United States
Optimal Hydrogen Carrier: Holistic Evaluation of Hydrogen Storage and Transportation Concepts for Power Generation, Aviation, and Transportation
Oct 2022
Publication
The storage of excess electrical generation enabled through the electrolytic production of hydrogen from water would allow “load-shifting” of power generation. This paves the way for hydrogen as an energy carrier to be further used as a zero‑carbon fuel for land air and sea transportation. However challenges in hydrogen storage and transportation ultimately pose restrictions on its wider adaption along horizontal and vertical vectors. This paper investigates chemical energy carriers ranging from small molecules such as ammonia and methane to formic acid as well as other more complex hydrocarbons in response to this timely engineering problem. The hydrogenation and dehydrogenation of such carrier molecules require energy lowering the effective net heating value of hydrogen up to 32 %. Different carrier approaches are discussed in the light of availability energetics water requirements and suitability for applications in power generation shipping trucking and aviation supplemented by a comprehensive safety review making this study unique in its field. It is found that hydrogen delivered without a carrier is ideal for power generation applications due to the large quantities required. Aviation would benefit from either ammonia or hydrogen and is generally a field challenging to decarbonize. Ammonia appears also to be a good medium for shipping hydrogen between continents and to power container ships due to its high energy density and lower liquid temperature compared with hydrogen. At the same time ammonia can also be used to power the ship's engine. Long-haul trucking would benefit the most from cryogenic or compressed hydrogen due to the lower quantities required and purity requirements of the fuel cells.
Techno-economic Assessment of Renewable Methanol from Biomass Gasification and PEM Electrolysis for Decarbonization of the Maritime Sector in California
Mar 2022
Publication
At scale biomass-based fuels are seen as long-term alternatives to conventional shipping fuels to reduce greenhouse gas emissions in the maritime sector. While the operational benefits of renewable methanol as a marine fuel are well-known its cost and environmental performance depend largely on production method and geographic context. In this study a techno-economic and environmental assessment of renewable methanol produced by gasification of forestry residues is performed. Two biorefinery systems are modeled thermody namically for the first time integrating several design changes to extend past work: (1) methanol synthesized by gasification of torrefied biomass while removing and storing underground a fraction of the carbon initially contained in it and (2) integration of a polymer electrolyte membrane (PEM) electrolyzer for increased carbon efficiency via hydrogen injection into the methanol synthesis process. The chosen use case is set in California with forest residue biomass as the feedstock and the ports of Los Angeles and Long Beach as the shipping fuel demand point. Methanol produced by both systems achieves substantial lifecycle greenhouse gas emissions savings compared to traditional shipping fuels ranging from 38 to 165% from biomass roadside to methanol combustion. Renewable methanol can be carbon-negative if the CO2 captured during the biomass conversion process is sequestered underground with net greenhouse gas emissions along the lifecycle amounting to − 57 gCO2eq/MJ. While the produced methanol in both pathways is still more expensive than conventional fossil fuels the introduction of CO2eq abatement incentives available in the U.S. and California could bring down minimum fuel selling prices substantially. The produced methanol can be competitive with fossil shipping fuels at credit amounts ranging from $150 to $300/tCO2eq depending on the eligible credits.
Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-offs
Jul 2013
Publication
Because of their high surface areas crystallinity and tunable propertiesmetal−organic frameworks (MOFs) have attracted intense interest as next-generationmaterials for gas capture and storage. While much effort has been devoted to thediscovery of new MOFs a vast catalog of existing MOFs resides within the CambridgeStructural Database (CSD) many of whose gas uptake properties have not beenassessed. Here we employ data mining and automated structure analysis to identify“cleanup” and rapidly predict the hydrogen storage properties of these compounds.Approximately 20 000 candidate compounds were generated from the CSD using analgorithm that removes solvent/guest molecules. These compounds were thencharacterized with respect to their surface area and porosity. Employing the empiricalrelationship between excess H2 uptake and surface area we predict the theoretical total hydrogen storage capacity for the subsetof ∼4000 compounds exhibiting nontrivial internal porosity. Our screening identifies several overlooked compounds having hightheoretical capacities; these compounds are suggested as targets of opportunity for additional experimental characterization.More importantly screening reveals that the relationship between gravimetric and volumetric H2 density is concave downwardwith maximal volumetric performance occurring for surface areas of 3100−4800 m2 /g. We conclude that H2 storage in MOFswill not benefit from further improvements in surface area alone. Rather discovery efforts should aim to achieve moderate massdensities and surface areas simultaneously while ensuring framework stability upon solvent removal.
Techno-economic Analysis of High-Pressure Metal Hydride Compression Systems
Jun 2018
Publication
Traditional high-pressure mechanical compressors account for over half of the car station’s cost have insufficient reliability and are not feasible for a large-scale fuel cell market. An alternative technology employing a two-stage hybrid system based on electrochemical and metal hydride compression technologies represents an excellent alternative to conventional compressors. The high-pressure stage operating at 100–875 bar is based on a metal hydride thermal system. A techno-economic analysis of the metal hydride system is presented and discussed. A model of the metal hydride system was developed integrating a lumped parameter mass and energy balance model with an economic model. A novel metal hydride heat exchanger configuration is also presented based on minichannel heat transfer systems allowing for effective high-pressure compression. Several metal hydrides were analyzed and screened demonstrating that one selected material namely (Ti0.97Zr0.03)1.1Cr1.6Mn0.4 is likely the best candidate material to be employed for high-pressure compressors under the specific conditions. System efficiency and costs were assessed based on the properties of currently available materials at industrial levels. Results show that the system can reach pressures on the order of 875 bar with thermal power provided at approximately 150 ◦C. The system cost is comparable with the current mechanical compressors and can be reduced in several ways as discussed in the paper.
Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors
Feb 2024
Publication
This perspective article delves into the critical role of hydrogen as a sustainable energy carrier in the context of the ongoing global energy transition. Hydrogen with its potential to decarbonize various sectors has emerged as a key player in achieving decarbonization and energy sustainability goals. This article provides an overview of the current state of hydrogen technology its production methods and its applications across diverse industries. By exploring the challenges and opportunities associated with hydrogen integration we aim to shed light on the pathways toward achieving a sustainable hydrogen economy. Additionally the article underscores the need for collaborative efforts among policymakers industries and researchers to overcome existing hurdles and unlock the full potential of hydrogen in the transition to a low-carbon future. Through a balanced analysis of the present landscape and future prospects this perspective article aims to contribute valuable insights to the discourse surrounding hydrogen’s role in the global energy transition.
Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future
Aug 2024
Publication
In recent years global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind solar photovoltaics (PVs) hydro and geothermal. Concurrently green hydrogen produced via water electrolysis using these RESs has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress the hydrogen economy remains nascent with ongoing developments and persistent uncertainties in economic technological and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain encompassing production transportation logistics storage methodologies and end-use applications while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.
The Case of Renewable Methane by and with Green Hydrogen as the Storage and Transport Medium for Intermittent Wind and Solar PV Energy
May 2024
Publication
Long-duration energy storage is the key challenge facing renewable energy transition in the future of well over 50% and up to 75% of primary energy supply with intermittent solar and wind electricity while up to 25% would come from biomass which requires traditional type storage. To this end chemical energy storage at grid scale in the form of fuel appears to be the ideal option for wind and solar power. Renewable hydrogen is a much-considered fuel along with ammonia. However these fuels are not only difficult to transport over long distances but they would also require totally new and prohibitively expensive infrastructure. On the other hand the existing natural gas pipeline infrastructure in developed economies can not only transmit a mixture of methane with up to 20% hydrogen without modification but it also has more than adequate long-duration storage capacity. This is confirmed by analyzing the energy economies of the USA and Germany both possessing well-developed natural gas transmission and storage systems. It is envisioned that renewable methane will be produced via well-established biological and/or chemical processes reacting green hydrogen with carbon dioxide the latter to be separated ideally from biogas generated via the biological conversion of biomass to biomethane. At the point of utilization of the methane to generate power and a variety of chemicals the released carbon dioxide would be also sequestered. An essentially net zero carbon energy system would be then become operational. The current conversion efficiency of power to hydrogen/methane to power on the order of 40% would limit the penetration of wind and solar power. Conversion efficiencies of over 75% can be attained with the on-going commercialization of solid oxide electrolysis and fuel cells for up to 75% penetration of intermittent renewable power. The proposed hydrogen/methane system would then be widely adopted because it is practical affordable and sustainable.
Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production
May 2022
Publication
The increasingly severe energy crisis has strengthened the determination todevelop environmentally friendly energy. And hydrogen has emerged as a candi-date for clean energy. Among many hydrogen generation methods biohydrogenstands out due to its environmental sustainability simple operating environ-ment and cost advantages. This review focuses on the rational design of catalystsfor fermentative hydrogen production. The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively. Various strategiesto increase the efficiency of fermentative hydrogen production are summa-rized and some recent representative works from microbial dark fermentationand photo-fermentation are described. Meanwhile perspectives and discussionson the rational design of catalysts for fermentative hydrogen production areprovided.
Solar-driven, Highly Sustained Splitting of Seawater into Hydrogen and Oxygen Fuels
Mar 2019
Publication
Electrolysis of water to generate hydrogen fuel is an attractiverenewable energy storage technology. However grid-scale fresh-water electrolysis would put a heavy strain on vital water re-sources. Developing cheap electrocatalysts and electrodes that cansustain seawater splitting without chloride corrosion could ad-dress the water scarcity issue. Here we present a multilayer anodeconsisting of a nickel–iron hydroxide (NiFe) electrocatalyst layeruniformly coated on a nickel sulfide (NiSx) layer formed on porousNi foam (NiFe/NiSx-Ni) affording superior catalytic activity andcorrosion resistance in solar-driven alkaline seawater electrolysisoperating at industrially required current densities (0.4 to 1 A/cm2)over 1000 h. A continuous highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents towardwater oxidation and an in situ-generated polyatomic sulfate andcarbonate-rich passivating layers formed in the anode are respon-sible for chloride repelling and superior corrosion resistance of thesalty-water-splitting anode.
Modelling and Simulation of an Integrated Coupled Reactor for Hydrogen Production and Carbon Dioxide Utilisation in an Integrated Fuel Cell Power System
Dec 2024
Publication
In today’s world the need for sustainable energy solutions is paramount to address the ongoing crisis of increasing greenhouse gas emissions and global warming. Industries heavily reliant on fossil fuels must explore alternative energy sources. Hydrogen with its high heating value and zero direct emissions has emerged as a promising fuel for the future. Electrolytic hydrogen production has gained significance as it enables demand-side response grid stabilization using excess energy and the mitigation of curtailment from intermittent renewable energy sources (RES) such as solar and wind. Advanced combined heat and power (CHP) systems comprise of Solid oxide fuel cell (SOFC) module and a coupled reforming reactor to capture energy contained in the SOFC exhaust gases from SOFC. In present work 3D CFD model of an experimental coupled reactor used for onsite hydrogen production is developed and implemented into ANSYS Fluent® software. The study is aimed at opti mizing the reactor performance by identifying appropriate kinetic models for reforming and combustion re actions. SOFC anode off-gas (AOG) comprising mainly of unconverted hydrogen is combined with methane combustion to enhance thermal efficiency of the reactor and hence the CHP system. Kinetic models for catalytic reforming and combustion are implemented into ANSYS Fluent® through custom-built user defined functions (UDFs) written in C programming language. Simulation results are validated with experimental data and found in good agreement. AOG assisted combustion of methane shows a substantial improvement in thermal efficiency of the system. Improvement in thermal efficiency and reduction in carbon-based fuel demand AOG utilization contributes to sustainable hydrogen production and curtailment of greenhouse gas emissions.
No more items...