- Home
- A-Z Publications
- Publications
Publications
Comparison of Numerical and Algebraic Models of Low and High Pressure Hydrogen Jet Flows with Ideal and Real Gas Models
Sep 2013
Publication
Hydrogen transportation systems require very high pressure hydrogen storage containers to enable sufficient vehicle range for practical use. Current proposed designs have pressures up to 70 MPa with leakage due to damage or deterioration at such high pressures a great safety concern. Accurate models are needed to predict the flammability envelopes around such leaks which rapidly vary with time. This paper compares CFD predictions of jet flows for low pressure jets with predictions using the integral turbulent buoyant jet model. The results show that the CFD model predicts less entrainment and that the turbulent Schmidt number should be smaller with 0.55 giving better results. Then CFD predictions for very high pressure flows are compared with analytical models for choked flows that generate underexpanded jets into the ambient to evaluate the effects of the model assumptions and the effects of real exit geometries. Real gas effects are shown to accelerate the blowdown process and that real flow effects in the CFD model slow the flow rate and increase the exit temperature.
Hydrogen–methane Mixtures: Dispersion and Stratification Studies
Sep 2011
Publication
The study of hydrogen as an alternative fuel clean and “environment friendly” has been in the last years and continues to be object of many studies international projects and standard development. Hydrogen is a fundamental energy carrier to be developed together with other renewable resources for the transition to a sustainable energy system.<br/>But experience has shown how often the introduction and establishment of a new technology does not necessarily pass through radical changes but can be stimulated by slight modifications to the “present situation”.<br/>So the worldwide experience with natural gas as industrial automotive and domestic fuel has been the incentive to the present interest towards hydrogen–methane mixtures. The possible use of existing pipeline networks for mixtures of natural gas and hydrogen offers a unique and cost-effective opportunity to initiate the progressive introduction of hydrogen as part of the development of a full hydrogen system.<br/>The aim of the work presented in this paper is the investigation of the dispersion and stratification properties of hydrogen and methane mixtures. Experimental activities have been carried out in a large scale closed apparatus characterized by a volume of about 25 m3 both with and without natural ventilation. Mixtures of 10%vol. hydrogen – 90%vol. methane and 30%vol. hydrogen – 70%vol. methane have been studied with the help of oxygen sensors and gas chromatography.
The Correlation Method to Analyze the Gas Mixing Process On The Basis Of BOS Method
Sep 2011
Publication
Structures formed during gas mixing following an injection of a gas into atmosphere are analyzed using optic methods based on the detection of density non-uniformities. Methods for determination of fractal parameters for a random distribution of these non-uniformities are described and information revealed on the gas mixing structure is analyzed. The BOS (background oriented schlieren) technique is utilized to obtain the optical image of the forming structures which afterward is processed using the correlation procedure allowing to extract the quantitative information on the mixing. Additionally a possibility to link the characteristics of the injected gas source and the system fractal parameters was demonstrated. The method can be used in the development of the non-contact methods for the evaluation of the gaseous system parameters based on the optical diagnostics and potentially for the obtaining more detailed information of the gaseous turbulence.
Model-based Determination of Hydrogen System Emissions of Motor Vehicles Using Climate-Chamber Test Facilities
Sep 2007
Publication
Because of air quality problems the problem of CO2 related greenhouse gas emissions and shortage of fossil fuels many vehicles with gaseous fuels (CNG biogas hydrogen etc.) are under research and development. Such vehicles have to prove that as well as their exhaust emissions their overall system emissions (including running loss) remain below certain safety limits before they can be used in practice. This paper presents a cost-effective way of monitoring such system emissions from hydrogen or other gaseous fuel powered vehicles within an air-conditioned chassis dynamometer test cell as commonly used for low ambient emission tests on gasoline vehicles. The only additional equipment needed is a low-concentration sensor for the gas of interest (e.g hydrogen). The method is based on concentration measurements and a dynamic mass balance model. This method is based on the fact that atoms cannot vanish. Applied to a room containing a gas mixture this means that the change of mass of a gaseous matter (called gas G subsequently) inside the chamber is the difference of all mass of G flowing into the chamber and all mass of G flowing out of the chamber. This assumes that no chemical reactions of the gas in mind with other matter take place. By measuring the flow rates and concentrations of ventilation-in flow and ventilation-out flow as well as room concentration the emissions of G of a source i.e. the vehicle to be tested can be calculated. These concentrations need to be measured as functions of time to be able to give values of emissions per time unit. It is shown by a real experiment that very low emissions can be recorded. Additionally error bounds and sensitivities on different parameters such as air exchange ratio are quantified.
H2 High Pressure On-board Storage Considering Safety Issues
Sep 2007
Publication
The present paper reviews the state-of-the-art of integrated structural integrity monitoring systems applicable to hydrogen on-board applications. Storage safety and costs are key issues for the success of the hydrogen technology considered for replacing the conventional fuel systems in transport applications. An in-service health monitoring procedure for high pressure vessels would contribute to minimize the risks associated to high pressure hydrogen storage and to improve the public acceptance. Such monitoring system would also enable a reduction on design burst criteria enabling savings in material costs and weight. This paper reviews safety and maintenance requirements based on present standards for high pressure vessels. A state-of-the-art of storage media and materials for onboard storage tank is presented as well as of current European programmes on hydrogen storage technologies for transport applications including design safety and system reliability. A technological road map is proposed for the development and validation of a prototype within the framework of the Portuguese EDEN project. To ensure safety an exhaustive test procedure is proposed. Furthermore requirements of a safety on-board monitoring system is defined for filament wound hydrogen tanks.
Comparison of Solutions for a Liquid Pool Spreading Model with Continuous and Instantaneous Spills
Sep 2013
Publication
In this study a solution for a liquid pool spreading model with a continuous spill is compared with that for a liquid pool spreading model with an instantaneous spill under the same total release volume. As reducing spill time in completely releasing liquid from a tank it is evaluated whether the solution for a continuous spill approaches to that for an instantaneous spill or not. Also effects of the viscous term in the liquid pool spreading model with continuous and instantaneous spills on the liquid pool spreading behaviour are investigated.
Experiments with Release and Ignition of Hydrogen Gas in a 3m Long Channel
Sep 2007
Publication
This paper presents results from laboratory experiments with hydrogen dispersions and explosions in a 3 m long channel. Our objective is to get a better understanding of the phenomena and to develop tools that can analyse hydrogen dispersions and explosions. A total of 5 test series were performed with flow rates of hydrogen from 1.8 dm³/min to 75 dm³/min. The propagation of the combustible hydrogen-air cloud in the channel was observed from high-speed video recordings. The hydrogen-air cloud in the channel behaves as a gravity current and the flow appears to be well described by Froude scaling with a length scale corresponding to the height of a layer of 100 % hydrogen. The Froude numbers observed in the experiments are in good agreement with the theory of "light-fluid intrusion" for gravity currents found in the literature. Numerical simulations with the Flacs code correlate well with the experimental results. The flame propagation indicated that approximately half the height of the channel was filled with combustible mixture. We believe that this Froude scaling can be useful as a tool to analyse the consequences of hydrogen release in buildings channels and tunnels.
Ignition Experiments of Hydrogen Mixtures by Different Methods and Description of the DRDC Test Facilities
Sep 2009
Publication
The paper will present results of hydrogen/oxygen mixtures ignited by using electric sparks electrostatic discharges a heating element and a flame. Measurements of the lower flammability limit (LFL) was done for each ignition method. The hydrogen mixtures of different concentrations were ignited at the bottom of a combustion chamber leading to an upward propagation of the resulting flame. At some level of concentration the combustion was partial due to the limited upward propagation. The complete combustion of the whole mixture was observed at concentration limits higher than the known LFL of 4% vol. for hydrogen in air. The paper will describe the test facilities and the resulting ignition probabilities for different ignition methods.
Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition
Dec 2021
Publication
In Europe electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser direct reduction shaft electric arc furnace as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions we show that the electricity price following steel production reduces the total steel production cost by 23% and 17% respectively as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix.
Hy4Heat Hydrogen Purity - Work Package 2
Feb 2020
Publication
The report makes a recommendation for a minimum hydrogen purity standard to be used by manufacturers developing prototype hydrogen appliances and during their subsequent demonstration as part of the Hy4Heat programme. It makes a recommendation for a hydrogen purity level with the aim that it is reasonable and practicable and considers implications related to hydrogen production the gas network and cost.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Lessons Learned from Safety Events
Sep 2011
Publication
The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety [1] [2]. Since 2009 continuing work has not only highlighted the value of safety lessons learned but enhanced how the database provides access to another safety knowledge tool Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learning’s from around the world. This paper updates recent progress highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting analyzing and using safety event information.
Let’s Go Green With Hydrogen! The General Public’s Perspective
Sep 2011
Publication
It is well known in socio-economics that the success of an innovation process depends to a great extent on public acceptance. The German HyTrust project analyzes the current state of public acceptance in hydrogen technology in the mobility sector. This paper focuses on cutting-edge results of interviews focus groups and a representative survey. Based on these results almost 80% of the Germans are in favor of introducing hydrogen vehicles. But from the perspective of the general public it is important that hydrogen is produced in an environmentally friendly way. HyTrust is the socio-scientific research project that accompanies the German Federal Government's National Innovation Programme.
Single Step Compact Steam Methane Reforming Process for Hydrogen-Cng (H-Cng) Production from Natural Gas
Sep 2011
Publication
Compressed natural gas (CNG) is being increasingly used as a clean transportation fuel. However for further reduction in emissions particularly NOx H-CNG mixture with ~ 20 % hydrogen is recommended. Presently most of the H-CNG mixture is produced by blending hydrogen with CNG. For hydrogen production Steam Methane Reforming (SMR) is a major process accounting for more than 90% of hydrogen production by various industries. In this process natural gas is first reformed to syn gas under severe operating conditions (Pressure 20-30 bar temperature 850-950 deg C) followed by conversion of CO to hydrogen in the shift reactor. Other method of hydrogen production such as electrolysis of water is more expensive. Further there are issues of safety with handling of hydrogen its storage and transportation for blending. In order to overcome these problems a single step compact process for the production of H-CNG gaseous mixture through low severity steam methane reforming of natural gas has been developed. It employs a catalyst containing nickel nickel oxide magnesium oxide and silica and has the capability of producing H-CNG mixture in the desired proportion containing 15-20 vol % hydrogen with nil CO production. The process is flexible and rugged allowing H-CNG production as per the demand. The gaseous H-CNG product mixture can directly be used as automobile fuel after compression. The process can help as important step in safe transition towards hydrogen economy. A demonstration unit is being set up at IOC R&D Centre.
Testing Safety of Hydrogen Components
Sep 2007
Publication
Hydrogen as a new and ecologic energy source is tempting though it creates the challenge of ensuring the safe use of hydrogen for all future consumers. Making sure that a hydrogen vehicle can be simply and safely used by anyone while performing as expected requires that the car be light with built-in safety features. This is achieved by combining high pressure composite cylinders with strict test procedures. Composite cylinders of up to 150 L operated to a maximum of 700 bar are required for vehicle applications. Air Liquide has developed test benches to hydraulically cycle such cylinders at 1400 bar and up to 3500 bar for burst tests. These tests are performed under controlled temperature conditions at ambient and extreme temperatures in order to simulate cylinder aging. Components in gas service such as valves hoses and other pressure devices are tested up to 1400 bars with hydrogen to simulate actual usage conditions. Hydrogen is used as a testing gas instead of nitrogen which is commonly used for such tests because hydrogen interacts with materials (e.g. hydrogen embrittlement) and because hydrogen has a special thermodynamic behaviour ( pressure drop velocity heat exchange…)
Hydrogen Storage – Industrial Prospectives
Sep 2011
Publication
The topic of this paper is to give an historical and technical overview of hydrogen storage vessels and to detail the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60 s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlement in the 70 s. Aluminum cylinders were also used for hydrogen storage since the end of the 60 s but their cost was higher compared to steel cylinders and smaller water capacity. To further increase the service pressure of hydrogen tanks or to slightly decrease the weight metallic cylinders can be hoop-wrapped. Then with specific developments for space or military applications fully-wrapped tanks started to be developed in the 80 s. Because of their low weight they started to be used in for portable applications: for vehicles (on-board storages of natural gas) for leisure applications (paint-ball) etc… These fully-wrapped composite tanks named types III and IV are now developed for hydrogen energy storage; the requested pressure is very high (from 700 to 850 bar) leads to specific issues which are discussed. Each technology is described in term of materials manufacturing technologies and approval tests. The specific issues due to very high pressure are depicted. Hydrogen can also be stored in liquid form (refrigerated liquefied gases). The first cryogenic vessels were used in the 60s. In the following the main characteristics of this type of storage will be indicated.
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However stoichiometric methanation will lead to a significant presence of carbon dioxide limited in gas networks and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.
Effect of Temperature on Laminar Flame Velocity for Hydrogen-air Mixtures at Reduced Pressures
Sep 2013
Publication
The work was done with respect to hydrogen safety of ITER vacuum vessel in cases of loss of cooling and loss of vacuum accidents. Experiments were conducted at sub-atmospheric pressures from 1 bar to 200 mbar and elevated temperatures up to 300 oC. Hydrogen concentration was changed from lower to upper flammability limits in all the range of pressures and temperatures. The experiments were performed in a spherical explosion bomb equipped with two quartz windows. The flame propagation velocity was measured using pressure method and high speed shadow cinematography. The theoretical flame velocities were calculated by Cantera code using Lutz and Mueller mechanisms. The influence of the initial temperature and pressure conditions on the laminar flame speed SL overall reaction order n and Markstein length LM are presented in this work and compared with the results of a theoretical model.
Forecasting the Hydrogen Demand in China: A System Dynamics Approach
Jan 2022
Publication
Many countries including China have implemented supporting policies to promote the commercialized application of green hydrogen and hydrogen fuel cells. In this study a system dynamics (SD) model is proposed to study the evolution of hydrogen demand in China from the petroleum refining industry the synthetic ammonia industry and the vehicle market. In the model the impact from the macro-environment hydrogen fuel supply and construction of hydrogen facilities is considered to combine in incentives for supporting policies. To further formulate the competitive relationship in the vehicle market the Lotka–Volterra (LV) approach is adopted. The model is verified using published data from 2003 to 2017. The model is also used to forecast China’s hydrogen demand up to the year of 2030 under three different scenarios. Finally some forward-looking guidance is provided to policy makers according to the forecasting results.
Introduction to Hydrogen Safety Engineering
Sep 2011
Publication
The viability and public acceptance of the hydrogen and fuel cell (HFC) systems and infrastructure depends on their robust safety engineering design education and training of the workforce regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the hydrogen safety engineering (HSE) profession. HSE is defined as an application of scientific and engineering principles to the protection of life property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of technical sub-systems for carrying out HSE. The approach is similar to British standard BS7974 for application of fire safety engineering to the design of buildings and expanded to reflect on specific for hydrogen safety related phenomena including but not limited to high pressure under-expanded leaks and dispersion spontaneous ignition of sudden hydrogen releases to air deflagrations and detonations etc. The HSE process includes three main steps. Firstly a qualitative design review is undertaken by a team that can incorporate owner hydrogen safety engineer architect representatives of authorities having jurisdiction e.g. fire services and other stakeholders. The team defines accident scenarios suggests trial safety designs and formulates acceptance criteria. Secondly a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering and validated models and tools. Finally the performance of a HFC system and/or infrastructure under the trial safety designs is assessed against predefined by the team acceptance criteria. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic comparative or combined probabilistic/deterministic.
Uncertainties in Explosion Risk Assessment for a Hydrogen Refuelling Station
Sep 2011
Publication
The project “Towards a Hydrogen Refuelling Infrastructure for Vehicles” (THRIVE) aimed at the determination of conditions to stimulate the building of a sustainable infrastructure for hydrogen as a car fuel in The Netherlands. Economic scenarios were constructed for the development of such an infrastructure for the next one to four decades. The eventual horizon will require the erection of a few hundred to more than a thousand hydrogen refuelling stations (HRS) in The Netherlands. The risk acceptability policy in The Netherlands implemented in the External Safety Establishments decree requires the assessment and management of safety risks imposed on the public by car fuelling stations. In the past a risk-informed policy has been developed for the large scale introduction of liquefied petroleum gas (LPG) as a car fuel and a similar policy will also be required if hydrogen is introduced in the public domain. A risk assessment methodology dedicated to cope with accident scenarios relevant for hydrogen applications is to be developed. Within the THRIVE project a demo risk assessment was conducted for the possible implementation of an HRS within an existing station for conventional fuels. The studied station is located in an urban area occupied with housing and commercial activities. The HRS is based on delivery and on-site storage of liquid hydrogen and dispensing of high pressure gaseous hydrogen into vehicles. The main challenges in the risk assessment were in the modelling of release and dispersion of liquid hydrogen. Definition of initial conditions for computational fluid dynamics (CFD) modelling to evaluate dispersion of a cold hydrogen air mixture appears rather complex and is not always fully understood. The modelling assumptions in the initial conditions determine to a large extent the likelihood and severity of potential explosion effects. The paper shows the results of the investigation and the sensitivity to the basic assumptions in the model input.
No more items...