- Home
- A-Z Publications
- Publications
Publications
Industrial Decarbonisation Policies for a UK Net-Zero Target
Dec 2020
Publication
To inform our Sixth Carbon Budget advice the Climate Change Committee (CCC) asked the University of Leeds to undertake independent research to evaluate which policies (and combinations of policies) would enable industrial decarbonisation in line with the UK’s net zero target without inducing carbon leakage. The research focused on policies applicable to the manufacturing sector but with some consideration also given to the policies required to decarbonise the Fossil Fuel Production and Supply and Non-Road Mobile Machinery sectors. This report:
Sets out a comprehensive review of existing policies;
The paper can be downloaded from the CCC website
Sets out a comprehensive review of existing policies;
- Identifies future policy mechanisms that address key challenges in decarbonising industry;
- Explores how combinations of policies might work together strategically in the form of ‘policy packages’ and how these packages might evolve over the period to 2050;
- Evaluates a series of illustrative policy packages and considers any complementary policies required to minimise carbon leakage and deliver ‘just’ industrial decarbonisation.
- The findings were developed through a combination of literature review and extensive stakeholder engagement with industry government and academic experts.
The paper can be downloaded from the CCC website
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Apr 2018
Publication
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However according to recent studies the hydrogen leads to the decline of the mechanical properties of steel which is known as hydrogen embrittlement is another reason for flake formation. In addition the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure hydrogen embrittlement and stress induced hydrogen re-distribution. The analysis model was established using the finite element method and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap a stress field formed. In addition the trap is the center of stress concentration. Then hydrogen is concentrated in a distribution around this trap and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However when the trap size exceeds the specified value the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm the critical hydrogen content of Cr5VMo steel is 2.2 ppm which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel.
Policy-driven, Narrative-based Evidence Gathering: UK Priorities for Decarbonisation Through Biomass
May 2015
Publication
Evidence-based policy-making has been a much-debated concept. This paper builds on various insights for a novel perspective: policy-driven narrative-based evidence gathering. In a case study of UK priority setting for bioenergy innovation documents and interviews were analysed to identify links between diagnoses of the problem societal visions policy narratives and evidence gathering. This process is illuminated by the theoretical concept of sociotechnical imaginaries—technoscientific projects which the state should promote for a feasible desirable future. Results suggest that evidence has been selectively generated and gathered within a specific future vision whereby bioenergy largely provides an input-substitute within the incumbent centralised infrastructure. Such evidence is attributed to an external expertise thus helping to legitimise the policy framework. Evidence has helped to substantiate policy commitments to expand bioenergy. The dominant narrative has been reinforced by the government’s multi-stakeholder consultation favouring the incumbent industry and by incentive structures for industry co-investment.
A Panoramic Analysis of Hydrogen Utilization Systems Using an Input-output Table for Next Generation Energy Systems
Apr 2017
Publication
The objective of this study is to analyze a government proposal from a panoramic perspective concerning the economic and environmental effects associated with the construction and operation of hydrogen utilization systems by the year 2030. We focused on a marine transport system for hydrogen produced offshore hydrogen gas turbine power generation fuel cell vehicles (FCVs) and hydrogen stations as well as residential fuel cell systems (RFCs). In this study using an Input-Output Table for Next Generation Energy Systems (IONGES) we evaluated the induced output labor and CO2 emissions from the construction and operation of these hydrogen technologies using a uniform approach. This may be helpful when considering future designs for the Japanese energy system. In terms of per 1 t-H2 of hydrogen use CO2 reductions from the use of FCVs are considerably higher than the additional CO2 emissions from foreign production and transportation of hydrogen. Because new construction of a hydrogen pipeline network is not considered to be realistic RFCs is assumed to consume hydrogen generated by refining town gas. In this case the CO2 reductions from using RFCs will decline under the electricity composition estimated for 2030 on the condition of a substantial expansion of electricity generation from renewable energy sources. However under the present composition of electricity production we can expect a certain amount of CO2 reductions from using RFCs. If hydrogen is directly supplied to RFCs CO2 reductions increase substantially. Thus we can reduce a significant amount of CO2 emissions if various unused energy sources dispersed around local areas or unharnessed renewable energies such as solar and wind power can be converted into hydrogen to be supplied to FCVs and RFCs.
A Study on the Effectivity of Hydrogen Leakage Detection for Hydrogen Fuel Cell
Sep 2017
Publication
Unlike four-wheel fuel-cell vehicles fuel-cell motorcycles have little semi-closure space corresponding to the engine compartment of four-wheel fuel-cell vehicles. Furthermore motorcycles may fall while parked or running. We conducted hydrogen concentration measurement and ignition tests to evaluate the feasibility of detecting leaks when hydrogen gas leaked from a fuel-cell motorcycle as well as the risk of ignition. We found that the installation of hydrogen leak detectors is effective because it is possible to detect minute hydrogen leaks by installing leak detectors at appropriate points on the fuel cell motorcycle and risks can be reduced by interrupting the hydrogen leak immediately after detection.
Parametric Studies on LaNi4.7Al0.3 Based Hydrogen Storage Reactor with Embedded Cooling Tubes
Mar 2019
Publication
This study reports the investigative conclusions of parametric studies conducted to understand the effect of operating parameters on absorption and desorption characteristics of LaNi4.7Al0.3 metal hydride system for thermal management applications. Reactor with improved design containing 55 embedded cooling tubes is fabricated and filled with 4 kg of metal hydride alloy. Using water as heat transfer fluid (HTF) effects of supply pressure HTF temperature and HTF flow rate on absorption and desorption characteristics of the reactor are analyzed. Increasing supply pressure leads to prominent improvement in absorption capacity while the increase in HTF temperature enhanced desorption performance. At 20 bar and 20 °C 46.2877 g of hydrogen (1.16 wt%) was absorbed resulting in total energy output of 707.3 kJ for 300 s. During desorption at 80 °C with water flow rate of 8 lpm heat input of 608.1 kJ for 300 s resulted in 28.5259 g of hydrogen desorption.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2015 Final Report
Apr 2016
Publication
The 2015 Programme Review Report refers to the fifth review of the FCH JU project portfolio and covers 100 projects funded through annual calls for proposals from 2009 to 2013.<br/>The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the overall project portfolio fulfilled the objectives of the FCH JU Multi-Annual Implementation and Work Plans.
Influence of the Gas Injector Configuration on the Temperature Evolution During Refueling of On-board Hydrogen Tanks
Jul 2016
Publication
In this article we show a refuelling strategy analysis using different injector configurations to refuel a 70 MPa composite reinforced type 4 tank. The gas has been injected through single openings of different diameters (3 mm 6 mm and 10 mm) and alternatively through multiple small holes (4 × 3 mm). For each injector configuration slow (12 min) and faster (3 min) fillings have been performed. The gas temperature has been measured at different positions inside the tank as well as the temperatures of the wall materials at various locations: on the external surface and at the interface between the liner and the fiber reinforced composite. In general the larger the injector diameter and the slower the filling the higher the chance that the gas develops vertical temperature gradients (a so-called gas temperature stratification) resulting in higher than average temperatures near the top of the tank and lower than average at its bottom. While the single 3 mm opening injector causes homogeneous gas temperatures for both filling speeds both the 6 mm and 10 mm opening injectors induce gas temperature stratification during the 12 min fillings. The injector with multiple holes has an area comparable to the 6 mm single opening injector: in general this more complex geometry tends to limit the inhomogeneity of gas temperatures during slow fillings. When gas temperature stratification develops the wall materials temperature is also locally affected. This results in a higher than average temperature at the top of the tank and higher the slower the filling.
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatter diffraction analysis indicated that the reduction in ductility by hydrogen pre-charging was associated with localized plasticity-assisted intergranular crack initiation. It should be noted as an important finding that hydrogen-assisted cracking of the metastable HEA occurred not through a brittle mechanism but through localized plastic deformation in both the austenite and ε-martensite phases.
Advancing Europe's Energy Systems- Stationary Fuel Cells in Distributed Generation
Mar 2015
Publication
Stationary fuel cells can play a beneficial role in Europe's changing energy landscape. The energy systems across Europe face significant challenges as they evolve against the backdrop of an ambitious climate agenda. As energy systems integrate more and more generation capacity from intermittent renewables numerous challenges arise. Amongst others Europe's energy systems of the future require new concepts for complementary supply such as efficient distributed power generation from natural gas. At the same time significant investments to modernise the electricity grid infrastructure are needed. Long-term storage solutions become a growing priority to ensure permanent power supply e.g. power-to-gas. Moreover Europe puts greater emphasis on energy efficiency in order to save primary energy reduce fuel imports and increase energy security.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Report on Socio-economic Impact of the FCH -JU Activities
Feb 2016
Publication
The FCH JU has with its industry and research partners worked since 2008 to develop and demonstrate FCH technologies along with development of the various business and environmental cases. It has involved a programme of increasingly ambitious demonstrations projects a consistent approach to research and development actions and a long term policy commitment. Developing the business and environmental cases for FCH technologies has created an increasingly compelling vision appealing to a range of stakeholders: to FCH technology businesses themselves assured by the long term commitment of the FCH JU to end users in terms of cost and operational performance potential and as critically to increasing numbers of policy and decision makers attracted by the substantial socio-economic benefits.
Prediction of Pressure Reduction Rate in 30 m3 Liquid Hydrogen Tank Based on Experimental and Numerical Analysis
Sep 2019
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large scale transport and storage of hydrogen with higher densities and potentially better safety performance. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducts pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The work program consists of a preparatory phase where the state of the art before the project has been summarized and where the experimental planning was adjusted to the outcome of a research priorities workshop. The central part of the project consists of 3 phenomena oriented work packages addressing Release Ignition and Combustion with analytical approaches experiments and simulations. The results shall improve the general understanding of the behaviour of LH2 in accidents and thereby enhance the state-of-the-art what will be reflected in appropriate recommendations for development or revision of specific international standards. The paper presents the status of the project at the middle of its terms.
Assessing the Viability of the ACT Natural Gas Distribution Network for Reuse as a Hydrogen Distribution Network
Sep 2019
Publication
The Australian Capital Territory (ACT) has legislated and aims to be net zero emissions by 2045. Such ambitious targets have implications for the contribution of hydrogen and its storage in gas distribution networks Therefore we need to understand now the impacts on the gas distribution network of the transition to 100% hydrogen. Assessment of the viability of decarbonising the ACT gas network will be partly based on the cost of reusing the gas network for the safe and reliable distribution of hydrogen. That task requires each element of the natural gas safety management system to be evaluated.
This article describes the construction of a test facility in Canberra Australia used to identify issues raised by 100% hydrogen use in the medium pressure distribution network consisting of nylon and polyethylene (PE) as a means of identifying measures necessary to ensure ongoing validity of the network's regulatory safety case.
Evoenergy (the ACT's gas distribution company) have constructed a Test Facility incorporating an electrolyser a gas supply pressure reduction and mixing skid a replica gas network and a domestic installation with gas appliances. Jointly with Australian National University (ANU) and Canberra Institute of Technology (CIT) the Company has commenced a program of “bench testing” initially with 100% hydrogen to identify gaps in the safety case specifically focusing on the materials work practices and safety systems in the ACT.
The facility is designed to assess:
The paper addresses major safety issues relating to the production/storage distribution and consumer end use of hydrogen injected into existing gas distribution networks. The analysis is guided by the Safety Management System. The Hydrogen Testing Facility described in the paper provide tools for evaluation of hydrogen safety matters in the ACT and Australia-wide.
Testing to date has confirmed that polyethylene and nylon pipe and their respective jointing techniques can contain 100% hydrogen at pressures used for the distribution of natural gas. Testing has also confirmed that current installation work practices on polyethylene and nylon pipe and joints are suitable for hydrogen service. This finding is subject to variation attributable to staff training and skill levels and further testing has been programmed as outlined in this paper.
Testing of gas isolation by clamping and simulated repair on the hydrogen network has established that standard natural gas isolation techniques work with 100% hydrogen at natural gas pressures.
This article describes the construction of a test facility in Canberra Australia used to identify issues raised by 100% hydrogen use in the medium pressure distribution network consisting of nylon and polyethylene (PE) as a means of identifying measures necessary to ensure ongoing validity of the network's regulatory safety case.
Evoenergy (the ACT's gas distribution company) have constructed a Test Facility incorporating an electrolyser a gas supply pressure reduction and mixing skid a replica gas network and a domestic installation with gas appliances. Jointly with Australian National University (ANU) and Canberra Institute of Technology (CIT) the Company has commenced a program of “bench testing” initially with 100% hydrogen to identify gaps in the safety case specifically focusing on the materials work practices and safety systems in the ACT.
The facility is designed to assess:
- Materials in use including aged network materials and components
- Construction and installation techniques both greenfield and live gas work
- Purging and filling techniques
- Leak detection both underground and above ground
- Emergency response and make safe techniques
- Issues associated with use of hydrogen in light commercial and domestic appliances.
- Technicians and gas fitters on infrastructure installation and management
- Emergency response services on responding to hydrogen related emergencies in a network environment; and
- Manage public perceptions of hydrogen in a network environment.
The paper addresses major safety issues relating to the production/storage distribution and consumer end use of hydrogen injected into existing gas distribution networks. The analysis is guided by the Safety Management System. The Hydrogen Testing Facility described in the paper provide tools for evaluation of hydrogen safety matters in the ACT and Australia-wide.
Testing to date has confirmed that polyethylene and nylon pipe and their respective jointing techniques can contain 100% hydrogen at pressures used for the distribution of natural gas. Testing has also confirmed that current installation work practices on polyethylene and nylon pipe and joints are suitable for hydrogen service. This finding is subject to variation attributable to staff training and skill levels and further testing has been programmed as outlined in this paper.
Testing of gas isolation by clamping and simulated repair on the hydrogen network has established that standard natural gas isolation techniques work with 100% hydrogen at natural gas pressures.
FCH JU – Key to Sustainable Energy and Transport
Jan 2019
Publication
This brochure offers an overview of the main applications of fuel cell and hydrogen technologies and how they work and provides insights into our programme and our accomplishments.
Assessment of the Impact of Material Selection on Aviation Sustainability, from a Circular Economy Perspective
Jan 2022
Publication
Climate change and global warming pose great sustainability challenges to the aviation industry. Alternatives to petroleum-based fuels (hydrogen natural gas etc.) have emerged as promising aviation fuels for future aircraft. The present study aimed to contribute to the understanding of the impact of material selection on aviation sustainability accounting for the type of fuel implemented and circular economy aspects. In this context a decision support tool was introduced to aid decisionmakers and relevant stakeholders to identify and select the best-performing materials that meet their defined needs and preferences expressed through a finite set of conflicting criteria associated with ecological economic and circularity aspects. The proposed tool integrates life-cycle-based metrics extending to both ecological and economical dimensions and a proposed circular economy indicator (CEI) focused on the material/component level and linked to its quality characteristics which also accounts for the quality degradation of materials which have undergone one or more recycling loops. The tool is coupled with a multi-criteria decision analysis (MCDA) methodology in order to reduce subjectivity when determining the importance of each of the considered criteria.
H-Mat Hydrogen Compatibility of Polymers and Elastomers
Sep 2019
Publication
The H2@Scale program of the U.S. Department of Energy (DOE) Fuel Cell Technologies Office is supporting work on the hydrogen compatibility of polymers to improve the durability and reliability of materials for hydrogen infrastructure. The hydrogen compatibility program (H-Mat) seeks “to address the challenges of hydrogen degradation by elucidating the mechanisms of hydrogen-materials interactions with the goal of providing science-based strategies to design materials (micro)structures and morphology with improved resistance to hydrogen degradation.” This research has found hydrogen and pressure interactions with model rubber-material compounds demonstrating volume change and compression-set differences in the materials. The research leverages state-of-the-art capabilities of the DOE national labs. The materials were investigated using helium-ion microscopy which revealed significant morphological changes in the plasticizer incorporating compounds after exposure as evidenced by time-of-flight secondary ion mass spectrometry. Additional studies using transmission electron microscopy and nuclear magnetic resonance revealed that nanosized inclusions developed after gas decompression in rubber- and plasticizer-only materials; this is an indication of void formation at the nanometer level.
Recent Studies of Hydrogen Embrittlement in Structural Materials
Dec 2018
Publication
Mechanical properties of metals and their alloys are most often determined by interstitial atoms. Hydrogen as one common interstitial element is often found to degrade the fracture behavior and lead to premature or catastrophic failure in a wide range of materials known as hydrogen embrittlement. This topic has been studied for more than a century yet the basic mechanisms of such degradation remain in dispute for many metallic systems. This work attempts to link experimentally and theoretically between failure caused by the presence of hydrogen and second phases lattice distortion and deformation levels.
Urban Buses: Alternative Powertrains for Europe: A Fact-based Analysis of the Role of Diesel Hybrid, Hydrogen Fuel Cell, Trolley and Battery Electric Powertrains
Dec 2012
Publication
A coalition of 40 industrial companies and government organizations financially supported by the FCH JU elaborated a technology neutral and fact-based comparative study on eight different powertrain technologies for urban buses in Europe from 2012 to 2030.<br/>According to the results of the study only fully electric powertrain buses (based on hydrogen batteries or trolley system) have the potential to achieve zero local emissions by drastically reducing well-to-wheel emissions.<br/>Following the positive comparative result for fuel cell hydrogen urban buses the FCH JU will launch a follow-up study that more specifically defines real uptake scenarios for market entry scheduled to starting before summer 2013.
Fuel Cell Electric Buses: Potential for Sustainable Public Transport in Europe
Oct 2015
Publication
This report provides an outlook for jointly achieving a commercialisation pathway.<br/>Building on the findings of the 2012 FCH JU technology study on alternative powertrains for urban buses this report provides an assessment of the commercialisation pathway from an operational perspective. It reflects the actual situation in which operators deploy large scale demonstration projects in the next years from a rather conservative angle and argues why it makes sense to deploy FC buses now. The insights are based on first-hand data and assessments of the coalition members from the hydrogen and fuel cell industry as well as local governments and public transport operators in Europe.
Disruptive and Uncertain: Policy Makers’ Perceptions on UK Heat Decarbonisation
May 2020
Publication
<br/>The decarbonisation of heating represents a transformative challenge for many countries. The UK’s net-zero greenhouse gas emissions target requires the removal of fossil fuel combustion from heating in just three decades. A greater understanding of policy processes linked to system transformations is expected to be of value for understanding systemic change; how policy makers perceive policy issues can impact on policy change with knock-on effects for energy system change. This article builds on the literature considering policy maker perceptions and focuses on the issue of UK heat policy. Using qualitative analysis we show that policy makers perceive heat decarbonisation as disruptive technological pathways are seen as deeply uncertain and heat decarbonisation appears to offer policy makers little ‘up-side’. Perceptions are bounded by uncertainty affected by concerns over negative impacts influenced by external influences and relate to ideas of continuity. Further research and evidence on optimal heat decarbonisation and an adaptive approach to governance could support policy makers to deliver policy commensurate with heat decarbonisation. However even with reduced uncertainty and more flexible governance the perceptions of disruption to consumers mean that transformative heat policy may remain unpopular for policy makers potentially putting greenhouse mitigation targets at risk of being missed.
No more items...