- Home
- A-Z Publications
- Publications
Publications
Energy Performance Assessment of a Solar-driven Thermochemical Cycle Device for Green Hydrogen Production
Sep 2023
Publication
This paper presents a novel dynamic simulation model for assessing the energy performance of solar-driven systems employed in green hydrogen production. The system consists of a parabolic dish collector that focuses solar radiation on two cerium-based thermochemical reactors. The model is based on a transient finitedifference method to simulate the thermal behaviour of the system and it integrates a theoretical analysis of materials and operating principles. Different empirical data were considered for experimentally validating it: a good agreement between experimental and simulated results was obtained for the temperatures calculated inside the thermochemical reactor (R2 = 0.99 MAPE = 6.3%) and the hourly flow rates of hydrogen oxygen and carbon monoxide (R2 = 0.96 MAPE = 10%) inside the thermochemical reactor. The model was implemented in a MatLab tool for the system dynamic analysis under different boundary conditions. Subsequently to explore the capability of this approach the developed tool was used for analysing the examined device operating in twelve different weather zones. The obtained results comprise heat maps of specific crucial instants and hourly dynamic trends showing redox reaction cycles occurring into the thermochemical reactors. The yearly hydrogen production ranges from 1.19 m3 /y to 1.64 m3 /y according to the hourly incident solar radiations outdoor air temperatures and wind speeds. New graphic tools for rapid feasibility studies are presented. The developed tools and the obtained results can be useful to the basic design of this technology and for the multi-objective optimization of its layout and main design/operating parameters.
Parametric Study and Optimization of Hydrogen Production Systems Based on Solar/Wind Hybrid Renewable Energies: A Case Study in Kuqa, China
Jan 2024
Publication
Based on the concept of sustainable development to promote the development and application of renewable energy and enhance the capacity of renewable energy consumption this paper studies the design and optimization of renewable energy hydrogen production systems. For this paper six different scenarios for grid-connected and off-grid renewable energy hydrogen production systems were designed and analyzed economically and technically and the optimal grid-connected and off-grid systems were selected. Subsequently the optimal system solution was optimized by analyzing the impact of the load data and component capacity on the grid dependency of the grid-connected hydrogen production system and the excess power rate of the off-grid hydrogen production system. Based on the simulation results the most matched load data and component capacity of different systems after optimization were determined. The grid-supplied power of the optimized grid-connected hydrogen production system decreased by 3347 kWh and the excess power rate of the off-grid hydrogen production system decreased from 38.6% to 10.3% resulting in a significant improvement in the technical and economic performance of the system.
Simulations of Hydrogen Dispersion from Fuel Cell Vehicles' Leakages Inside Full-scale Tunnel
Sep 2023
Publication
In this work real scale experiments involving hydrogen dispersion inside a road tunnel have been modelled using the Computational Fluid Dynamics (CFD) methodology. The aim is to assess the performance of the ADREA-HF CFD tool against full-scale tunnel dispersion data resulting from high-pressure hydrogen leakage through Thermal Pressure Relief Device (TPRD) of a vehicle. The assessment was performed with the help of experiments conducted by the French Alternative Energies and Atomic Energy Commission (CEA) in a real inclined tunnel in France. In the experiments helium as hydrogen surrogate has been released from 200 bar storage pressure. Several tests were carried out examining different TPRD sizes and release directions (upwards and downwards). For the CFD evaluation two tests were considered: one with downwards and one with upwards release both through a TPRD with a diameter of 2 mm. The comparison between the CFD results and the experiments shows the good predictive capabilities of the ADREA-HF code that can be used as a safety tool in hydrogen dispersion studies. The comparison reveals some of the strengths and weaknesses of both the CFD and the experiments. It is made clear that CFD can contribute to the design of the experiments and to the interpretation of the experimental results.
Economic Assessment of Clean Hydrogen Production from Fossil Fuels in the Intermountain-west Region, USA
Jan 2024
Publication
The transition from fossil fuels to carbon-neutral energy sources is necessary to reduce greenhouse gas (GHG) emissions and combat climate change. Hydrogen (H2) provides a promising path to harness fossil fuels to reduce emissions in sectors such as transportation. However regional economic analyses of various H2 production techniques are still lacking. We selected a well-known fossil fuel-exporting region the USA’s Intermountain-West (I-WEST) to analyze the carbon intensity of H2 production and demonstrate regional tradeoffs. Currently 78 % of global H2 production comes from natural gas and coal. Therefore we considered steam methane reforming (SMR) surface coal gasification (SCG) and underground coal gasification (UCG) as H2 production methods in this work. We developed the cost estimation frameworks of SMR SCG and UCG with and without carbon capture utilization and sequestration (CCUS). In addition we identified optimal sites for H2 hubs by considering the proximity to energy sources energy markets storage sites and CO2 sequestration sites. We included new production tax credits (PTCs) in the cost estimation to quantify the economic benefit of CCUS. Our results suggest that the UCG has the lowest levelized cost of H2 production due to the elimination of coal production cost. H2 production using the SMR process with 99 % carbon capture is profitable when the PTCs are considered. We also analyzed carbon utilization opportunities where CO2 conversion to formic acid is a promising profitable option. This work quantifies the potential of H2 production from fossil fuels in the I-WEST region a key parameter for designing energy transition pathways.
Energy Management of Hydrogen Hybrid Electric Vehicles - A Potential Analysis
Jan 2024
Publication
The hydrogen combustion engine (H2 ICE) is known to be able to burn H2 producing no CO2 emissions and extremely low engine-out NOeo emissions. In this work the potential to reduce the NOeo emissions through the implementation of electric hybridization of an H2 ICE-equipped passenger car (H2 -HEV) combined with a dedicated energy management system (EMS) is discussed. Achieving a low H2 consumption and low NOeo emissions are conflicting objectives the trade-off of which depends on the EMS and can be represented as a Pareto front. The dynamic programming algorithm is used to calculate the Pareto-optimal EMS calibrations for various driving missions. Through the utilization of a dedicated energy management calibration H2 -HEVs exhibit the potential to decrease the NOeo x emissions by more than 90% while decreasing the H2 consumption by over 16% compared to a comparable non-hybridized H2 -vehicle. The present paper represents the initial potential analysis suggesting that H2 -HEVs are a viable option towards a CO2 -free mobility with extremely low NOeo emissions.
A Review of Liquid Hydrogen Aircraft and Propulsion Technologies
Jan 2024
Publication
Sustainable aviation is a key part of achieving Net Zero by 2050 and is arguably one of the most challenging sectors to decarbonise. Hydrogen has gained unprecedented attention as a future fuel for aviation for use within fuel cell or hydrogen gas turbine propulsion systems. This paper presents a survey of the literature and industrial projects on hydrogen aircraft and associated enabling technologies. The current and predicted technology capabilities are analysed to identify important trends and to assess the feasibility of hydrogen propulsion. Several key enabling technologies are discussed in detail and gaps in knowledge are identified. It is evident that hydrogen propelled aircraft are technologically viable by 2050. However convergence of a number of critical factors is required namely: the extent of industrial collaboration the understanding of environmental science and contrails green hydrogen production and its availability at the point of use and the safety and certification of the aircraft and supporting infrastructure.
Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas
Oct 2023
Publication
Beyond its role as an energy vector a growing number of natural hydrogen sources and reservoirs are being discovered all over the globe which could represent a clean energy source. Although the hydrogen amounts in reservoirs are uncertain they could be vast and they could help decarbonize energy-intensive economic sectors and facilitate the energy transition. Natural hydrogen is mainly produced through a geochemical process known as serpentinization which involves the reaction of water with low-silica ferrous minerals. In favorable locations the hydrogen produced can become trapped by impermeable rocks on its way to the atmosphere forming a reservoir. The safe exploitation of numerous natural hydrogen reservoirs seems feasible with current technology and several demonstration plants are being commissioned. Natural hydrogen may show variable composition and require custom separation purification storage and distribution facilities depending on the location and intended use. By investing in research in the mid-term more hydrogen sources could become exploitable and geochemical processes could be artificially stimulated in new locations. In the long term it may be possible to leverage or engineer the interplay between microorganisms and geological substrates to obtain hydrogen and other chemicals in a sustainable manner.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
Review of the Production of Turquoise Hydrogen from Methane Catalytic Decomposition: Optimising Reactors for Sustainable Hydrogen Production
May 2024
Publication
Hydrogen is gaining prominence in global efforts to combat greenhouse gas emissions and climate change. While steam methane reforming remains the predominant method of hydrogen production alternative approaches such as water electrolysis and methane cracking are gaining attention. The bridging technology – methane cracking – has piqued scientific interest with its lower energy requirement (74.8 kJ/mol compared to steam methane reforming 206.278 kJ/mol) and valuable by-product of filamentous carbon. Nevertheless challenges including coke formation and catalyst deactivation persist. This review focuses on two main reactor types for catalytic methane decomposition – fixed-bed and fluidised bed. Fixed-bed reactors excel in experimental studies due to their operational simplicity and catalyst characterisation capabilities. In contrast fluidised-bed reactors are more suited for industrial applications where efforts are focused on optimising the temperature gas flow rate and particle characterisation. Furthermore investigations into various fluidised bed regimes aim to identify the most suitable for potential industrial deployment providing insights into the sustainable future of hydrogen production. While the bubbling regime shows promise for upscaling fluidised bed reactors experimental studies on turbulent fluidised-bed reactors especially in achieving high hydrogen yield from methane cracking are limited highlighting the technology’s current status not yet reaching commercialisation.
Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery
Sep 2023
Publication
Motivated by the growing importance of fuel cell systems as the basis for distributed energy generation systems this work considers a micro-combined heat and power (mCHP) generation system based on a fuel cell integrated to satisfy the (power and thermal) energy demands of a residential application. The main objective of this work is to compare the performance of several CHP configurations with a conventional alternative in terms of primary energy consumption greenhouse gas (GHG) emissions and economic viability. For that a simulation tool has been developed to easily estimate the electrical and thermal energy generated by a hydrogen fuel cell and all associated results related to the hydrogen production alternatives: excess or shortfall of electrical and thermal energy CO2 emission factor overall performance operating costs payback period etc. A feasibility study of different configuration possibilities of the micro-CHP generation system has been carried out considering different heat-to-power ratios (HPRs) in the possible demands and analyzing primary energy savings CO2 emissions savings and operating costs. An extensive parametric study has been performed to analyze the effect of the fuel cell’s electric power and number of annual operation hours as parameters. Finally a study of the influence of the configuration parameters on the final results has been carried out. Results show that in general configurations using hydrogen produced from natural gas save more primary energy than configurations with hydrogen production from electricity. Furthermore it is concluded that the best operating points are those in which the generation system and the demand have similar HPR. It has also been estimated that a reduction in renewable hydrogen price is necessary to make these systems profitable. Finally it has been determined that the most influential parameters on the results are the fuel cell electrical efficiencies hydrogen production efficiency and hydrogen cost.
Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study
Jan 2023
Publication
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from the FLOW-3D software simulation and the experimental data from the special test in the ocean the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
Impact of Hydrogen Injection on Thermophysical Properties and Measurement Reliability in Natural Gas Networks
Oct 2021
Publication
In the context of the European decarbonization strategy hydrogen is a key energy carrier in the medium to long term. The main advantages deriving from a greater penetration of hydrogen into the energy mix consist in its intrinsic characteristics of flexibility and integrability with alternative technologies for the production and consumption of energy. In particular hydrogen allows to: i) decarbonise end uses since it is a zero-emission energy carrier and can be produced with processes characterized by the absence of greenhouse gases emissions (e.g. water electrolysis); ii) help to balancing electricity grid supporting the integration of non-programmable renewable energy sources; iii) exploit the natural gas transmission and distribution networks as storage systems in overproduction periods. However the hydrogen injection into the natural gas infrastructures directly influences thermophysical properties of the gas mixture itself such as density calorific value Wobbe index speed of sound etc [1]. The change of the thermophysical properties of gaseous mixture in turn directly affects the end use service in terms of efficiency and safety as well as the metrological performance and reliability of the volume and gas quality measurement systems. In this paper the authors present the results of a study about the impact of hydrogen injection on the properties of the natural gas mixture. In detail the changes of the thermodynamic properties of the gaseous mixtures with different hydrogen content have been analysed. Moreover the theoretical effects of the aforementioned variations on the accuracy of the compressibility factor measurement have been also assessed.
Visualisation and Quantification of Wind-induced Variability in Hydrogen Clouds Following Releases of Liquid Hydrogen
Sep 2023
Publication
Well characterized experimental data for consequence model validation is important in progressing the use of liquid hydrogen as an energy carrier. In 2019 the Health and Safety Executive (HSE) undertook a series of liquid hydrogen dispersion and combustion experiments as a part of the Pre-normative Research for Safe Use of Liquid Hydrogen (PRESLHY) project. In partnership between the National Renewable Energy Laboratory (NREL) and HSE time and spatially varying hydrogen concentration measurements were made in 25 dispersion experiments and 23 congested ignition experiments associated with PRESLHY WP3 and WP5 respectively. These measurements were undertaken using the hydrogen wide area monitoring system developed by NREL. During the 23 congested ignition experiments high variability was observed in the measured explosion severity during experiments with similar initial conditions. This led to the conclusion that wind including localized gusts had a large influence on the dispersion of the hydrogen and therefore the quantity of hydrogen that was present in the congested region of the explosions. Using the hydrogen concentration measurements taken immediately prior to ignition the hydrogen clouds were visualized in an attempt to rationalize the variability in overpressure between the tests. Gaussian process regression was applied to quantify the variability of the measured hydrogen concentrations. This analysis could also be used to guide modifications in experimental designs for future research on hydrogen combustion behavior.
Assessing Sizing Optimality of OFF-GRID AC-Linked Solar PV-PEM Systems for Hydrogen Production
Jul 2023
Publication
Herein a novel methodology to perform optimal sizing of AC-linked solar PV-PEM systems is proposed. The novelty of this work is the proposition of the solar plant to electrolyzer capacity ratio (AC/AC ratio) as optimization variable. The impact of this AC/AC ratio on the Levelized Cost of Hydrogen (LCOH) and the deviation of the solar DC/AC ratio when optimized specifically for hydrogen production are quantified. Case studies covering a Global Horizontal Irradiation (GHI) range of 1400e2600 kWh/m2 -year are assessed. The obtained LCOHs range between 5.9 and 11.3 USD/kgH2 depending on sizing and location. The AC/AC ratio is found to strongly affect cost production and LCOH optimality while the optimal solar DC/AC ratio varies up to 54% when optimized to minimize the cost of hydrogen instead of the cost of energy only. Larger oversizing is required for low GHI locations; however H2 production is more sensitive to sizing ratios for high GHI locations.
Blue Hydrogen and Industrial Base Products: The Future of Fossil Fuel Exporters in a Net-zero World
May 2022
Publication
Is there a place for today’s fossil fuel exporters in a low-carbon future? This study explores trade channels between energy exporters and importers using a novel electricity-hydrogen-steel energy systems model calibrated to Norway a major natural gas producer and Germany a major energy consumer. Under tight emission constraints Norway can supply Germany with electricity (blue) hydrogen or natural gas with re-import of captured CO2. Alternatively it can use hydrogen to produce steel through direct reduction and supply it to the world market an export route not available to other energy carriers due to high transport costs. Although results show that natural gas imports with CO2 capture in Germany is the least-cost solution avoiding local CO2 handling via imports of blue hydrogen (direct or embodied in steel) involves only moderately higher costs. A robust hydrogen demand would allow Norway to profitably export all its natural gas production as blue hydrogen. However diversification into local steel production as one example of easy-to-export industrial base products offers an effective hedge against the possibility of lower European blue hydrogen demand. Looking beyond Europe the findings of this study are also relevant for the world’s largest energy exporters (e.g. OPEC+) and importers (e.g. developing Asia). Thus it is recommended that large hydrocarbon exporters consider a strategic energy export transition to a diversified mix of blue hydrogen and climate-neutral industrial base products.
Capacity Configuration Optimization for Green Hydrogen Generation by Solar-wind Hybrid Power Based on Comprehensive Performance Criteria
Aug 2023
Publication
Green hydrogen generation driven by solar-wind hybrid power is a key strategy for obtaining the low-carbon energy while by considering the fluctuation natures of solar-wind energy resource the system capacity configuration of power generation hydrogen production and essential storage devices need to be comprehensively optimized. In this work a solar-wind hybrid green hydrogen production system is developed by combining the hydrogen storage equipment with the power grid the coordinated operation strategy of solar-wind hybrid hydrogen production is proposed furthermore the NSGA-III algorithm is used to optimize the system capacity configuration with the comprehensive performance criteria of economy environment and energy efficiency. Through the implemented case study with the hydrogen production capacity of 20000 tons/year the abandoned energy power rate will be reduced to 3.32% with the electrolytic cell average load factor of 64.77% and the system achieves the remarkable carbon emission reduction. In addition with the advantage of connect to the power grid the generated surplus solar/wind power can be readily transmitted with addition income when the sale price of produced hydrogen is suggested to 27.80 CNY/kgH2 the internal rate of return of the system reaches to 8% which present the reasonable economic potential. The research provides technical and methodological suggestions and guidance for the development of solar-wind hybrid hydrogen production schemes with favorable comprehensive performance.
Numerical Research on Leakage Characteristics of Pure Hydrogen/Hydrogen-Blended Natural Gas in Medium- and Low-Pressure Buried Pipelines
Jun 2024
Publication
To investigate the leakage characteristics of pure hydrogen and hydrogen-blended natural gas in medium- and low-pressure buried pipelines this study establishes a three-dimensional leakage model based on Computational Fluid Dynamics (CFD). The leakage characteristics in terms of pressure velocity and concentration distribution are obtained and the effects of operational parameters ground hardening degree and leakage parameters on hydrogen diffusion characteristics are analyzed. The results show that the first dangerous time (FDT) for hydrogen leakage is substantially shorter than for natural gas emphasizing the need for timely leak detection and response. Increasing the hydrogen blending ratio accelerates the diffusion process and decreases the FDT posing greater risks for pipeline safety. The influence of soil hardening on gas diffusion is also examined revealing that harder soils can restrict gas dispersion thereby increasing localized concentrations. Additionally the relationship between gas leakage time and distance is determined aiding in the optimal placement of gas sensors and prediction of leakage timing. To ensure the safe operation of hydrogen-blended natural gas pipelines practical recommendations include optimizing pipeline operating conditions improving leak detection systems increasing pipeline burial depth and selecting materials with higher resistance to hydrogen embrittlement. These measures can mitigate risks associated with hydrogen leakage and enhance the overall safety of the pipeline infrastructure.
The Role of Negative Emissions Technologies in the UK's Net-zero Strategy
Jun 2024
Publication
The role of negative emissions technologies (NETs) in climate change mitigation remains contentious. Although numerous studies indicate significant carbon dioxide removal (CDR) requirements for Paris Agreement mitigation goals to be achieved others point out challenges and risks associated with high CDR strategies. Using a multiscale modeling approach we explore NETs’ potential for a single country the United Kingdom (UK). Here we report that the UK has cost-effective potential to remove 79 MtCO2 per year by 2050 rising to 126–134 MtCO2 per year with well-integrated NETs in industrial clusters. Results highlight that biomass gasification for hydrogen generation with CCS is emerging as a key NET despite biomass availability being a limiting factor. Moreover solid DACCS systems utilizing industrial waste heat integration offer a solution to offsetting increases in demand from transportation and industrial sectors. These results emphasize the importance of a multiscale whole-systems assessment for integrating NETs into industrial strategies.
Impact of Grid Gas Requirements on Hydrogen Blending Levels
Oct 2021
Publication
The aim of the article is to determine what amount of hydrogen in %mol can be transferred/stored in the Estonian Latvian and Lithuanian grid gas networks based on the limitations of chemical and physical requirements technical requirements of the gas network and quality requirements. The main characteristics for the analysis of mixtures of hydrogen and natural gas are the Wobbe Index relative density methane number and calorific value. The calculation of the effects of hydrogen blending on the above main characteristics of a real grid gas is based on the principles described in ISO 6976:2016 and the distribution of the grid gas mole fraction components from the grid gas quality reports. The Wärtsila methane number calculator was used to illustrate the effects of hydrogen blending on the methane number of the grid gas. The calculation results show that the maximum hydrogen content in the grid gas (hydrogen and natural gas mix) depending on the grid gas quality parameters (methane number gross heat of combustion specific gravity and the Wobbe Index) is in the range of 5–23 %mol H2. The minimum hydrogen content (5 %mol H2) is limited by specific gravity (>0.55). The next limitation is at 12 %mol H2 and is related to the gross heat of combustion (>9.69 kWh/m3). It is advisable to explore the readiness of gas grids and consumers in Estonia Latvia and Lithuania before switching to higher hydrogen blend levels. If the applicability and safety of hydrogen blends above 5 %mol is approved then it is necessary to analyse the possible reduction of the minimum requirements for the quality of the grid gas and evaluate the associated risks (primarily related to specific gravity).
Profitability of Hydrogen-Based Microgrids: A Novel Economic Analysis in Terms of Electricity Price and Equipment Costs
Oct 2023
Publication
The current need to reduce carbon emissions makes hydrogen use essential for selfconsumption in microgrids. To make a profitability analysis of a microgrid the influence of equipment costs and the electricity price must be known. This paper studies the cost-effective electricity price (EUR/kWh) for a microgrid located at ‘’La Rábida Campus” (University of Huelva south of Spain) for two different energy-management systems (EMSs): hydrogen-priority strategy and batterypriority strategy. The profitability analysis is based on one hand on the hydrogen-systems’ cost reduction (%) and on the other hand considering renewable energy sources (RESs) and energy storage systems (ESSs) on cost reduction (%). Due to technological advances microgrid-element costs are expected to decrease over time; therefore future profitable electricity prices will be even lower. Results show a cost-effective electricity price ranging from 0.61 EUR/kWh to 0.16 EUR/kWh for hydrogen-priority EMSs and from 0.4 EUR/kWh to 0.17 EUR/kWh for battery-priority EMSs (0 and 100% hydrogen-system cost reduction respectively). These figures still decrease sharply if RES and ESS cost reductions are considered. In the current scenario of uncertainty in electricity prices the microgrid studied may become economically competitive in the near future
No more items...