United States
A Perspective on Broad Deployment of Hydrogen-fueled Vehicles for Ground Freight Transportation with a Comparison to Electric Vehicles
Oct 2024
Publication
The pressing global challenge of climate change necessitates a concerted effort to limit greenhouse gas emissions particularly carbon dioxide. A critical pathway is to replace fossil fuel sources by electrification including transportation. While electrification of light-duty vehicles is rapidly expanding the heavy-duty vehicle sector is subject to challenges notably the logistical drawbacks of the size and weight of high-capacity batteries required for range as well as the time for battery charging. This Perspective highlights the potential of hydrogen fuel-cell vehicles as a viable alternative for heavy-duty road transportation. We evaluate the implications of hydrogen integration into the freight economy energy dynamics and CO2 mitigation and envision a roadmap for a holistic energy transition. Our critical opinion presented in this Perspective is that federal incentives to produce hydrogen could foster growth in the nascent hydrogen economy. The pathway that we propose is that initial focus on operators of large fleets that could control their own fueling infrastructure. This opinion was formed from private discussions with numerous stakeholders during the formation of one of the awarded hydrogen hubs if they focus on early adopters that could leverage the hydrogen supply chain.
The Hydrogen Economy can Reduce Costs of Climate Change Mitigation by up to 22%
May 2024
Publication
In response to the urgent need to mitigate climate change via net-zero targets many nations are renewing their interest in clean hydrogen as a net-zero energy carrier. Although clean hydrogen can be directly used in various sectors for deep decarbonization the relatively low energy density and high production costs have raised doubts as to whether clean hydrogen development is worthwhile. Here we improve on the GCAM model by including a more comprehensive and detailed representation of clean hydrogen production distribution and demand in all sectors of the global economy and simulate 25 scenarios to explore the costeffectiveness of integrating clean hydrogen into the global energy system. We show that due to costly technical obstacles clean hydrogen can only provide 3%–9% of the 2050 global final energy use. Nevertheless clean hydrogen deployment can reduce overall energy decarbonization costs by 15%–22% mainly via powering ‘‘hard-to-electrify’’ sectors that would otherwise face high decarbonization expenditures. Our work provides practical references for cost-effective clean hydrogen planning.
Developing a Generalized Framework for Assessing Safety of Hydrogen Vehicles in Tunnels
Sep 2023
Publication
For widespread adoption of hydrogen fuel cell powered vehicles such vehicles need to be able to provide similar transportation capabilities as their gasoline/diesel powered counterparts. Meeting this requirement in many regions will necessitate access to tunnels. Previous work completed at Sandia National Laboratories provided high-fidelity consequence modeling of hydrogen vehicle tunnel crashes for a specific fire scenario in selected Massachusetts tunnels. To consider additional tunnels a generalized tunnel safety analysis framework is being developed. This framework aims to be broader than specific fire scenarios in specific tunnels allowing it to be applied to a range of tunnel geometries vehicle types and crash scenarios. Initial steps in the development of the generalized framework are reported within this work. Representative tunnel characteristics are derived based on data for tunnels in the U.S. Tunnel dimensions shapes and traffic levels are among the many characteristics reported within the data that can be used to inform crash scenario specification. Various crash scenario parameters are varied using lower-fidelity consequence modeling to quantify the impact on resulting safety hazards for time-dependent releases. These lower-fidelity models consider the unignited dispersion of hydrogen gas the thermal effects of jet fires and potential impacts of overpressures. Different sizes/classes of vehicles are considered as the total amount of hydrogen onboard may greatly affect scenario-specific consequences. The generalized framework will allow safety assessments to be both more agile and consistent when applied to different types of tunnels.
Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Sep 2022
Publication
Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials including organic wastes is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore optimizing the operating parameters such as the initial pH value operating temperature N/C ratio and organic concentration (xylose) plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex expensive and lengthy. The present research used an experimental data asset adaptive network fuzzy inference system (ANFIS) modeling and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Hydrogen Equipment Enclosure Risk Reduction through Earlier Detection of Component Failures
Sep 2023
Publication
Hydrogen component reliability and the hazard associated with failure rates is a critical area of research for the successful implementation and growth of hydrogen technology across the globe. The research team has partnered to quantify system risk reduction through earlier detection of hydrogen component failures. A model of hydrogen dispersion in a hydrogen equipment enclosure has been developed utilizing experimentally quantified hydrogen component leak rates as inputs. This model provides insight into the impact of hydrogen safety sensors and ventilation on the flammable mass within a hydrogen equipment enclosure. This model also demonstrates the change in safety sensor response time due to detector placement under various leak scenarios. The team looks to improve overall hydrogen system safety through an improved understanding of hydrogen component reliability and risk mitigation methods. This collaboration fits under the work program of IEA Hydrogen Task 43 Subtask E Hydrogen System Safety.
Batteries or Hydrogen or Both for Grid Electricity Storage Upon Full Electrification of 145 Countries with Wind-Water-Solar?
Jan 2024
Publication
Grids require electricity storage. Two emerging storage technologies are battery storage (BS) and green hydrogen storage (GHS) (hydrogen produced and compressed with clean-renewable electricity stored then returned to electricity with a fuel cell). An important question is whether GHS alone decreases system cost versus BS alone or BS+GHS. Here energy costs are modeled in 145 countries grouped into 24 regions. Existing conventional hydropower (CH) storage is used along with new BS and/or GHS. A method is developed to treat CH for both baseload and peaking power. In four regions only CH is needed. In five CH+BS is lowest cost. Otherwise CH+BS+GHS is lowest cost. CH+GHS is never lowest cost. A metric helps estimate whether combining GHS with BS reduces cost. In most regions merging (versus separating) grid and non-grid hydrogen infrastructure reduces cost. In sum worldwide grid stability may be possible with CH+BS or CH+BS+GHS. Results are subject to uncertainties.
A Systematic Review: The Role of Emerging Carbon Capture and Conversion Rechnologies for Energy Transition to Clean Hydrogen
Feb 2024
Publication
The exploitation of fossil fuels in various sectors such as power and heat generation and the transportation sector has been the primary source of greenhouse gas (GHG) emissions which are the main contributors to global warming. Qatar's oil and gas sector notably contributes to CO2 emissions accounting for half of the total emissions. Globally it is essential to transition into cleaner fossil fuel production to achieve carbon neutrality on a global scale. In this paper we focus on clean hydrogen considering carbon capture to make hydrogen a viable low carbon energy alternative for the transition to clean energy. This paper systematically reviews emerging technologies in carbon capture and conversion (CCC). First the road map stated by the Intergovernmental Panel on Climate Change (IPCC) to reach carbon neutrality is discussed along with pathways to decarbonize the energy sector in Qatar. Next emerging CO2 removal technologies including physical absorption using ionic liquids chemical looping and cryogenics are explored and analyzed regarding their advancement and limitations CO2 purity scalability and prospects. The advantages limitations and efficiency of the CO2 conversion technology to value-added products are grouped into chemical (plasma catalysis electrochemical and photochemical) and biological (photosynthetic and non-photosynthetic). The paper concludes by analyzing pathways to decarbonize the energy sector in Qatar via coupling CCC technologies for low-carbon hydrogen highlighting the challenges and research gaps.
A Novel Hydrogen Supply Chain Optimization Model - Case Study of Texas and Louisiana
Jun 2024
Publication
The increasing political momentum advocating for decarbonization efforts has led many governments around the world to unveil national hydrogen strategies. Hydrogen is viewed as a potential enabler of deep decarbonization notably in hard-to-abate sectors such as the industry. A multi-modal hourly resolved linear programming model was developed to assess the infrastructure requirements of a low-carbon supply chain over a large region. It optimizes the deployment of infrastructure from 2025 up to 2050 by assessing four years: 2025 2030 2040 and 2050 and is location agnostic. The considered infrastructure encompasses several technologies for production transmission and storage. Model results illustrate supply chain requirements in Texas and Louisiana. Edge cases considering 100% electrolytic production were analyzed. Results show that by 2050 with an assumed industrial demand of 276 TWh/year Texas and Louisiana would require 62 GW of electrolyzers 102 GW of onshore wind and 32 GW of solar panels. The resulting levelized cost of hydrogen totaled $5.6–6.3/kgH2 in 2025 decreasing to $3.2–3.5/ kgH2 in 2050. Most of the electricity production occurs in Northwest Texas thanks to high capacity factors for both renewable technologies. Hydrogen is produced locally and transmitted through pipelines to demand centers around the Gulf Coast instead of electricity being transmitted for electrolytic production co-located with demand. Large-scale hydrogen storage is highly beneficial in the system to provide buffer between varying electrolytic hydrogen production and constant industrial demand requirements. In a system without low-cost storage liquid and compressed tanks are deployed and there is a significant renewable capacity overbuild to ensure greater electrolyzer capacity factors resulting in higher electricity curtailment. A system under carbon constraint sees the deployment of natural gas-derived hydrogen production. Lax carbon constraint target result in an important reliance on this production method due to its low cost while stricter targets enforce a great share of electrolytic production.
Future of Hydrogen in the U.S. Energy Sector: MARKAL Modeling Results
Mar 2024
Publication
Hydrogen is an attractive energy carrier which could play a role in decarbonizing process heat power or transport applications. Though the U.S. already produces about 10 million metric tons of H2 (over 1 quadrillion BTUs or 1% of the U.S. primary energy consumption) production technologies primarily use fossil fuels that release CO2 and the deployment of other cleaner H2 production technologies is still in the very early stages in the U.S. This study explores (1) the level of current U.S. hydrogen production and demand (2) the importance of hydrogen to accelerate a net-zero CO2 future and (3) the challenges that must be overcome to make hydrogen an important part of the U.S. energy system. The study discusses four scenarios and hydrogen production has been shown to increase in the future but this growth is not enough to establish a hydrogen economy. In this study the characteristics of hydrogen technologies and their deployments in the long-term future are investigated using energy system model MARKAL. The effects of strong carbon constraints do not cause higher hydrogen demand but show a decrease in comparison to the business-as-usual scenario. Further according to our modeling results hydrogen grows only as a fuel for hard-to-decarbonize heavy-duty vehicles and is less competitive than other decarbonization solutions in the U.S. Without improvements in reducing the cost of electrolysis and increasing the performance of near-zero carbon technologies for hydrogen production hydrogen will remain a niche player in the U.S. energy system in the long-term future. This article provides the reader with a comprehensive understanding of the role of hydrogen in the U.S. energy system thereby explaining the long-term future projections.
The Role of Hydrogen in the Energy Transition of the Oil and Gas Industry
May 2024
Publication
Hydrogen primarily produced from steam methane reforming plays a crucial role in oil refining and provides a solution for the oil and gas industry's long-term energy transition by reducing CO2 emissions. This paper examines hydrogen’s role in this transition. Firstly experiences from oil and gas exploration including in-situ gasification can be leveraged for hydrogen production from subsurface natural hydrogen reservoirs. The produced hydrogen can serve as fuel for generating steam and heat for thermal oil recovery. Secondly hydrogen can be blended into gas for pipeline transportation and used as an alternative fuel for oil and gas hauling trucks. Additionally hydrogen can be stored underground in depleted gas fields. Lastly oilfield water can be utilized for hydrogen production using geothermal energy from subsurface oil and gas fields. Scaling up hydrogen production faces challenges such as shared use of oil and gas infrastructures increased carbon tax for promoting blue hydrogen and the introduction of financial incentives for hydrogen production and consumption hydrogen leakage prevention and detection.
Very Low-cost Wireless Hydrogen Leak Detection for Hydrogen Infrastructure
Sep 2023
Publication
A unique hydrogen leak detection strategy is the use of powerless indicator wraps for fittings and other pneumatic elements within a hydrogen facility. One transduction mechanism of such indicators is a color change that is induced by a reaction between a pigment and released hydrogen. This is an effective way to detect hydrogen leaks and to identify their source before they become a safety event however this technology requires visual (manual) inspection to identify a color change or leak. One improvement in this strategy would be to improve the communication of the visual response to an end-user. Element One (E1) has previously developed and introduced DetecTape® a self-fusing silicone non-reversible hydrogen leak detecting tape for application to potential leak sites in hydrogen piping valves and fittings and it has been successfully commercialized with excellent feedback. Element One’s sensors can be fabricated using either pigments or thin films which both change color and conductivity. Neither change requires an external power source. The conductivity change may be communicated as a wireless transmission such as passive radio frequency identification devices (RFID) to an appropriate receiving system where it may be remotely monitored to achieve higher levels of safety and reliability at low cost. Element One will report on its recent progress in the commercial development of remotely monitored hydrogen leak detection using several wireless protocols including passive RFID.
Review of the US 2050 Long Term Strategy to Reach Net Zero Carbon Emissions
Jul 2024
Publication
In 2015 during the lead up to the Paris Climate Agreement the United States set forth a Nationally Determined Contribution that outlines national goals for greenhouse gas emission reductions. It was not until 2021 that the US put forth a long-term strategy that lays out the pathway to reach these goals. The US long-term strategy lays the framework for research needs to meet the greenhouse gas emission reduction goals and incentivizes industry to meet the goals using a variety of policies. The five US long term strategy core elements are to decarbonize electricity electrify end uses and switch to clean fuels cut energy waste reduce methane and other non-carbon dioxide greenhouse gas emissions and to scale up carbon dioxide removal. Implementation of the long term strategy has generally been funded by tax incentives and government grants that were approved as part of the Inflation Reduction Act. Political headwinds societal Not in My Backyard resistance long-term economic funding cumbersome permitting requirements and incentives vs. taxation debate are significant policy/nontechnical hurdles. Technical challenges remain regarding effective energy efficiency implementation the use of hydrogen as a fuel cost effective carbon emission treatment nuclear energy expansion renewables expansion and grid integration biofuel integration efficient and safe energy storage and electrical grid adequacy/expansion. This review article condenses the multitude of technical and policy issues facing the US long-term strategy providing readers with an overview of the extent and magnitude of the challenges while outlining possible solutions.
The NREL Sensor Laboratory: Hydrogen Leak Detection for Large Scale Deployments
Sep 2023
Publication
The NREL Hydrogen Sensor Laboratory was commissioned in 2010 as a resource for sensor developers end-users and regulatory agencies within the national and international hydrogen community. The Laboratory continues to provide as its core capability the unbiased verification of hydrogen sensor performance to assure sensor availability and their proper use. However the mission and strategy of the NREL Sensor Laboratory has evolved to meet the needs of the growing hydrogen market. The Sensor Laboratory program has expanded to support research in conventional and alternative detection methods as hydrogen use expands to large-scale markets as envisioned by the DOE National Clean Hydrogen Strategy and Roadmap. Current research encompasses advanced methods of hydrogen leak detection including stand-off and wide area monitoring approaches for large scale and distributed applications. In addition to safety applications low-level detection strategies to support the potential environmental impacts of hydrogen and hydrogen product losses along the value chain are being explored. Many of these applications utilize detection strategies that supplement and may supplant the use of traditional point sensors. The latest results of the hydrogen detection strategy research at NREL will be presented.
Alternative Fuels in Sustainable Logistics—Applications, Challenges, and Solutions
Sep 2024
Publication
Logistics is becoming more cost competitive while customers and regulatory bodies pressure businesses to disclose their carbon footprints creating interest in alternative fuels as a decarbonization strategy. This paper provides a thematic review of the role of alternative fuels in sustainable air land and sea logistics their challenges and potential mitigations. Through an extensive literature survey we determined that biofuels synthetic kerosene natural gas ammonia alcohols hydrogen and electricity are the primary alternative fuels of interest in terms of environmental sustainability and techno-economic feasibility. In air logistics synthetic kerosene from hydrogenated esters and fatty acids is the most promising route due to its high technical maturity although it is limited by biomass sourcing. Electrical vehicles are favorable in road logistics due to cheaper green power and efficient vehicle designs although they are constrained by recharging infrastructure deployment. In sea logistics liquified natural gas is advantageous owing to its supply chain maturity but it is limited by methane slip control and storage requirements. Overall our examination indicates that alternative fuels will play a pivotal role in the logistics networks of the future.
Fuelling the Future: An In-depth Review of Recent Trends, Challenges and Opportunities of Hydrogen Fuel Cell for a Sustainable Hydrogen Economy
Sep 2023
Publication
Hydrogen has gained tremendous momentum worldwide as an energy carrier to transit to a net zero emission energy sector. It has been widely adopted as a promising large-scale renewable energy (RE) storage solution to overcome RE resources’ variability and intermittency nature. The fuel cell (FC) technology became in focus within the hydrogen energy landscape as a cost-effective pathway to utilize hydrogen for power generation. Therefore FC technologies’ research and development (R&D) expanded into many pathways such as cost reduction efficiency improvement fixed and mobile applications lifetime safety and regulations etc. Many publications and industrial reports about FC technologies and applications are available. This raised the necessity for a holistic review study to summarize the state-of-the-art range of FC stacks such as manufacturing the balance of plant types technologies applications and R&D opportunities. At the beginning the principal technologies to compare the well known types followed by the FC operating parameters are presented. Then the FC balance of the plant i.e. building components and materials with its functionality and purpose types and applications are critically reviewed with their limitations and improvement opportunities. Subsequently the electrical properties of FCs with their key features including advantages and disadvantages were investigated. Applications of FCs in different sectors are elaborated with their key characteristics current status and future R&D opportunities. Economic attributes of fuel cells with a pathway towards low cost are also presented. Finally this study identifies the research gaps and future avenues to guide researchers and the hydrogen industry.
Supply and Demand Drivers of Global Hydrogen Deployment in the Transition Toward a Decarbonized Energy System
Nov 2023
Publication
The role of hydrogen in energy system decarbonization is being actively examined by the research and policy communities. We evaluate the potential “hydrogen economy” in global climate change mitigation scenarios using the Global Change Analysis Model (GCAM). We consider major hydrogen production methods in conjunction with delivery options to understand how hydrogen infrastructure affects its deployment. We also consider a rich set of hydrogen end-use technologies and vary their costs to understand how demand technologies affect deployment. We find that the availability of hydrogen transmission and distribution infrastructure primarily affects the hydrogen production mix particularly the share produced centrally versus on-site whereas assumptions about end-use technology primarily affect the scale of hydrogen deployment. In effect hydrogen can be a source of distributed energy enabled by on-site renewable electrolysis and to a lesser extent by on-site production at industrial facilities using natural gas with carbon capture and storage (CCS). While the share of hydrogen in final energy is small relative to the share of other major energy carriers in our scenarios hydrogen enables decarbonization in difficult-to-electrify end uses such as industrial high-temperature heat. Hydrogen deployment and in turn its contribution to greenhouse gas mitigation increases as the climate objective is tightened.
Meeting the Challenges of Large-scale Carbon Storage and Hydrogen Production
Mar 2023
Publication
There is a pressing need to rapidly and massively scale up negative carbon strategies such as carbon capture and storage (CCS). At the same time large-scale CCS can enable ramp-up of large-scale hydrogen production a key component of decarbonized energy systems. We argue here that the safest and most practical strategy for dramatically increasing CO2 storage in the subsurface is to focus on regions where there are multiple partially depleted oil and gas reservoirs. Many of these reservoirs have adequate storage capacity are geologically and hydrodynamically well understood and are less prone to injection-induced seismicity than saline aquifers. Once a CO2 storage facility is up and running it can be used to store CO2 from multiple sources. Integration of CCS with hydrogen production appears to be an economically viable strategy for dramatically reducing greenhouse gas emissions over the next decade particularly in oil- and gas-producing countries where there are numerous depleted reservoirs that are potentially suitable for large-scale carbon storage.
Low-temperature Water Electrolysis: Fundamentals, Progress, and New Strategies
May 2022
Publication
Water electrolysis is a promising technology for sustainable energy conversion and storage of intermittent and fluctuating renewable energy sources and production of high-purity hydrogen for fuel cells and various industrial applications. Low-temperature electrochemical water splitting technologies include alkaline proton exchange membrane and anion exchange membrane water electrolyses which normally consist of two coupled half reactions: the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Despite the advances over decades formidable challenges still exist and hinder the practical application of large-scale energy-efficient and economically viable water electrolysis including large energy penalty sluggish kinetics high cost of precious metal based electrocatalysts possible H2/O2 gas crossover difficulty in storage and distribution of H2. Herein we first briefly introduce the fundamentals of water electrolysis summarize the recommended standardized electrochemical characterization protocols and demonstrate the metrics and key performance indicators that are used to evaluate the performances of HER and OER electrocatalysts and electrolyser cells. Then we present six new strategies to mitigate the technical challenges in conventional water electrolysis. These emerging strategies for disruptive innovation of water electrolysis technology include overall water electrolysis based on bifunctional nonprecious electrocatalysts (or pre-catalysts) magnetic field-assisted water electrolysis decoupled water electrolysis hybrid water electrolysis acid/alkaline asymmetric electrolyte electrolysis and tandem water electrolysis. Finally the remaining challenges perspectives and future directions are discussed. This review will provide guidance and inspire more endeavours to deepen the mechanistic understanding and advance the development of water electrolysis.
Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives
Dec 2023
Publication
In the transition to sustainable public transportation with zero-emission buses hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination encompassing both sensitivity and probabilistic analyses to assess the total cost of ownership (TCO) for the bus fleet and its corresponding infrastructure. It considers various hydrogen supply options encompassing on-site electrolysis on-site steam methane reforming and off-site hydrogen procurement with both gaseous and liquid delivery methods. The analysis covers critical cost elements encompassing bus acquisition costs infrastructure capital expenses and operational and maintenance costs for both buses and infrastructure. This paper conducted two distinct case studies: one involving a current small bus fleet of five buses and another focusing on a larger fleet set to launch in 2028. For the current small fleet the off-site gray hydrogen purchase with a gaseous delivery option is the most cost-effective among hydrogen alternatives but it still incurs a 26.97% higher TCO compared to diesel buses. However in the case of the expanded 2028 fleet the steam methane-reforming method without carbon capture emerges as the most likely option to attain the lowest TCO with a high probability of 99.5%. Additionally carbon emission costs were incorporated in response to the growing emphasis on environmental sustainability. The findings indicate that although diesel buses currently represent the most economical option in terms of TCO for the existing small fleet steam methane reforming with carbon capture presents a 69.2% likelihood of being the most cost-effective solution suggesting it is a strong candidate for cost efficiency for the expanded 2028 fleet. Notably substantial investments are required to increase renewable energy integration in the power grid and to enhance electrolyzer efficiency. These improvements are essential to make the electrolyzer a more competitive alternative to steam methane reforming. Overall the findings in this paper underscore the substantial impact of the hydrogen supply chain and carbon emission costs on the TCO of zero-emission buses.
Entropy Production and Filling Time in Hydrogen Refueling Stations: An Economic Assessment
Aug 2024
Publication
A multi-objective optimization is performed to obtain fueling conditions in hydrogen stations leading to improved filling times and thermodynamic efficiency (entropy production) of the de facto standard of operation which is defined by the protocol SAE J2601. After finding the Pareto frontier between filling time and total entropy production it was found that SAE J2601 is suboptimal in terms of these process variables. Specifically reductions of filling time from 47 to 77% are possible in the analyzed range of ambient temperatures (from 10 to 40 °C) with higher saving potential the hotter the weather conditions. Maximum entropy production savings with respect to SAE J2601 (7% for 10 °C 1% for 40 °C) demand a longer filling time that increases with ambient temperature (264% for 10 °C 350% for 40 °C). Considering average electricity prices in California USA the operating cost of the filling process can be reduced between 8 and 28% without increasing the expected filling time.
No more items...