residential photovoltaic prosumer system with linear optimisation for 145 regions globally. The modelling of the cost development of hydrogen storage components allows for the simulation of a residential system from 2020 until 2050 in 5-year steps in hourly resolution. The systems are cost-optimised for either on– or off-grid operation in eight scenarios including battery electric vehicles which can act as an additional vehicle-to-home electricity storage for the system. Results show that implementation of seasonal hydrogen systems only occurs in least cost solutions in high latitude countries when the system is forced to run in off-grid mode. In general a solar photovoltaic plus battery system including technologies that can cover the heat demand is the most economic choice and can even achieve lower cost than a full grid supply in off-grid operation for most regions until 2050. Additional parameters including the self-consumption ratio the demand cover ratio and the heat cover ratio can therefore not be improved by seasonal storage systems if economics is the main deciding factor for a respective system. Further research opportunities and possible limitations of the system are then identified.
Renewable Hydrogen Production: A Techno-economic Comparison of Photoelectrochemical Cells and Photovoltaic-electrolysis
Aug 2020
Publication
The present paper reports a techno-economic analysis of two solar assisted hydrogen production technologies: a photoelectrochemical (PEC) system and its major competitor a photovoltaic system connected to a conventional water electrolyzer (PV-E system). A comparison between these two types was performed to identify the more promising technology based on the levelized cost of hydrogen (LCOH). The technical evaluation was carried out by considering proven designs and materials for the PV-E system and a conceptually design for the PEC system extrapolated to future commercial scale. The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2 with a solar to hydrogen efficiency of 10.9%. For the PEC system with a similar efficiency of 10% the LCOH was calculated to be much higher namely 8.43 $/kgH2. A sensitivity analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This implies that much effort would be needed for this technology to become competitive on the market. Therefore we conclude that the potential techno-economic benefits that PEC systems offer over PV-E are uncertain and even in the best case limited. While research into photoelectrochemical cells remains of interest it presents a poor case for dedicated investment in the technology’s development and scale-up.
Future Energy Scenarios 2018
Jul 2018
Publication
Welcome to our Future Energy Scenarios. These scenarios which stimulate debate and help inform the decisions that will shape our energy future have never been more important – especially when you consider the extent to which the energy landscape is being transformed.
Decarbonization in Ammonia Production, New Technological Methods in Industrial Scale Ammonia Production and Critical Evaluations
Oct 2021
Publication
With the synthesis of ammonia with chemical methods global carbon emission is the biggest threat to global warming. However the dependence of the agricultural industry on ammonia production brings with it various research studies in order to minimize the carbon emission that occurs with the ammonia synthesis process. In order to completely eliminate the carbon emissions from ammonia production both the hydrogen and the energy needed for the operation of the process must be obtained from renewable sources. Thus hydrogen can be produced commercially in a variety of ways. Many processes are discussed to accompany the Haber Bosch process in ammonia production as potential competitors. In addition to parameters such as temperature and pressure various plasma catalysts are being studied to accelerate the ammonia production reaction. In this study various alternative processes for the capture storage and complete removal of carbon gas released during the current ammonia production are evaluated and the current conditions related to the applicability of these processes are discussed. In addition it has been discussed under which conditions it is possible to produce larger capacities as needed in the processes studied in order to reduce carbon gas emissions during ammonia production in order to provide raw material source for fertilizer production and energy sector. However if the hydrogen gas required for ammonia production is produced using a solid oxide electrolysis cell the reduction in the energy requirement of the process and in this case the reduction of energy costs shows that it will play an important role in determining the method to be used for ammonia production. In addition it is predicted that working at lower temperature (<400 °C) and pressure (<10 bar) values in existing ammonia production technologies despite increasing possible energy costs will significantly reduce process operating costs.
Water Consumption from Electrolytic Hydrogen in a Carbon-neutral US Energy System
Feb 2023
Publication
Hydrogen is an energy carrier with potential applications in decarbonizing difficult-to-electrify energy and industrial systems. The environmental profile of hydrogen varies substantially with its inputs. Water consumption is a particular issue of interest as decisions are made about capital and other investments that will affect the scale and scope of hydrogen use. This study focuses on electrolytic hydrogen due to its path to greenhouse gas neutrality and irreducible water demand (though other pathways might be more water intensive). Specifically it evaluates life cycle consumptive freshwater intensity of electrolytic hydrogen in the United States at volumes associated with 12 scenarios for a deeply decarbonized 2050 US energy system from two modeling efforts for which both electricity fuel mix and electrolytic hydrogen production were projected (America’s Zero Carbon Action Plan and Net Zero America) in addition to volumes for a stylized energy storage project (500 MW hydrogen-fired turbine). Freshwater requirements for hydrogen could be large. Under a central estimate for 2050 US electrolytic hydrogen production electrolytic freshwater demand for process and feedstock inputs alone (i.e. excluding water for electricity) would be about 7.5% of total 2014 US freshwater consumption for energy (1 billion cubic meters/year 109 m3 /y; [0.2% 15%] across scenarios for 2050 electrolytic hydrogen production of [0.3 18] exajoules EJ). Including water associated with production of input electricity doubles this central estimate to 15% (2 × 109 m3 /y; [1% 23%] across scenarios). Turbines using electrolytic hydrogen are estimated to be about as freshwater intensive as a coal or nuclear plant assuming decarbonized low-water electricity inputs. Although a decarbonized energy system is projected to require less water for resource capture and electricity conversion than the current fossil-dominated energy system additional conversion processes supporting decarbonization like electrolysis could offset water savings.
No more items...