Skip to content
1900

Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems

Abstract

The current evidential effect of carbon emissions has become a societal challenge and the need to transition to cleaner energy sources/technologies has attracted wide research attention. Technologies that utilize low-grade heat like the organic Rankine cycle (ORC) and Kalina cycle have been proposed as viable approaches for fossil reduction/carbon mitigation. The development of renewable energy-based multigeneration systems is another alternative solution to this global challenge. Hence, it is important to monitor the development of multigeneration energy systems based on low-grade heat. In this study, a review of the ORC’s application in multigeneration systems is presented to highlight the recent development in ORC integrality/application. Beyond this, a new ORC-CPVT (concentrated photovoltaic/thermal) integrated multigeneration system is also modeled and analyzed using the thermodynamics approach. Since most CPVT systems integrate hot water production in the thermal stem, the proposed multigeneration system is designed to utilize part of the thermal energy to generate electricity and hydrogen. Although the CPVT system can achieve high energetic and exergetic efficiencies while producing thermal energy and electricity, these efficiencies are 47.9% and 37.88%, respectively, for the CPVT-ORC multigeneration configuration. However, it is noteworthy that the electricity generation from the CPVT-ORC configuration in this study is increased by 16%. In addition, the hot water, cooling effect, and hydrogen generated from the multigeneration system are 0.4363 L/s, 161 kW, and 1.515 L/s, respectively. The environmental analysis of the system also shows that the carbon emissions reduction potential is enormous.

Related subjects: Policy & Socio-Economics
Loading

Article metrics loading...

/content/journal3448
2022-04-30
2024-11-02
/content/journal3448
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error