- Home
- A-Z Publications
- Publications
Publications
Multi-agent Based Optimal Sizing of Hybrid Renewable Energy Systems and their Significance in Sustainable Energy Development
Nov 2024
Publication
This paper delves into the enhancement and optimization of on-grid renewable energy systems using a variety of renewable energy sources with a particular focus on large-scale applications designed to meet the energy demand of a certain load. As global concerns surrounding climate change continue to mount the urgency of replacing traditional fossil fuel-based power generation with cleaner more cost-effective and dependable alternatives becomes increasingly apparent. In this context a comprehensive investigation is conducted on grid connected hybrid energy system that combines photovoltaic wind and fuel cell technologies. The study employs three state-of-the-art optimization algorithms namely Walrus Optimization Algorithm (WaOA) Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) to determine the optimal system size and energy management strategies all aimed at minimizing the cost of energy (COE) for grid-based electricity. The results of the optimization process are compared with the results obtained from the utilization of the Particle swarm optimization (PSO) and Grey Wolf optimizer (GWO). The findings of this study underscore both the practical feasibility and the critical importance of adopting on-grid renewable energy systems to decrease the dependence on traditional energy sources within the grid. The proposed WaOA succeeded to reach the optimal solution of the optimal design process with a COE of 0.51758129611 $//kwh while keeping the loss of power supply probability (LPSP) the reliability index at 7.303681e-19. The practical recommendations and forwardlooking insights provided within this research hold the potential to foster sustainable development and effectively mitigate carbon emissions in the future.
Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors
Feb 2024
Publication
This perspective article delves into the critical role of hydrogen as a sustainable energy carrier in the context of the ongoing global energy transition. Hydrogen with its potential to decarbonize various sectors has emerged as a key player in achieving decarbonization and energy sustainability goals. This article provides an overview of the current state of hydrogen technology its production methods and its applications across diverse industries. By exploring the challenges and opportunities associated with hydrogen integration we aim to shed light on the pathways toward achieving a sustainable hydrogen economy. Additionally the article underscores the need for collaborative efforts among policymakers industries and researchers to overcome existing hurdles and unlock the full potential of hydrogen in the transition to a low-carbon future. Through a balanced analysis of the present landscape and future prospects this perspective article aims to contribute valuable insights to the discourse surrounding hydrogen’s role in the global energy transition.
Exploring Hydrogen–Diesel Dual Fuel Combustion in a Light-Duty Engine: A Numerical Investigation
Nov 2024
Publication
Dual fuel combustion has gained attention as a cost-effective solution for reducing the pollutant emissions of internal combustion engines. The typical approach is combining a conventional high-reactivity fossil fuel (diesel fuel) with a sustainable low-reactivity fuel such as bio-methane ethanol or green hydrogen. The last one is particularly interesting as in theory it produces only water and NOx when it burns. However integrating hydrogen into stock diesel engines is far from trivial due to a number of theoretical and practical challenges mainly related to the control of combustion at different loads and speeds. The use of 3D-CFD simulation supported by experimental data appears to be the most effective way to address these issues. This study investigates the hydrogen-diesel dual fuel concept implemented with minimum modifications in a light-duty diesel engine (2.8 L 4-cylinder direct injection with common rail) considering two operating points representing typical partial and full load conditions for a light commercial vehicle or an industrial engine. The numerical analysis explores the effects of progressively replacing diesel fuel with hydrogen up to 80% of the total energy input. The goal is to assess how this substitution affects engine performance and combustion characteristics. The results show that a moderate hydrogen substitution improves brake thermal efficiency while higher substitution rates present quite a severe challenge. To address these issues the diesel fuel injection strategy is optimized under dual fuel operation. The research findings are promising but they also indicate that further investigations are needed at high hydrogen substitution rates in order to exploit the potential of the concept.
H2 URESONIC: Design of a Solar-Hydrogen University Renewable Energy System for a New and Innovative Campus
Feb 2024
Publication
The necessity to move to sustainable energy solutions has inspired an investigation of innovative technologies for satisfying educational institutions’ sustainable energy needs. The possibility of a solar-hydrogen storage system and its integration into university energy management is investigated in this article. The study opens by providing context noting the growing relevance of renewable energy in universities as well as the necessity for effective energy storage systems. The goal is to delve into solar-hydrogen technology outlining its components operating mechanism and benefits over typical storage systems. The chapter on Integration Design examines current university energy infrastructure identifies problems and provides ways for integrating solar-hydrogen systems seamlessly. This integration relies heavily on technological and economic considerations such as a cost-benefit analysis and scalability studies. Case studies include real-world examples performance measurements and significant insights learned from successful implementations. The chapter Future Prospects investigates new trends in solar-hydrogen technology as well as the impact of government legislation providing a forward-looking viewpoint for colleges considering adoption. The report concludes with a summary of significant findings emphasizing the benefits of solar-hydrogen integration and making recommendations for future implementations. The limitation of this research is that it only focuses on design and simulation as a phase of preliminary study.
Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future
Aug 2024
Publication
In recent years global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind solar photovoltaics (PVs) hydro and geothermal. Concurrently green hydrogen produced via water electrolysis using these RESs has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress the hydrogen economy remains nascent with ongoing developments and persistent uncertainties in economic technological and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain encompassing production transportation logistics storage methodologies and end-use applications while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.
The Effects of Hydrogen Research and Innovation on International Hydrogen Trade
Feb 2024
Publication
Climate change and the pressure to decarbonize as well as energy security concerns have drawn the attention of policymakers and the industry to hydrogen energy. To advance the hydrogen economy at a global scale research and innovation progress is of significant importance among others. However previous studies have provided only limited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead they postulate rather than empirically support this relationship. Therefore this study analyzes the effects of research and innovation measured by scientific publications patents and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth along with infrastructure support and harmonized standards and regulations.
A Critical Analysis of Morocco’s Green Hydrogen Roadmap: A Modelling Approach to Assess Country Readiness from the Energy Trilemma Perspective
Apr 2024
Publication
Morocco despite its heavy reliance on imported fossil fuels which made up 68% of electricity generation in 2020 has recognised its significant renewable energy potential. The Nationally Determined Contribution (NDC) commitment is to reduce emissions by 45.5% from baseline levels with international assistance and abstain from constructing new coal plants. Moreover the Green Hydrogen Roadmap aims to export 10 TWh of green hydrogen by 2030 as well as use it for local electricity storage. This paper critically analyses this Roadmap and Morocco’s readiness to reach its ambitious targets focusing specifically on an energy trilemma perspective and using OSeMOSYS (Open-Source energy Modelling System) for energy modelling. The results reveal that the NDC scenario is only marginally more expensive than the least-cost scenario at around 1.3% (approximately USD 375 million) and facilitates a 23.32% emission reduction by 2050. An important note is the continued reliance on existing coal power plants across all scenarios which challenges both energy security and emissions. The assessment of the Green Hydrogen Scenarios highlights that it could be too costly for the Moroccan government to fund the Green Hydrogen Roadmap at this scale which leads to increased imports of polluting fossil fuels for cost reduction. In fact the emission levels are 39% higher in the green hydrogen exports scenario than in the least-cost scenario. Given these findings it is recommended that the Green Hydrogen Roadmap be re-evaluated with a suggestion for a postponement and reduction in scope.
Profitability of Hydrogen Production: Assessment of Investments in Electrolyser Under Various Market Circumstances
Aug 2024
Publication
Although hydrogen is increasingly seen as a crucial energy carrier in future zero-carbon energy system a profitable exploitation of electrolysers requires still high amounts of subsidies. To analyze the profitability of electrolysers attention has to be paid not only to the costs but also to the interaction between electricity and hydrogen markets. Using a model of internationally integrated electricity and hydrogen markets this paper analyses the profitability of electrolysers plants in various future market circumstances. We find that in particular the future supply of renewable electricity the demand for electricity as well as the prices of natural gas and carbon strongly affect the profitability of electrolysis. In order to make massive investments in electrolysers profitable with significantly lower subsidy requirements the amount of renewable electricity generation needs to grow strongly and the carbon prices should be higher while the demand for electricity should not increase accordingly. This research underscores the critical role of market conditions in shaping the viability of hydrogen electrolysis providing valuable insights for policymakers and stakeholders in the transition to a zero-carbon energy system.
A New Integrated System for Carbon Capture and Clean Hydrogen Production for Sustainable Societal Utilization
Oct 2024
Publication
Hydrogen production and carbon dioxide removal are considered two of the critical pieces to achieve ultimate sustainability target. This study proposes and investigates a new variation of potassium hydroxide thermochemical cycle in order to combine hydrogen production and carbon dioxide removal synergistically. An alkali metal redox thermochemical cycle developed where the potassium hydroxide is considered by using a nonequilibrium reaction. Also the multigeneration options are explored by using two stage steam Rankine cycle multi-effect distillation desalination Li-Br absorption chiller which are integrated with potassium hydroxide thermochemical cycle for hydrogen production carbon capture power generation water desalination and cooling purposes. A comparative assessment under different scenarios is carried out. The energy and exergy efficiencies of the hydrogen production thermochemical cycle are 44.2% and 67.66% when the hydrogen generation reaction is carried out at 180°C and the separation reactor temperature set at 400°C. Among the multigeneration scenarios a trigeneration option of hydrogen power and water indicates the highest energy efficiency as 66.02%.
Geomechanics of Hydrogen Storage in a Depleted Gas Field
Feb 2024
Publication
We perform a simulation study of hydrogen injection in a depleted gas reservoir to assess the geomechanical impact of hydrogen storage relative to other commonly injected gases (methane CO2). A key finding is that the differences in hydrogen density compressibility viscosity and thermal properties compared to the other gases result in significantly less thermal perturbation at reservoir level. The risks of fault reactivation and wellbore fractures due to thermally-induced stress changes are significantly lower when storing hydrogen compared to results observed in CO2 scenarios. This implies that hydrogen injection and production has a much smaller geomechanical footprint with benefits for operational safety. We also find that use of nitrogen cushion gas ensures efficient deliverability and phase separation in the reservoir. However in this study a large fraction of cushion gas was back-produced in each cycle demonstrating the need for further studies of the surface processing requirements and economic implications.
Conceptual Design of an Offshore Hydrogen Platform
Feb 2024
Publication
Offshore green hydrogen emerges as a guiding light in the global pursuit of environmental sustainability and net-zero objectives. The burgeoning expansion of offshore wind power faces significant challenges in grid integration. This avenue towards generating offshore green hydrogen capitalises on its ecological advantages and substantial energy potential to efficiently channel offshore wind power for onshore energy demands. However a substantial research void exists in efficiently integrating offshore wind electricity and green hydrogen. Innovative designs of offshore hydrogen platforms present a promising solution to bridge the gap between offshore wind and hydrogen integration. Surprisingly there is a lack of commercially established offshore platforms dedicated to the hydrogen industry. However the wealth of knowledge from oil and gas platforms contributes valuable insights to hydrogen platform design. Diverging from the conventional decentralised hydrogen units catering to individual turbines this study firstly introduces a pioneering centralised Offshore Green Hydrogen Platform (OGHP) which seamlessly integrates modular production storage and offloading modulars. The modular design of facilitates scalability as wind capacity increases. Through a detailed case study centred around a 100-Megawatt floating wind farm the design process of offshore green hydrogen modulars and its floating sub-structure is elucidated. Stability analysis and hydrodynamic analysis are performed to ensure the safety of the OGHP under the operation conditions. The case study will enhance our understanding OGHP and its modularised components. The conceptual design of modular OGHP offers an alternative solution to ‘‘Power-to-X’’ for offshore renewable energy sector.
SSEXHY Experimental Results on Pressure Dynamics from Head-on Reflections of Hydrogen Flames
Sep 2023
Publication
In the past few years CEA has been fully involved at both experimental and modeling levels in projects related to hydrogen safety in nuclear and chemical industries and has carried out a test program using the experimental bench SSEXHY (Structure Submitted to an EXplosion of HYdrogen) in order to build a database of the deformations of simple structures following an internal hydrogen explosion. Different propagation regimes of explosions were studied varying from detonations to slow deflagrations.<br/>During the experimental campaign it was found that high-speed deflagrations corresponding to relatively poor hydrogen-air mixtures resulted in higher specimen deformation compared to those related to detonations of nearly stoichiometric mixtures. This paper explains this counter-intuitive result from qualitative and quantitative points of view. It is shown that the overpressure and impulse from head-on reflections of hydrogen flames corresponding to poor mixtures of specific concentrations could have very high values at the tube end.
Simulations of Blast Wave and Fireball Occurring due to Rupture oj High-Pressure Hydrogen Tank
Jun 2017
Publication
In the present study pilot simulations of the phenomena of blast wave and fireball generated by the rupture of a high-pressure (35 MPa) hydrogen tank (volume 72 L) due to fire were carried out. The computational fluid dynamics (CFD) model includes the realizable k-ε model for turbulence and the eddy dissipation model coupled with the one-step chemical reaction mechanism for combustion. The simulation results were compared with experimental data on a stand-alone hydrogen tank rupture in a bonfire test. The simulations provided insights into the interaction between the blast wave propagation and combustion process. The simulated blast wave decay is approximately identical to the experimental data concerning pressure at various distances. Fireball is first ignited at the ground level which is considered to be due to stagnation flow conditions. Subsequently the flame propagates toward the interface between hydrogen and air.
A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems
Feb 2024
Publication
Hydrogen energy is regarded as an ideal solution for addressing climate change issues and an indispensable part of future integrated energy systems. The most environmentally friendly hydrogen production method remains water electrolysis where the electrolyzer constructs the physical interface between electrical energy and hydrogen energy. However few articles have reviewed the electrolyzer from the perspective of power supply topology and control. This review is the first to discuss the positioning of the electrolyzer power supply in the future integrated energy system. The electrolyzer is reviewed from the perspective of the electrolysis method the market and the electrical interface modelling reflecting the requirement of the electrolyzer for power supply. Various electrolyzer power supply topologies are studied and reviewed. Although the most widely used topology in the current hydrogen production industry is still single-stage AC/DC the interleaved parallel LLC topology constructed by wideband gap power semiconductors and controlled by the zero-voltage switching algorithm has broad application prospects because of its advantages of high power density high efficiency fault tolerance and low current ripple. Taking into account the development trend of the EL power supply a hierarchical control framework is proposed as it can manage the operation performance of the power supply itself the electrolyzer the hydrogen energy domain and the entire integrated energy system.
Modelling of a "Hydrogen Valley" to Investigate the Impact of a Regional Pipeline for Hydrogen Supply
Jul 2024
Publication
Introduction: The transition towards electrolysis-produced hydrogen in refineries and chemical industries is expected to have a potent impact on the local energy system of which these industries are part. In this study three urban areas with hydrogen-intense industries are studied regarding how the energy system configuration is affected if the expected future hydrogen demand is met in each node individually as compared to forming a “Hydrogen Valley” in which a pipeline can be used to trade hydrogen between the nodes.<br/>Method: A technoeconomic mixed-integer linear optimization model is used to study the investments in and dispatch of the included technologies with an hourly time resolution while minimizing the total system cost. Four cases are investigated based on the availability of offshore wind power and the possibility to invest in a pipeline.<br/>Results: The results show that investments in a pipeline reduces by 4%–7% the total system cost of meeting the demands for electricity heating and hydrogen in the cases investigated. Furthermore investments in a pipeline result in greater utilization of local variable renewable electricity resources as compared to the cases without the possibility to invest in a pipeline.<br/>Discussion: The different characteristics of the local energy systems of the three nodes in local availability of variable renewable electricity grid capacity and available storage options compared to local demands of electricity heating and hydrogen are found to be the driving forces for forming a Hydrogen Valley.
Artificial Intelligence for Hydrogen-Enabled Integrated Energy Systems: A Systematic Review
Aug 2024
Publication
Hydrogen-enabled Integrated Energy Systems (H-IES) stand out as a promising solution with the potential to replace current non-renewable energy systems. However their development faces challenges and has yet to achieve widespread adoption. These main challenges include the complexity of demand and supply balancing dynamic consumer demand and challenges in integrating and utilising hydrogen. Typical energy management strategies within the energy domain rely heavily on accurate models from domain experts or conventional approaches such as simulation and optimisation approaches which cannot be satisfied in the real-world operation of H-IES. Artificial Intelligence (AI) or Advanced Data Analytics (ADA) especially Machine Learning (ML) has the ability to overcome these challenges. ADA is extensively used across several industries however further investigation into the incorporation of ADA and hydrogen for the purpose of enabling H-IES needs to be investigated. This paper presents a systematic literature review to study the research gaps research directions and benefits of ADA as well as the role of hydrogen in H-IES.
Will Hydrogen and Synthetic Fuels Energize our Future? Their Role in Europe's Climate-neutral Energy System and Power System Dynamics
Aug 2024
Publication
This study evaluates the technoeconomic impacts of direct and indirect electrification on the EU's net-zero emissions target by 2050. By linking the JRC-EU-TIMES long-term energy system model with PLEXOS hourly resolution power system model this research offers a detailed analysis of the interactions between electricity hydrogen and synthetic fuel demand production technologies and their effects on the power sector. It highlights the importance of high temporal resolution power system analysis to capture the synergistic effects of these components often overlooked in isolated studies. Results indicate that direct electrification increases significantly and unimpacted by biomass CCS and nuclear energy assumptions. However indirect electrification in the form of hydrogen varies significantly between 1400 and 2200 TWhH2 by 2050. Synthetic fuels are essential for sector coupling making up 6–12% of total energy consumption by 2050 with the power sector supplying most hydrogen and CO2 for their production. Varying levels of indirect electrification impact electrolysers renewable energy and firm capacities. Higher indirect electrification increases electrolyser capacity factors by 8% leading to more renewable energy curtailment but improves system reliability by reducing 11 TWh unserved energy and increasing flexibility options. These insights inform EU energy policies stressing the need for a balanced approach to electrification biomass use and CCS to achieve a sustainable and reliable net-zero energy system by 2050. We also explore limitations and sensitivities.
Experimental Study on the Effect of the Ignition Location on Vented Deflagration of Hydrogen-air Mixtures in Enclosure
Sep 2023
Publication
No countermeasures exist for accidents that might occur in hydrogen-based facilities (leaks fires explosions etc.). In South Korea discussions are underway regarding measures to ensure safety from such accidents such as the construction of underground hydrogen storage tank facilities. However explosion vents with a minimum ventilation area are required in such facilities to minimize damage to buildings and other structures due to accidental explosions. These explosion vents allow the generated overpressure and flames to be safely dispersed outside; however a safe separation distance must be secured to minimize damage to humans. This study aimed to determine the safe separation distance to minimize human damage after analyzing the dispersed overpressure and flame behavior following a vent explosion. Explosion experiments were conducted to investigate the influence of the ignition source location on internal and external overpressure and external flame behavior using a cuboid concrete structure with a volume of 20.33 m3 filled with a hydrogen-air mixture (29.0 vol.%). The impact on overpressure and flame was increased with the increasing distance of the ignition source from the vent. Importantly depending on the ignition location the incident pressure was up to 24.4 times higher while the reflected pressure was 8.7 times higher. Additionally a maximum external overpressure of 30.01 kPa was measured at a distance of 2.4 m from the vent predicting damage to humans at the “Injury” level (1 % fatality probability). Whereas no significant damage would occur at a distance of 7.4 m or more from the vent.
Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production
Feb 2024
Publication
To improve the recovery of waste heat and avoid the problem of abandoning wind and solar energy a multi-energy complementary distributed energy system (MECDES) is proposed integrating waste heat and surplus electricity for hydrogen storage. The system comprises a combined cooling heating and power (CCHP) system with a gas engine (GE) solar and wind power generation and miniaturized natural gas hydrogen production equipment (MNGHPE). In this novel system the GE’s waste heat is recycled as water vapor for hydrogen production in the waste heat boiler while surplus electricity from renewable sources powers the MNGHPE. A mathematical model was developed to simulate hydrogen production in three building types: offices hotels and hospitals. Simulation results demonstrate the system’s ability to store waste heat and surplus electricity as hydrogen thereby providing economic benefit energy savings and carbon reduction. Compared with traditional energy supply methods the integrated system achieves maximum energy savings and carbon emission reduction in office buildings with an annual primary energy reduction rate of 49.42–85.10% and an annual carbon emission reduction rate of 34.88–47.00%. The hydrogen production’s profit rate is approximately 70%. If the produced hydrogen is supplied to building through a hydrogen fuel cell the primary energy reduction rate is further decreased by 2.86–3.04% and the carbon emission reduction rate is further decreased by 12.67–14.26%. This research solves the problem of waste heat and surplus energy in MECDESs by the method of hydrogen storage and system integration. The economic benefits energy savings and carbon reduction effects of different building types and different energy allocation scenarios were compared as well as the profitability of hydrogen production and the factors affecting it. This has a positive technical guidance role for the practical application of MECDESs.
Green Hydrogen Production Plants: A Techno-economic Review
Aug 2024
Publication
Green hydrogen stands as a promising clean energy carrier with potential net-zero greenhouse gas emissions. However different system-level configurations for green hydrogen production yield different levels of efficiency cost and maturity necessitating a comprehensive assessment. This review evaluates the components of hydrogen production plants from technical and economic perspectives. The study examines six renewable energy sources—solar photovoltaics solar thermal wind biomass hydro and geothermal—alongside three types of electrolyzers (alkaline proton exchange membrane and solid oxide electrolyzer cells) and five hydrogen storage methods (compressed hydrogen liquid hydrogen metal hydrides ammonia and liquid organic hydrogen carriers). A comprehensive assessment of 90 potential system configurations is conducted across five key performance indicators: the overall system cost efficiency emissions production scale and technological maturity. The most cost-effective configurations involve solar photovoltaics or wind turbines combined with alkaline electrolyzers and compressed hydrogen storage. For enhanced system efficiency geothermal sources or biomass paired with solid oxide electrolyzer cells utilizing waste heat show significant promise. The top technologically mature systems feature combinations of solar photovoltaics wind turbines geothermal or hydroelectric power with alkaline electrolyzers using compressed hydrogen or ammonia storage. The highest hydrogen production scales are observed in systems with solar PV wind or hydro power paired with alkaline or PEM electrolyzers and ammonia storage. Configurations using hydro geothermal wind or solar thermal energy sources paired with alkaline electrolyzers and compressed hydrogen or liquid organic hydrogen carriers yield the lowest life cycle GHG emissions. These insights provide valuable decision-making tools for researchers business developers and policymakers guiding the optimization of system efficiency and the reduction of system costs.
Preliminary Analysis of Refilling Cold-adsorbed Hydrogen Tanks
Sep 2023
Publication
The effective storage of hydrogen is a critical challenge that needs to be overcome for it to become a widely used and clean energy source. Various methods exist for storing hydrogen including compression at high pressures liquefaction through extreme cooling (i.e. -253 °C) and storage with chemical compounds. Each method has its own advantages and disadvantages. MAST3RBoost (Maturing the Production Standards of Ultraporous Structures for High Density Hydrogen Storage Bank Operating on Swinging Temperatures and Low Compression) is a European funded Project aiming to establish a reliable benchmark for cold-adsorbed H2 storage (CAH2) at low compression levels (100 bar or below). This is achieved through the development of advanced ultraporous materials suitable for mobility applications such as hydrogen-powered vehicles used in road railway air and water transportation. The MAST3RBoost Project utilizes cutting-edge materials including Activated Carbons (ACs) and high-density MOFs (Metalorganic Frameworks) which are enhanced by Machine Learning techniques. By harnessing these materials the project seeks to create a groundbreaking path towards meeting industry goals. The project aims to develop the world's first adsorption-based demonstrator at a significant kg-scale. To support the design of the storage tank the project employs Computational Fluid Dynamics (CFD) software which allows for numerical investigations. In this paper a preliminary analysis of the tank refilling process is presented with a focus on the impact of the effect of the tank and hydrogen temperatures on quantity of hydrogen adsorbed.
Hydrogen Production from Wave Power Farms to Refuel Hydrogen-Powered Ships in the Mediterranean Sea
Aug 2024
Publication
The maritime industry is a major source of greenhouse gas (GHG) emissions largely due to ships running on fossil fuels. Transitioning to hydrogen-powered marine transportation in the Mediterranean Sea requires the development of a network of hydrogen refueling stations across the region to ensure a steady supply of green hydrogen. This paper explores the technoeconomic viability of harnessing wave energy from the Mediterranean Sea to produce green hydrogen for hydrogenpowered ships. Four promising island locations—near Sardegna Galite Western Crete and Eastern Crete—were selected based on their favorable wave potential for green hydrogen production. A thorough analysis of the costs associated with wave power facilities and hydrogen production was conducted to accurately model economic viability. The techno-economic results suggest that with anticipated cost reductions in wave energy converters the levelized cost of hydrogen could decrease to as low as 3.6 €/kg 4.3 €/kg 5.5 €/kg and 3.9 €/kg for Sardegna Galite Western Crete and Eastern Crete respectively. Furthermore the study estimates that in order for the hydrogen-fueled ships to compete effectively with their oil-fueled counterparts the levelized cost of hydrogen must drop below 3.5 €/kg. Thus despite the competitive costs further measures are necessary to make hydrogen-fueled ships a viable alternative to conventional diesel-fueled ships.
Techno-Economic Analysis of Cement Decarbonization Techniques: Oxygen Enrichment vs. Hydrogen Fuel
Feb 2024
Publication
The Paris Agreement aims to limit global warming and one of the most polluting sectors is heavy industry where cement production is a significant contributor. This work briefly explores some alternatives recycling reducing clinker content waste heat recovery and carbon capture discussing their advantages and drawbacks. Then it examines the economic viability and benefits of increasing oxygen concentration in the primary burning air from 21 to 27 vol.% which could improve clinker production by 7% and the production of hydrogen through PEM electrolysis to make up 5% of the fuel thermal fraction considering both in a cement plant producing 3000 tons of clinker per day. This analysis used reference values from Secil an international company for cement and building materials to determine the required scale of the oxygen and hydrogen production respectively and calculate the CAPEX of each approach. It is concluded that oxygen enrichment can provide substantial fuel savings for a relatively low cost despite a possible significant increase in NOx emissions. However hydrogen production at this scale is not currently economically viable.
A Multi-agent Optimal Operation Methodology of Electric, Thermal, and Hydrogen Integrated Energy System based on ADMM Algorithm
Aug 2024
Publication
This article presents a study on the distributed optimization operation method for micro-energy grid clusters within an electric thermal and hydrogen integrated energy system. The research focuses on precisely modeling the Power-toHydrogen (P2H) conversion process in electrolytic cells by considering their startup characteristics. An optimization operation model is established with each micro-energy grid as the principal entity to cater to their individual interests and demands. The Alternating Direction Method of Multipliers (ADMM) algorithm is adopted for distributed solution. Case studies demonstrate that the connection topology between micro-energy grids significantly impacts the total operating cost and the effectiveness of the ADMM algorithm is validated through a comparison with centralized optimization approaches.
Modelling the Innovation-decision Process for Hydrogen Homes: An Integrated Model of Consumer Acceptance and Adoption Intention
Nov 2024
Publication
As the global energy transition progresses a range of drivers and barriers will continue to shape consumer attitudes and behavioural intentions towards emerging low-carbon technologies. The innovation-decision process for technologies composing the residential sector such as hydrogen-fuelled heating and cooking appliances is inherently governed by the complex interplay between perceptual cognitive and emotional factors. In response this study responds to the call for an integrated research perspective to advance theoretical and empirical insights on consumer engagement in the domestic hydrogen transition. Drawing on online survey data collected in the United Kingdom where a policy decision on ‘hydrogen homes’ is set for 2026 this study systematically explores whether an integrated modelling approach supports higher levels of explanatory and predictive power. Leveraging the foundations of the unified theory of domestic hydrogen acceptance the analysis suggests that production perceptions public trust perceived relative advantage safety perceptions knowledge and awareness and positive emotions will shape consumer support for hydrogen homes. Conversely perceived disruptive impacts perceived socio-economic costs financial perceptions and negative emotions may impede the domestic hydrogen transition. Consumer acceptance stands to significantly shape deployment prospects for hydrogen boilers and hobs which are perceived to be somewhat advantageous to natural gas appliances from a technological and safety perspective. The study attests to the predictive benefits of adopting an integrated theoretical perspective when modelling the early stages of the innovation-decision process while acknowledging opportunities for leveraging innovative research approaches in the future. As national hydrogen economies gain traction adopting a neuroscience-based approach may help deepen scientific understanding regarding the neural psychological and emotional signatures shaping consumer perspectives towards hydrogen homes.
The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis
Jan 2024
Publication
The utilization of renewable energy for hydrogen production presents a promising pathway towards achieving carbon neutrality in energy consumption. Water electrolysis utilizing pure water has proven to be a robust technology for clean hydrogen production. Recently seawater electrolysis has emerged as an attractive alternative due to the limitations of deep-sea regions imposed by the transmission capacity of long-distance undersea cables. However seawater electrolysis faces several challenges including the slow kinetics of the oxygen evolution reaction (OER) the competing chlorine evolution reaction (CER) processes electrode degradation caused by chloride ions and the formation of precipitates on the cathode. The electrode and catalyst materials are corroded by the Cl− under long-term operations. Numerous efforts have been made to address these issues arising from impurities in the seawater. This review focuses on recent progress in developing high-performance electrodes and electrolyser designs for efficient seawater electrolysis. Its aim is to provide a systematic and insightful introduction and discussion on seawater electrolysers and electrodes with the hope of promoting the utilization of offshore renewable energy sources through seawater electrolysis.
A Comprehensive Review on the Hydrogen–Natural Gas–Diesel Tri-Fuel Engine Exhaust Emissions
Aug 2024
Publication
Natural gas (NG) is favored for transportation due to its availability and lower CO2 emissions than fossil fuels despite drawbacks like poor lean combustion ability and slow burning. According to a few recent studies using hydrogen (H2 ) alongside NG and diesel in Tri-fuel mode addresses these drawbacks while enhancing efficiency and reducing emissions making it a promising option for diesel engines. Due to the importance and novelty of this the continuation of ongoing research and insufficient literature studies on HNG–diesel engine emissions that are considered helpful to researchers this research has been conducted. This review summarizes the recent research on the HNG–diesel Tri-fuel engines utilizing hydrogen-enriched natural gas (HNG). The research methodology involved summarizing the effect of engine design operating conditions fuel mixing ratios and supplying techniques on the CO CO2 NOx and HC emissions separately. Previous studies show that using natural gas with diesel increases CO and HC emissions while decreasing NOx and CO2 compared to pure diesel. However using hydrogen with diesel reduces CO CO2 and HC emissions but increases NOx. On the other hand HNG–diesel fuel mode effectively mitigates the disadvantages of using these fuels separately resulting in decreased emissions of CO CO2 HC and NOx. The inclusion of hydrogen improves combustion efficiency reduces ignition delay and enhances heat release and in-cylinder pressure. Additionally operational parameters such as engine power speed load air–fuel ratio compression ratio and injection parameters directly affect emissions in HNG–diesel Tri-fuel engines. Overall the Tri-fuel approach offers promising emissions benefits compared to using natural gas or hydrogen separately as dual-fuels.
Research on the Dynamic Energy Conversion and Transmission Model of Renewable Energy DC Off-grid Hydrogen System
Sep 2024
Publication
The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation an energy hub model for the hydrogen production system is established yielding the electrical thermal and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time the energy flow at each time node within the hydrogen production system is computed revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.
A Perspective on Emerging Energy Policy and Economic Research Agenda for Enabling Aviation Climate Action
Sep 2024
Publication
Due to the aviation energy sector's increasing contribution to climate change and the impact of climate change on the aviation sector determining key energy policy and economic research priorities for enabling an effective and equitable aviation climate action is becoming an increasingly important topic. In this perspective we address this research need using a four-pronged methodology. It includes (i) identifying topical matters highlighted in the media (news); (ii) formulating novel and feasible policy and economic research challenges that pertain to these contemporary issues; (iii) cross-referencing the proposed research challenges with academic literature to confirm their novelty and refining them as necessary; and (iv) validating the importance novelty and feasibility of these research challenges through consultation with a diverse group of aviation experts in fuel policy technology and infrastructure fields. Our results highlight twelve main themes. Among these the top emerging policy and economic research challenges as prioritized by expert input are – (i) frameworks for equitable responsibility allocation between developed and developing country airlines for future emissions; (ii) cost analysis of airlines' net-zero by 2050 commitments; (iii) effectiveness and opportunity cost of airlines investing in offsetting relative to reduction measures; (iv) EU aviation policies' historical and potential effects on airfares demand emissions EU air carriers' competitiveness passenger traffic through EU hubs regional economies and social climate funds' ability to mitigate distributional effects of EU aviation policies. These identified priorities can steer both industry and academic research toward creating practical recommendations for policymakers and industry participants. When it comes to future research the ever-changing nature of the challenges in achieving aviation climate action means that our findings might need regular updates.
In-situ Direct Seawater Electrolysis Using Floating Platform in Ocean with Uncontrollable Wave Motion
Jun 2024
Publication
Direct hydrogen production from inexhaustible seawater using abundant offshore wind power offers a promising pathway for achieving a sustainable energy industry and fuel economy. Various direct seawater electrolysis methods have been demonstrated to be effective at the laboratory scale. However larger-scale in situ demonstrations that are completely free of corrosion and side reactions in fluctuating oceans are lacking. Here fluctuating conditions of the ocean were considered for the first time and seawater electrolysis in wave motion environment was achieved. We present the successful scaling of a floating seawater electrolysis system that employed wind power in Xinghua Bay and the integration of a 1.2 Nm3 h−1 -scale pilot system. Stable electrolysis operation was achieved for over 240 h with an electrolytic energy consumption of 5 kWh Nm−3 H2 and a high purity (>99.9%) of hydrogen under fluctuating ocean conditions (0~0.9 m wave height 0~15 m s−1 wind speed) which is comparable to that during onshore water electrolysis. The concentration of impurity ions in the electrolyte was low and stable over a long period of time under complex and changing scenarios. We identified the technological challenges and performances of the key system components and examined the future outlook for this emerging technology.
Optimization of Baseload Electricity and Hydrogen Services by Renewables for a Nuclear-sized District in South Italy
Nov 2024
Publication
We present an optimization model of an energy district in South Italy that supplies baseload electricity and hydrogen services. The district is sized such that a nuclear reactor could provide these services. We define scenarios for 2050 to explore the system effects of discount rate sensitivity vetoes on technologies and cost uncertainties. We address the following issues relevant to decarbonization in South Italy: land-based wind and solar vs. exclusive solar rooftop extra cost of a veto on nuclear conservative assumptions on future storage technology and the role of pumped hydro storage lack of low-cost geological storage of hydrogen and the industrial competitiveness of this carrier and the methanation synergy with the agroforestry sector. Our results quantify the high system cost of vetoes on land-based wind and solar. Nuclear may enter the optimal mix only with a veto against onshore wind and a hypothesis of equal project risk hence an equal discount rate with renewables. Scenarios with land-based wind and solar obtain low-cost hydrogen and thus allow industrial uses for this carrier. The methanation synergy with the agroforestry sector does not offer a system cost advantage but improves the district’s configuration. The extra cost of full decarbonization relative to unregulated fossil gas is small with land-based wind and solar and significant with vetoes to these technologies.
What will be the Hydrogen and Power Demands of the Process Industry in a Climate-neutral Germany?
Apr 2024
Publication
The defossilization of industry has far-reaching implications regarding the future demand for hydrogen and other forms of energy. This paper presents and applies a fundamental bottom-up model that relies on techno-economic data of industrial production processes. Its aim is to identify across a range of scenarios the most cost-effective low-carbon options considering a variety of production systems. Subsequently it derives the hydrogen and electricity demand that would result from the implementation of these least-cost low-carbon options in process industries in Germany. Aligning with the German government's target year for achieving climate neutrality this study’s reference year is 2045. The primary contribution lies in analyzing which hydrogen-based and direct electrification solutions would be cost-effective for a range of energy price levels under climate-neutral industrial production and what the resulting hydrogen and electricity demand would be. To this end the methodology of this paper comprises the following steps: selection of the relevant industries (I) definition of conventional reference production systems and their low-carbon options (II) investigation and processing of the techno-economic data of the standardized production systems (III) establishment of a scenario framework (IV) determination of the least-cost low-carbon solution of a conventional reference production system under the scenario assumptions made (V) and estimation of the resulting hydrogen and electricity demand (VI). According to the results the expected industrial hydrogen consumption in 2045 ranges from 255 TWh for higher hydrogen prices in or above the range of onshore wind-based green hydrogen supply costs to up to 542 TWh for very low hydrogen prices corresponding to typical blue hydrogen production costs. Meanwhile the direct electricity consumption of the process industries in the results ranges from 122 TWh for these rather low hydrogen prices to 368 TWh for the higher hydrogen prices in the region of or above the hydrogen supply costs from the electrolysis of energy from an onshore wind farm. Most of the break-even hydrogen prices that are relevant to the choice of low-carbon options are in the range of the benchmark purchase costs for blue hydrogen and green hydrogen produced from offshore wind power which span between €40 per MWh and €97 per MWh.
Assessment of the Economic Viability, Environmental, and Social Impacts of Green Hydrogen Production: An Algerian Case Study
Aug 2024
Publication
The impacts of climate change are real and in many parts of the world testify to its harsh reality including rampant extreme weather events droughts heat wildfires and flooding which have recorded in places which have not experienced them in recent memory. In the quest to avert such events there is a growing awareness and demand for sustainable processes and operations. Today sustainability encompasses a balance between ecological footprint and human development index taking into consideration economics the green environment safety quality ethics diversity and inclusion (D&I) and communities. This article presents some steps that have been taken by Algeria to balance energetic autonomy and sustainable development and a case study on green hydrogen production employing membrane processes. Algeria’s objective to join the global fight against climate change is to develop its green hydrogen base. Given its resources including available solar and wind power seawater desalination plants building capacity and its favorable location it is developing its green hydrogen economy to supply hydrogen especially to Europe. This presents an opportunity for other developing nations especially in Africa to gain from this experience.
Techno-economic Assessment of Hydrogen-based Energy Storage Systems in Determining the Optimal Configuration of the Nuclear-renewable Hybrid Energy System
Apr 2024
Publication
Population growth and economic development have significantly increased global energy demand. Hence it has raised concerns about the increase in the consumption of fossil fuels and climate change. The present work introduced a new approach to using carbon-free energy sources such as nuclear and renewable to meet energy demand. The idea of using the Nuclear-Renewable Hybrid Energy System (N-R HES) is suggested as a leading solution that couples a nuclear power plant with renewable energy and hydrogen-based storage systems. For this purpose using a meta-heuristic method based on Newton’s laws the configuration of the N-R HES is optimized from an economic and reliability point of view. The optimal system is selected from among six cases with different subsystems such as wind turbine photovoltaic panel nuclear reactor electrolysis fuel cell and hydrogen storage tank. Furthermore the performance of hydrogen-based energy storage systems such as hightemperature electrolysis (HTE) and low-temperature electrolysis (LTE) is evaluated from technical and economic aspects. The results of this work showed that using nuclear energy to supply the base load increases the reliability of the system and reduces the loss of power supply probability to zero. More than 70 % of the power is produced by nuclear reactors which includes more than 80 % of the system costs. The key findings showed that despite HTE’s higher efficiency using LTE as a storage system in N-R HES is more cost-effective. Finally due to recent developments and the safer design of nuclear reactors they can play an important role in combination with renewable energies to support carbon-free energy sectors especially in remote areas for decades to come.
A Complete Assessment of the Emission Performance of an SI Engine Fueled with Methanol, Methane and Hydrogen
Feb 2024
Publication
This study explores the potentiality of low/zero carbon fuels such as methanol methane and hydrogen for motor applications to pursue the goal of energy security and environmental sustainability. An experimental investigation was performed on a spark ignition engine equipped with both a port fuel and a direct injection system. Liquid fuels were injected into the intake manifold to benefit from a homogeneous charge formation. Gaseous fuels were injected in direct mode to enhance the efficiency and prevent abnormal combustion. Tests were realized at a fixed indicated mean effective pressure and at three different engine speeds. The experimental results highlighted the reduction of CO and CO2 emissions for the alternative fuels to an extent depending on their properties. Methanol exhibited high THC and low NOx emissions compared to gasoline. Methane and even more so hydrogen allowed for a reduction in THC emissions. With regard to the impact of gaseous fuels on the NOx emissions this was strongly related to the operating conditions. A surprising result concerns the particle emissions that were affected not only by the fuel characteristics and the engine test point but also by the lubricating oil. The oil contribution was particularly evident for hydrogen fuel which showed high particle emissions although they did not contain carbon atoms.
Utilization of Hydrogen Fuel in Reheating Furnace and its Effect on Oxide Scale Formation of Low-carbon Steels
Nov 2024
Publication
The transition from fossil-based fuel to hydrogen combustion in steel reheating furnaces is a possible way to decrease the process-originated CO2 emissions significantly. This potential change alters the furnace gas atmo sphere’s composition impacting the oxide scale formation of the slab surface. Dynamic heating tests are per formed for three low-carbon steels using different simulated combustion atmospheres including natural gas coke oven gas and hydrogen combustion in air and hydrogen combustion in oxygen. Significant differences are found in the oxidation behavior of steel grades in the simulated hydrogen reheating scenario. A steel grade with low Mn content only has an 18% increase in oxidation between methane-air to hydrogen-oxygen methods while it is 41% for a high Mn and Si steel grade and 65% for a high-Mn steel grade. Thus in terms of material loss increase by oxidation the transition of the heating method causes the least problems for the low-Mn steel grade.
Decarbonising International Shipping - A Life Cycle Perspective on Alternative Fuel Options
Nov 2023
Publication
This study aimed to compare hydrogen ammonia methanol and waste-derived biofuels as shipping fuels using life cycle assessment to establish what potential they have to contribute to the shipping industry’s 100% greenhouse gas emission reduction target. A novel approach was taken where the greenhouse gas emissions associated with one year of global shipping fleet operations was used as a common unit for comparison therefore allowing the potential life cycle greenhouse gas emission reduction from each fuel option to be compared relative to Paris Agreement compliant targets for international shipping. The analysis uses life cycle assessment from resource extraction to use within ships with all GHGs evaluated for a 100-year time horizon (GWP100). Green hydrogen waste-derived biodiesel and bio-methanol are found to have the best decarbonisation po tential with potential emission reductions of 74–81% 87% and 85–94% compared to heavy fuel oil; however some barriers to shipping’s decarbonisation progress are identified. None of the alternative fuels considered are currently produced at a large enough scale to meet shipping’s current energy demand and uptake of alternative fuel vessels is too slow considering the scale of the challenge at hand. The decarbonisation potential from alternative fuels alone is also found to be insufficient as no fuel option can offer the 100% emission reduction required by the sector by 2050. The study also uncovers several sensitives within the life cycles of the fuel options analysed that have received limited attention in previous life cycle investigations into alternative shipping fuels. First the choice of allocation method can potentially double the life cycle greenhouse gas emissions of e-methanol due to the carbon ac counting challenges of using waste carbon dioxide streams during fuel production. This leads to concerns related to the true impact of using carbon dioxide captured from fossil-fuelled processes to produce a combustible product due to the resultant high downstream emissions. Second nitrous oxide emissions from ammonia combustion are found to be highly sensitive due to high greenhouse gas potency potentially offsetting any greenhouse reduction potential compared to heavy fuel oil. Further uncertainties are highlighted due to limited available data on the rate of nitrous oxide production from ammonia engines. The study therefore highlights an urgent need for the shipping sector to consider these factors when investing in new ammonia and methanol engines; failing to do so risks jeopardizing the sector’s progress towards decarbonisation. Finally whilst alternative fuels can offer good decarbonisation potential (particularly waste derived biomethanol and bio-diesel and green hydrogen) this cannot be achieved without accelerated investment in new and retrofit vessels and new fuel supply chains: the research concludes that existing pipeline of vessel orders and fuel production facilities is insufficient. Furthermore there is a need to integrate alternative fuel uptake with other decarbonisation strategies such as slow steaming and wind propulsion.
Marine Renewable-Driven Green Hydrogen Production Toward a Sustainable Solution and a Low-carbon Future in Morocco
May 2024
Publication
Oceanic energy sources notably offshore wind and wave power present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production which can be efficiently transported through existing pipelines and stored in various forms offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune Agadir Essaouira Eljadida Casablanca and Larache. Our proposed system integrates offshore wind turbines oscillating water column wave energy converters and PEM electrolyzers to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions ranging from 14 MW to 20 MW. Additionally encouraging annual estimates of hydrogen production varying between 20 and 40 tonnes for specific locations showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates ranging from 13% to 18% while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio bolster water resilience and foster sustainable development. Ultimately this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies.
Utilization of Hydrogen and Methane as Energy Carriers with Exhaust Gas Recirculation for Sustainable Diesel Engines
May 2024
Publication
Hydrogen and methane as secondary fuels in diesel engines can be promising solutions to meet energy demand. The current study investigated the effect of the specialty gases of different compositions on diesel engine performance and exhaust gases. Four gases with various compositions of exhaust gas recirculation (Carbon monoxide Carbon dioxide and Nitrogen) and fuels (Hydrogen and Methane) were used at various mass flow rates of 10 20 and 25 LPM (liter per minute) and various engine speeds of 2000 2500 3000 and 3500 rpm (revolutions per minute). The procured results revealed that adding specialty gases improved brake thermal efficiency and power. Similarly the brake-specific fuel consumption was also massively retarded compared to diesel due to the influence of the hydrogen and methane composition. However the fuel with the higher nitrogen reported less BTE (brake thermal efficiency) and comparatively higher exhaust gas temperature owing to the higher presence of nitrogen in their composition. Regarding emissions including exhaust gas recirculation dropped the formation of pollutants efficiently compared to diesel. Among various fuels Case 1 (30 % H2 5 % CH4 5 CO2 and 60 % CO) reported the lowest emission of NOx and Case 2 (25 % H2 5 % CH4 5 CO2 30 % CO and 35 % N2) of CO and CO2 emissions. Generally specialty gases with a variable composition of exhaust gas recirculation gases can be a promising sustainable replacement for existing fossil fuels.
Hydrogen in Burners: Economic and Environmental Implications
Nov 2024
Publication
For centuries fossil fuels have been the primary energy source but their unchecked use has led to significant environmental and economic challenges that now shape the global energy landscape. The combustion of these fuels releases greenhouse gases which are critical contributors to the acceleration of climate change resulting in severe consequences for both the environment and human health. Therefore this article examines the potential of hydrogen as a sustainable alternative energy source capable of mitigating these climate impacts. It explores the properties of hydrogen with particular emphasis on its application in industrial burners and furnaces underscoring its clean combustion and high energy density in comparison to fossil fuels and also examines hydrogen production through thermochemical and electrochemical methods covering green gray blue and turquoise pathways. It discusses storage and transportation challenges highlighting methods like compression liquefaction chemical carriers (e.g. ammonia) and transport via pipelines and vehicles. Hydrogen combustion mechanisms and optimized burner and furnace designs are explored along with the environmental benefits of lower emissions contrasted with economic concerns like production and infrastructure costs. Additionally industrial and energy applications safety concerns and the challenges of large-scale adoption are addressed presenting hydrogen as a promising yet complex alternative to fossil fuels.
A Data-Driven Scheduling Approach for Hydrogen Penetrated Energy System Using LSTM Network
Nov 2019
Publication
Intra-day control and scheduling of energy systems require high-speed computation and strong robustness. Conventional mathematical driven approaches usually require high computation resources and have difficulty handling system uncertainties. This paper proposes two data-driven scheduling approaches for hydrogen penetrated energy system (HPES) operational scheduling. The two data-driven approaches learn the historical optimization results calculated out using the mixed integer linear programing (MILP) and conditional value at risk (CVaR) respectively. The intra-day rolling optimization mechanism is introduced to evaluate the proposed data-driven scheduling approaches MILP data-driven approach and CVaR data-driven approach along with the forecasted renewable generation and load demands. Results show that the two data-driven approaches have lower intra-day operational costs compared with the MILP based method by 1.17% and 0.93%. In addition the combined cooling and heating plant (CCHP) has a lower frequency of changing the operational states and power output when using the MILP data-driven approach compared with the mathematical driven approaches.
Uncovering an Emerging Policy Direction for Australian Energy and Future Fuels Using a "Participatory Decision-Making" Framework
Aug 2024
Publication
Introduction: An online deliberative engagement process was undertaken with members of the general public to understand what they value or would like to change about the energy system within the broader context of decarbonizing Australia's energy networks identifying a role for future fuels (hydrogen and biogas). Citizens developed a set of principles that could guide Australia's path toward a low-carbon energy future reflecting on expectations they place upon energy transition. Next citizens' principles were shared with policy-makers in government and policy-influencers from the energy industry using an online interactive workshop.<br/>Methods: This study analyses policy-makers and -influencers response to citizens' guiding principles using the 'diamond of participatory decision-making' framework for analysis. Convergence and divergence in diverse complex and rich views across cohorts and implications thereupon energy policy were identified.<br/>Results: Although considerable alignment between multi-stakeholders' views was noted key areas of divergence or what is called the “groan zone” were easily identified in relation to social and environmental justice issues. This groan zone highlights the struggles that energy policy-makers face -the need to listen and respond to citizens' voices vs. the need for practical and workable policies that also support overarching government or industry objectives.<br/>Discussion: Policy making when the views of different stakeholders align is relatively straightforward. However this is not the case where the expectations diverge. More creative measures will be needed to address divergent views and expectations whilst maintaining procedural fairness in this case using democratic deliberative engagement processes. While the use of deliberative processes is gaining momentum worldwide particularly concerning climate change and energy transition policies this paper also highlights the benefits of conducting a robust post facto analysis of the content of the processes. Areas of alignment where policy can be made and implemented relatively easily without contention are identified. Other areas (such as making electrification mandatory) might be more complex or have unwanted negative social and environmental justice effects. Overall this paper bridges an analytical gap between “expectation studies” and participatory research. By borrowing terminology from a participatory research framework we sharpen the concepts in “expectation studies” from a consensus inclusion and diversity standpoint.
The Role of Hydrogen as Enabler of Industrial Port Area Decarbonoization
Nov 2023
Publication
To meet environmental goals while maintaining economic competitiveness worldwide ports have increased the amount of renewable energy production and have focused in optimizing performances and energy efficiency. However carbon-neutral operation of industrial port areas (IPA) is challenging and requires the decarbonization of industrial processes and heavy transport systems. This study proposes a comprehensive review of decarbon ization strategies for IPA with a particular focus on the role that green hydrogen could play when used as renewable energy carrier. Much information on existing and future technologies was also derived from the analysis of 74 projects (existing and planned) in 36 IPAs 80 % of which are in Europe concerning hydrogenbased decarbonization strategies. The overall review shows that engine operation of ships at berth are respon sible of more than 70 % of emissions in ports. Therefore onshore power supply (OPS) seems to be one of the main strategies to reduce port pollution. Nevertheless OPS powered by hydrogen is not today easily achievable. By overcoming the current cost-related and regulation barriers hydrogen can also be used for the import/export of green energy and the decarbonization of hard-to-abate sectors. The technical and economic data regarding hydrogen-based technologies and strategies highlighted in this paper are useful for further research in the field of definition and development of decarbonization strategies in the IPA.
Green Hydrogen Production by Water Electrolysis: Current Status and Challenges
Apr 2024
Publication
The scientific and industrial communities worldwide have recently achieved impressive technical advances in developing innovative electrocatalysts and electrolysers for water and seawater splitting. The viability of water electrolysis for commercial applications however remains elusive and the key barriers are durability cost performance materials manufacturing and system simplicity especially with regard to running on practical water sources like seawater. This paper therefore primarily aims to provide a concise overview of the most recent disruptive water-splitting technologies and materials that could reshape the future of green hydrogen production. Starting from water electrolysis fundamentals the recent advances in developing durable and efficient electrocatalysts for modern types of electrolysers such as decoupled electrolysers seawater electrolysers and unconventional hybrid electrolysers have been represented and precisely annotated in this report. Outlining the most recent advances in water and seawater splitting the paper can help as a quick guide in identifying the gap in knowledge for modern water electrolysers while pointing out recent solutions for cost-effective and efficient hydrogen production to meet zero-carbon targets in the short to near term.
Probabilistic Analysis of Electricity Production from a Photovoltaic–Wind Energy Mix for Sustainable Transport Needs
Nov 2024
Publication
Renewable Energy Sources (RESs) are characterized by high unevenness cyclicality and seasonality of energy production. Due to the trends in the production of electricity itself and the utilization of hydrogen distributed generation systems are preferred. They can be connected to the energy distribution network or operate without its participation (off-grid). However in both cases such distributed energy sources should be balanced in terms of power generation. According to the authors it is worth combining different RESs to ensure the stability of energy production from such a mix. Within the mix the sources can complement and replace each other. According to the authors an effective system for generating energy from RESs should contain at least two different sources and energy storage. The purpose of the analyses and calculations performed is to determine the characteristics of energy generation from a photovoltaic system and a wind turbine with a specific power and geographical location in the Lublin region in Poland. Another important goal is to determine the substitutability of the sources studied. Probabilistic analysis will be used to determine the share of given energy sources in the energy mix and will allow us to estimate the size of the stationary energy storage. The objective of these procedures is to strive for the highest possible share of renewable energy in the total energy required to charge electric vehicle fleets and to produce low-emission hydrogen for transportation. The article proves that the appropriately selected components of the photovoltaic and wind energy mix located in the right place lead to the self-balancing of the local energy network using a small energy storage. The conclusions drawn from the conducted research can be used by RES developers who intend to invest in new sources of power generation to produce low-emission hydrogen. This is in line with the current policy of the European Union aimed at climate and energy transformation of many companies using green hydrogen.
The Case of Renewable Methane by and with Green Hydrogen as the Storage and Transport Medium for Intermittent Wind and Solar PV Energy
May 2024
Publication
Long-duration energy storage is the key challenge facing renewable energy transition in the future of well over 50% and up to 75% of primary energy supply with intermittent solar and wind electricity while up to 25% would come from biomass which requires traditional type storage. To this end chemical energy storage at grid scale in the form of fuel appears to be the ideal option for wind and solar power. Renewable hydrogen is a much-considered fuel along with ammonia. However these fuels are not only difficult to transport over long distances but they would also require totally new and prohibitively expensive infrastructure. On the other hand the existing natural gas pipeline infrastructure in developed economies can not only transmit a mixture of methane with up to 20% hydrogen without modification but it also has more than adequate long-duration storage capacity. This is confirmed by analyzing the energy economies of the USA and Germany both possessing well-developed natural gas transmission and storage systems. It is envisioned that renewable methane will be produced via well-established biological and/or chemical processes reacting green hydrogen with carbon dioxide the latter to be separated ideally from biogas generated via the biological conversion of biomass to biomethane. At the point of utilization of the methane to generate power and a variety of chemicals the released carbon dioxide would be also sequestered. An essentially net zero carbon energy system would be then become operational. The current conversion efficiency of power to hydrogen/methane to power on the order of 40% would limit the penetration of wind and solar power. Conversion efficiencies of over 75% can be attained with the on-going commercialization of solid oxide electrolysis and fuel cells for up to 75% penetration of intermittent renewable power. The proposed hydrogen/methane system would then be widely adopted because it is practical affordable and sustainable.
Model-based Analysis and Optimization of Pressurised Alkaline Water Electrolysis Powered by Renewable Energy
Jul 2023
Publication
Alkaline water electrolysis is a key technology for large-scale hydrogen production. In this process safety and efficiency are among the most essential requirements. Hence optimization strategies must consider both aspects. While experimental optimization studies are the most accurate solution model-based approaches are more cost and time-efficient. However validated process models are needed which consider all important influences and effects of complete alkaline water electrolysis systems. This study presents a dynamic process model for a pressurized alkaline water electrolyzer consisting of four submodels to describe the system behavior regarding gas contamination electrolyte concentration cell potential and temperature. Experimental data from a lab-scale alkaline water electrolysis system was used to validate the model which could then be used to analyze and optimize pressurized alkaline water electrolysis. While steady-state and dynamic solutions were analyzed for typical operating conditions to determine the influence of the process variables a dynamic optimization study was carried out to optimize an electrolyte flow mode switching pattern. Moreover the simulation results could help to understand the impact of each process variable and to develop intelligent concepts for process optimization
Critical Challenges in Biohydrogen Production Processes from the Organic Feedstocks
Aug 2020
Publication
The ever-increasing world energy demand drives the need for new and sustainable renewable fuel to mitigate problems associated with greenhouse gas emissions such as climate change. This helps in the development toward decarbonisation. Thus in recent years hydrogen has been seen as a promising candidate in global renewable energy agendas where the production of biohydrogen gains more attention compared with fossil-based hydrogen. In this review biohydrogen production using organic waste materials through fermentation biophotolysis microbial electrolysis cell and gasification are discussed and analysed from a technological perspective. The main focus herein is to summarise and criticise through bibliometric analysis and put forward the guidelines for the potential future routes of biohydrogen production from biomass and especially organic waste materials. This research review claims that substantial efforts currently and in the future should focus on biohydrogen production from integrated technology of processes of (i) dark and photofermentation (ii) microbial electrolysis cell (MEC) and (iii) gasification of combined different biowastes. Furthermore bibliometric mapping shows that hydrogen production from biomethanol and the modelling process are growing areas in the biohydrogen research that lead to zero-carbon energy soon.
The Green Hydrogen Revolution
Jul 2023
Publication
Green hydrogen is considered the most suitable choice for the future energy market both as energy storage media energy vector and fuel for transportation industry and other applications. In the last twenty years increasing efforts have been dedicated to green hydrogen technologies development but still today a number of issues are claimed in justifying the delay in its large scale application and the star vation of its market. Moreover some new questions seem ready to be put on the table for justifying the delay in green hydrogen technologies applications. In this paper a critical analysis of recent literature and institutional reports is carried out with the aim of understanding what is the real state of the play. In particular peculiar advantages and shortcomings of different green hydrogen technologies (biomass pyrolysis and gasification water electrolysis etc.) have been analysed and compared with a focus on the electrolysis process as the most promising method for large scale and distributed generation of hydrogen. Some geopolitical and economic aspects associated with the transition to a green hydrogen economy - including the feared exacerbation of the water crisis - have been widely examined and discussed with the purpose of identifying approaches and solutions to accelerate the mentioned transition.
Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production
May 2022
Publication
The increasingly severe energy crisis has strengthened the determination todevelop environmentally friendly energy. And hydrogen has emerged as a candi-date for clean energy. Among many hydrogen generation methods biohydrogenstands out due to its environmental sustainability simple operating environ-ment and cost advantages. This review focuses on the rational design of catalystsfor fermentative hydrogen production. The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively. Various strategiesto increase the efficiency of fermentative hydrogen production are summa-rized and some recent representative works from microbial dark fermentationand photo-fermentation are described. Meanwhile perspectives and discussionson the rational design of catalysts for fermentative hydrogen production areprovided.
No more items...