Renewable Hydrogen Production: A Techno-economic Comparison of Photoelectrochemical Cells and Photovoltaic-electrolysis
Abstract
The present paper reports a techno-economic analysis of two solar assisted hydrogen production technologies: a photoelectrochemical (PEC) system and its major competitor, a photovoltaic system connected to a conventional water electrolyzer (PV-E system). A comparison between these two types was performed to identify the more promising technology based on the levelized cost of hydrogen (LCOH). The technical evaluation was carried out by considering proven designs and materials for the PV-E system, and a conceptually design for the PEC system extrapolated to future, commercial scale. The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2, with a solar to hydrogen efficiency of 10.9%. For the PEC system, with a similar efficiency of 10%, the LCOH was calculated to be much higher, namely 8.43 $/kgH2. A sensitivity analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This implies that much effort would be needed for this technology to become competitive on the market. Therefore we conclude that the potential techno-economic benefits that PEC systems offer over PV-E are uncertain, and even in the best case, limited. While research into photoelectrochemical cells remains of interest, it presents a poor case for dedicated investment in the technology’s development and scale-up.