Parametric Study and Optimization of Hydrogen Production Systems Based on Solar/Wind Hybrid Renewable Energies: A Case Study in Kuqa, China
Abstract
Based on the concept of sustainable development, to promote the development and application of renewable energy and enhance the capacity of renewable energy consumption, this paper studies the design and optimization of renewable energy hydrogen production systems. For this paper, six different scenarios for grid-connected and off-grid renewable energy hydrogen production systems were designed and analyzed economically and technically, and the optimal grid-connected and off-grid systems were selected. Subsequently, the optimal system solution was optimized by analyzing the impact of the load data and component capacity on the grid dependency of the grid-connected hydrogen production system and the excess power rate of the off-grid hydrogen production system. Based on the simulation results, the most matched load data and component capacity of different systems after optimization were determined. The grid-supplied power of the optimized grid-connected hydrogen production system decreased by 3347 kWh, and the excess power rate of the off-grid hydrogen production system decreased from 38.6% to 10.3%, resulting in a significant improvement in the technical and economic performance of the system.