- Home
- A-Z Publications
- Publications
Publications
Hydrogen Diffusion in Coal: Implications for Hydrogen Geo-storage
Oct 2021
Publication
Hypothesis: Hydrogen geo-storage is considered as an option for large scale hydrogen storage in a full-scale hydrogen economy. Among different types of subsurface formations coal seams look to be one of the best suitable options as coal’s micro/nano pore structure can adsorb a huge amount of gas (e.g. hydrogen) which can be withdrawn again once needed. However literature lacks fundamental data regarding H2 diffusion in coal. Experiments: In this study we measured H2 adsorption rate in an Australian anthracite coal sample at isothermal conditions for four different temperatures (20 C 30 C 45 C and 60 C) at equilibrium pressure 13 bar and calculated H2 diffusion coefficient (DH2 ) at each temperature. CO2 adsorption rates were measured for the same sample at similar temperatures and equilibrium pressure for comparison. Findings: Results show that H2 adsorption rate and consequently DH2 increases by temperature. DH2 values are one order of magnitude larger than the equivalent DCO2 values for the whole studied temperature range 20–60 C. DH2 / DCO2 also shows an increasing trend versus temperature. CO2 adsorption capacity at equilibrium pressure is about 5 times higher than that of H2 in all studied temperatures. Both H2 and CO2 adsorption capacities at equilibrium pressure slightly decrease as temperature rises.
The Effects of Electrochemical Hydrogen Charging on Room-Temperature Tensile Properties of T92/TP316H Dissimilar Weldments in Quenched-and-Tempered and Thermally-Aged Conditions
Aug 2019
Publication
The influence of isothermal aging at 620 °C in combination with subsequent electrochemical hydrogen charging at room-temperature was studied on quenched-and-tempered T92/TP316H martensitic/austenitic weldments in terms of their room-temperature tensile properties and fracture behavior. Hydrogen charging of the weldments did not significantly affect their strength properties; however it resulted in considerable deterioration of their plastic properties along with significant impact on their fracture characteristics and failure localization. The hydrogen embrittlement plays a dominant role in degradation of the plastic properties of the weldments already in their initial material state i.e. before thermal aging. After thermal aging and subsequent hydrogen charging mutual superposition of thermal and hydrogen embrittlement phenomena had led to clearly observable effects on the welds deformation and fracture processes. The measure of hydrogen embrittlement was clearly lowered for thermally aged material state since the contribution of thermal embrittlement to overall degradation of the weldments has dominated. The majority of failures of the weldments after hydrogen charging occurred in the vicinity of T92 BM/Ni weld metal (WM) fusion zone; mostly along the Type-II boundary in Ni-based weld metal. Thus regardless of aging exposure the most critical failure regions of the investigated weldments after hydrogen charging and tensile straining at room temperature are the T92 BM/Ni WM fusion boundary and Type-II boundary acting like preferential microstructural sites for hydrogen embrittling effects accumulation
Hydrogen for Heating? Decarbonization Options for Households in the European Union in 2050
Mar 2021
Publication
This study compares the cost of several low-greenhouse gas (GHG) or GHG-neutral residential heating technologies in the year 2050: (1) hydrogen boilers (2) hydrogen fuel cells with an auxiliary hydrogen boiler for cold spells (3) air-source heat pumps using renewable electricity and (4) heat pumps with an auxiliary hydrogen boiler for cold spells. The assessment includes low-carbon hydrogen from steam-methane reforming (SMR) using natural gas combined with carbon capture and storage (CCS) or SMR + CCS and zero-carbon hydrogen produced from renewable electricity using electrolysis.
The analysis finds that air-source heat pumps are the most cost-effective residential heating technology in 2050 and are at least 50% lower cost than the hydrogen-only technologies. In a sensitivity analysis we find that even if natural gas costs were 50% lower or renewable electricity prices were 50% higher in 2050 compared to our central assumptions heat pumps would still be more cost-effective than hydrogen boilers or fuel cells. Renewable electrolysis hydrogen can be cost-competitive with SMR + CCS hydrogen in 2050 although electrolysis hydrogen is not produced at scale today. At the same time energy efficiency measures to reduce heat demand would be a more cost-effective strategy for achieving GHG reductions than any of the low-GHG heating pathways we assess in this study.
The analysis shows that all pathways using renewable electricity have a near-zero GHG intensity while SMR + CCS hydrogen could reduce GHG emissions by 69%–93% compared to natural gas if improvements are made in the future to reduce the GHG intensity of this pathway. Quantifying the GHG impact and cost effectiveness of various heating pathways is relevant for European policymakers facing decisions on how to both decarbonize buildings and alleviate energy poverty in line with commitments made in the Renovation Wave Initiative.
The document can be downloaded from the ICCT website
The analysis finds that air-source heat pumps are the most cost-effective residential heating technology in 2050 and are at least 50% lower cost than the hydrogen-only technologies. In a sensitivity analysis we find that even if natural gas costs were 50% lower or renewable electricity prices were 50% higher in 2050 compared to our central assumptions heat pumps would still be more cost-effective than hydrogen boilers or fuel cells. Renewable electrolysis hydrogen can be cost-competitive with SMR + CCS hydrogen in 2050 although electrolysis hydrogen is not produced at scale today. At the same time energy efficiency measures to reduce heat demand would be a more cost-effective strategy for achieving GHG reductions than any of the low-GHG heating pathways we assess in this study.
The analysis shows that all pathways using renewable electricity have a near-zero GHG intensity while SMR + CCS hydrogen could reduce GHG emissions by 69%–93% compared to natural gas if improvements are made in the future to reduce the GHG intensity of this pathway. Quantifying the GHG impact and cost effectiveness of various heating pathways is relevant for European policymakers facing decisions on how to both decarbonize buildings and alleviate energy poverty in line with commitments made in the Renovation Wave Initiative.
The document can be downloaded from the ICCT website
The Hydrogen Economy - Evaluation of the Materials Science and Engineering Issues
Jan 2005
Publication
The main objectives were to identify materials issues relating to the widespread use of hydrogen as a fuel.
MAIN FINDINGS
MAIN FINDINGS
- Hydrogen is seen by many as the answer to the environmental problems of reliance on fossil fuels for energy needs. A great deal of effort is currently being invested in research into all areas of the hydrogen economy such as fuel cells hydrogen generation transportation and storage.
- Fuel cells have the potential to provide power for a very wide range of applications ranging from small portable electronics devices to large stationary electricity production and vehicles covering the whole range of road vehicles and possibly extending to rail marine and even aviation.
- The main obstacles to achieving a viable hydrogen economy are costs of producing hydrogen from renewable sources issues relating to transportation and storage due to the low energy density of hydrogen gas and the cost and reliability of fuel cells.
- The main material considerations relating to the use of hydrogen are hydrogen embrittlement material properties at cryogenic temperatures (due to use of liquid hydrogen) and permeability.
- A number of new materials are likely to come to prominence in a hydrogen economy; high performance composites are likely to be used extensively for high pressure hydrogen cylinders new materials or combinations of materials may be used for hydrogen pipelines and a range of new materials are currently being considered for hydrogen storage such as metal hydrides and carbon nanotubes.
- Due to the effect of hydrogen on materials it is important to test any materials in the environment in which they would be used. Depending on the type of test this could require the use of very specialist expensive equipment.
Mechanical Spectroscopy Investigation of Point Defect-Driven Phenomena in a Cr Martensitic Steel
Oct 2018
Publication
The paper presents and discusses results of mechanical spectroscopy (MS) tests carried out on a Cr martensitic steel. The study regards the following topics: (i) embrittlement induced by Cr segregation; (ii) interaction of hydrogen with C–Cr associates; (iii) nucleation of Cr carbides. The MS technique permitted characterising of the specific role played by point defects in the investigated phenomena: (i) Cr segregation depends on C–Cr associates distribution in as-quenched material in particular a slow cooling rate (~150 K/min) from austenitic field involves an unstable distribution which leads to Cr concentration fluctuations after tempering at 973 K; (ii) hydrogen interacts with C–Cr associates and the phenomenon hinders hydrogen attack (HA) because hydrogen atoms bound by C–Cr associates are not able to diffuse towards grain boundaries and dislocation where CH4 bubbles may nucleate grow and merge to form the typical HA cracks; (iii) C–Cr associates take part in the nucleation mechanism of Cr7C3 carbides and specifically these carbides form by the aggregation of C–Cr associates with 1 Cr atom.
Net Zero Public Dialogue
Mar 2021
Publication
This research project brought together members of the public from across the UK to participate in online workshops to explore:
- public understanding and perceptions of what reaching climate targets in the UK will mean for them individually and for society as a whole
- public attitudes and preferences towards the role that individual behaviour change should have in reaching net zero
- public perceptions of the easiest and toughest areas of change to help reach net zero
- public views on how they would prefer to engage with net zero policies and relevant initiatives that they feel could support the delivery of net zero
The Role of Effectiveness Factor on the Modeling of Methanol Steam Reforming Over CuO/ZnO/Al2O3 Catalyst in a Multi-tubular Reactor
Jan 2022
Publication
A pseudo-homogeneous model for the methanol steam reforming process was developed based on reaction kinetics over a CuO/ZnO/Al2O3 catalyst and non-adiabatic heat and mass transfer performances in a co-current packed-bed reactor. A Thiele modulus method and an intraparticle distribution method were applied for predicting the effectiveness factors for main reactions and providing insights into the diffusion-reaction process in a cylindrical catalyst pellet. The results of both methods are validated and show good agreements with the experimental data but the intraparticle distribution method provides better predictions. Results indicate that increases in catalyst size and bulk fluid temperature amplify the impact of intraparticle diffusion limitations showing a decrease in effectiveness factors. To satisfy the requirements of a high temperature polymer electrolyte membrane fuel cell stack the optimized operating conditions which bring the methanol and CO concentrations to less than 1% vol in the reformate stream are determined based on the simulation results.
Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems
Apr 2022
Publication
The current evidential effect of carbon emissions has become a societal challenge and the need to transition to cleaner energy sources/technologies has attracted wide research attention. Technologies that utilize low-grade heat like the organic Rankine cycle (ORC) and Kalina cycle have been proposed as viable approaches for fossil reduction/carbon mitigation. The development of renewable energy-based multigeneration systems is another alternative solution to this global challenge. Hence it is important to monitor the development of multigeneration energy systems based on low-grade heat. In this study a review of the ORC’s application in multigeneration systems is presented to highlight the recent development in ORC integrality/application. Beyond this a new ORC-CPVT (concentrated photovoltaic/thermal) integrated multigeneration system is also modeled and analyzed using the thermodynamics approach. Since most CPVT systems integrate hot water production in the thermal stem the proposed multigeneration system is designed to utilize part of the thermal energy to generate electricity and hydrogen. Although the CPVT system can achieve high energetic and exergetic efficiencies while producing thermal energy and electricity these efficiencies are 47.9% and 37.88% respectively for the CPVT-ORC multigeneration configuration. However it is noteworthy that the electricity generation from the CPVT-ORC configuration in this study is increased by 16%. In addition the hot water cooling effect and hydrogen generated from the multigeneration system are 0.4363 L/s 161 kW and 1.515 L/s respectively. The environmental analysis of the system also shows that the carbon emissions reduction potential is enormous.
HyUnder – Hydrogen Underground Storage at Large Scale: Case Study Spain
Aug 2015
Publication
Hydrogen as an energy carrier is understood as a system capable of storing energy for a later use in a controlled manner. Surplus electricity from renewable energy serves for green hydrogen generation via electrolysis. Once produced the hydrogen is stored for later consumption. This paper describes the Spanish Case Study of the HyUnder project which aims to evaluate the potential of underground hydrogen storage for large-scale energy storage along Europe analysing besides the Spanish Case France Germany the Netherlands Romania and the United Kingdom. This case study has considered for the assessment the competitiveness of hydrogen storage against other large scale energy storage concepts the geological potential for hydrogen storage in the region how to embed the hydrogen energy storage in the energy market and the possible business cases in four different applications: transport Power to Gas re-electrification and industry taking into account all the economic aspects such us the electrolyser OPEX and CAPEX or the cavern electricity and water costs. It is shown that the Spanish geology can provide four technical options for hydrogen underground storage. Results have shown the interest of the technology in short – medium term especially linked to certain conditions of high intermittent renewable energy penetration in the Spanish power grid that result in surplus or residual electricity. Hydrogen storage is interesting because it can integrate renewable energy systems in other sectors which do not have overcapacity and a high use of fossil fuels as the natural gas sector and the transport sector. Moreover all the economic issues have been analysed for two different horizons 2025 and 2050; concluding that the average price of electricity is the main cost. From the financial results transport application represents a business case which although in order has enough values of hydrogen demand to be stored combination of different applications must be needed in order to make sense to the development of the cavern.
The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminium Alloy
Oct 2017
Publication
This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process until the average thickness of the specimens was reduced by 7% and 15% respectively. A study of the structure microhardness and tensile properties of the hydrogen charged aluminium specimens with and without cold rolling indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.
The Influence of Degradation Effects in Proton Exchange Membrane Fuel Cells on Life Cycle Assessment Modelling and Environmental Impact Indicators
Apr 2022
Publication
Although proton exchange membrane fuel cell (PEMFC) systems are expected to have lower environmental impacts in the operational phase compared to conventional energy conversion systems there are still certain economic operational and environmental setbacks. Durability under a wide range of operating conditions presents a challenge because degradation processes affect the PEMFC efficiency. Typically life cycle assessment (LCA) of PEMFC systems do not include performance degradation. Thus a novel semi-empirical PEMFC model is developed which includes degradation effects caused by different operational regimes (dynamic and steady-state). The model is integrated into LCA through life cycle inventory (LCI) to achieve a more realistic and accurate evaluation of environmental impacts. Verification of the model clearly showed that the use of existing LCI models underestimates the environmental impacts. This is especially evident when green hydrogen is used in PEMFC operational phase where manufacturing phase and maintenance (stack replacements) become more influential. Input parameters of the model can be modified to reflect technological improvements (e.g. platinum loading or durability) and evaluate the effects of future scenarios.
Impact of Hydrogen Admixture on Combustion Processes – Part II: Practice
Dec 2020
Publication
The Fuel Cells & Hydrogen Joint Undertaking (FCH JU) project ""Testing Hydrogen admixture for Gas Appliances"" aka THyGA is proud to release the second deliverable about the impact of hydrogen admixture on combustion processes. This time the report explores the expected impact of H2NG on a range of appliance designs installed in the EU.
After the deliverable D2.2 dedicated to the theorical estimation of the impact of H2 admixture THyGA reviews results from the litterature to evaluate available knowledge on CO and NOx formation overheating flame temperature flashback H2 leakage operational implications and efficiency of appliances supplied with H2NG blends. Learn more and read deliverable D2.3.
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2) a greenhouse gas.
This is part two. Part one of this project can be found at this link
After the deliverable D2.2 dedicated to the theorical estimation of the impact of H2 admixture THyGA reviews results from the litterature to evaluate available knowledge on CO and NOx formation overheating flame temperature flashback H2 leakage operational implications and efficiency of appliances supplied with H2NG blends. Learn more and read deliverable D2.3.
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2) a greenhouse gas.
This is part two. Part one of this project can be found at this link
Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities
Jun 2018
Publication
In this study electrochemical measurements immersion tests and slow strain rate tensile (SSRT) tests were applied to investigate the electrochemical and stress corrosion cracking (SCC) behavior of X70 steel in simulated seawater with the interference of different alternating current (AC) densities. The results indicate that AC significantly strengthens the cathodic reaction especially the oxygen reduction reaction. Simultaneously hydrogen evolution reaction occurs when the limiting diffusion current density of oxygen reaches and thus icorr sharply increases with the increase in AC density. Additionally when AC is imposed the X70 steel exhibits higher SCC susceptibility in the simulated seawater and the susceptibility increases with the increasing AC density. The SCC mechanism is controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) with the interference of AC.
The Role of CCS in Meeting Climate Policy Targets
Oct 2017
Publication
Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat industrial processes and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies CCS is not without risks or uncertainties and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options in future years.
The full report can be found on the Global CSS Institute website at this link
The full report can be found on the Global CSS Institute website at this link
Choked Two-phase Flow with Account of Discharge Line Effects
Jan 2019
Publication
An engineering tool is presented to predict steady state two-phase choked flow through a discharge line with variable cross section with account of friction and without wall heat transfer. The tool is able to predict the distribution of all relevant physical quantities along the discharge line. Choked flow is calculated using the possible-impossible flow algorithm implemented in a way to account for possible density discontinuities along the line. Physical properties are calculated using the Helmholtz Free Energy formulation. The tool is verified against previous experiments with water and evaluated against previous experiments with cryogenic two-phase hydrogen.
Heat Pump Manufacturing Supply Chain Research Project Report
Dec 2020
Publication
The Department for Business Energy and Industrial Strategy (BEIS) commissioned a study to research the capacity of the manufacturing supply chain to meet expected future demand for heat pumps. This report contains analysis of the existing supply chain including component parts and also assesses the risks to and opportunities for growth in domestic heat pump manufacture and export.<br/><br/>Alongside a literature review the findings in this report were supported by interviews with organisations involved in the manufacture of heat pumps and an online workshop held with a range of businesses throughout the supply chain.
Critical Materials for Water Electrolysers at the Example of the Energy Transition in Germany
Feb 2021
Publication
The present work aims to identify critical materials in water electrolysers with potential future supply constraints. The expected rise in demand for green hydrogen as well as the respective implications on material availability are assessed by conducting a case study for Germany. Furthermore the recycling of end‐of‐life (EoL) electrolysers is evaluated concerning its potential in ensuring the sustainable supply of the considered materials. As critical materials bear the risk of raising production costs of electrolysers substantially this article examines the readiness of this technology for industrialisation from a material perspective. Except for titanium the indicators for each assessed material are scored with a moderate to high (platinum) or mostly high (iridium scandium and yttrium) supply risk. Hence the availability of these materials bears the risk of hampering the scale‐up of electrolysis capacity. Although conventional recycling pathways for platinum iridium and titanium already exist secondary material from EoL electrolysers will not reduce the dependence on primary resources significantly within the period under consideration—from 2020 until 2050. Notably the materials identified as critical are used in PEM and high temperature electrolysis whereas materials in alkaline electrolysis are not exposed to significant supply risks.
Options for Multilateral Initiatives to Close the Global 2030 Climate Ambition and Action Gap - Policy Field Synthetic E-fuels
Jan 2021
Publication
Achieving the goals of the Paris Agreement requires increased global climate action especially towards the production and use of synthetic e-fuels. This paper focuses on aviation and maritime transport and the role of green hydrogen for indirect electrification of industry sectors. Based on a sound analysis of existing multilateral cooperation the paper proposes four potential initiatives to increase climate ambition of the G20 countries in the respective policy field: a Sustainable e-Kerosene Alliance a Sustainable e-fuel Alliance for Maritime Shipping a Hard-to-Abate Sector Partnership and a Global Supply-demand-partnership.
The full report can be found here on the Umweltbundesamt website
The full report can be found here on the Umweltbundesamt website
Thermodynamic Assessment of the Novel Concept of the Energy Storage System Using Compressed Carbon Dioxide, Methanation and Hydrogen Generator
Jul 2021
Publication
The main aim of this paper is to characterize the concept of a novel energy storage system based on compressed CO2 storage installation that uses an infrastructure of depleted coal mines to provide required volume of tanks and additionally hydrogen generators and a methanation installation to generate synthetic natural gas that can be used within the system or taken out of it e.g. to a gas grid. A detailed mathematical model of the proposed solution was built using own codes and Aspen Plus software. Thermodynamic evaluation aiming at determining parameters composition and streams in all the most important nodes of the system for the nominal point and when changing a defined decision variable δ (in the range from 0.1 to 0.9) was made. The evaluation was made based on the storage efficiency volume of the tanks and flows of energy within the system. The storage efficiency in the nominal point reached 45.08% but was changing in the range from 35.06% (for δ = 0.1) to 63.93% (for δ = 0.9). For the nominal value of δ equal to 0.5 volume of the low-pressure tank (LPT) was equal to 132869 m3 while of the high pressure tank (HPT) to 1219 m3 . When changing δ these volumes were changing from 101900 m3 to 190878 m3 (for LPT) and from 935 to 1751 m3 (for HPT) respectively. Detailed results are presented in the paper and indicate high storage potential of the proposed solution in regions with underground mine infrastructure.
Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
Jun 2018
Publication
A key issue in understanding and effectively managing hydrogen embrittlement in complex alloys is identifying and exploiting the critical role of the various defects involved. A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients in the material as well as microstructural trapping sites such as grain boundaries and dislocations. In particular the energetic parameters used in this coupled approach are determined from ab initio calculations. Complementary experimental investigations that are presented show that a numerical approach capable of massive scale-bridging up to the macroscale is required. Due to the wide range of length scales accounted for we apply homogenisation schemes for the hydrogen concentration to reach simulation dimensions comparable to metallurgical process scales. Via a representative volume element approach an ab initio based scale bridging description of dislocation-induced hydrogen aggregation is easily accessible. When we extend the representative volume approach to also include an analytical approximation for the ab initio based description of grain boundaries we find conceptual limitations that hinder a quantitative comparison to experimental data in the current stage. Based on this understanding the development of improved strategies for further efficient scale bridging approaches is foreseen.
No more items...