Japan
Exchange Current Density of Reversible Solid Oxide Cell Electrodes
Mar 2022
Publication
Reversible solid oxide cells (r-SOCs) can be operated in either solid oxide fuel cell or solid oxide electrolysis cell mode. They are expected to become important in the support of renewable energy due to their high efficiency for both power generation and hydrogen generation. The exchange current density is one of the most important parameters in the quantification of electrode performance in solid oxide cells. In this study four different fuel electrodes and two different air electrodes are fabricated using different materials and the microstructures are compared. The temperature fuel humidification and oxygen concentration at the air electrode are varied to obtain the apparent exchange current density for the different electrode materials. In contrast to ruthenium-and-gadolinia-doped ceria (Rh-GDC) as well as nickel-and-gadolinia-doped ceria (Ni-GDC) electrodes significant differences in the apparent exchange current density were observed between electrolysis and fuel cell modes for the nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet. Variation of gas concentration revealed that surface adsorption sites were almost completely vacant for all these electrodes. The apparent exchange current densities obtained in this study are useful as a parameter for simulation of the internal properties of r-SOCs.
Hydrogen Technologies and Developments in Japan
Jan 2019
Publication
The successful development of hydrogen-energy technologies has several advantages and benefits. Hydrogen energy development could prevent global warming as well as ensure energy security for countries without adequate energy resources. The successful development of hydrogen would provide energy for transportation and electric power. It is a unique energy carrier as it can be produced from various energy sources such as wind fossil fuels and biomass and when it is combusted it emits no CO2 emissions. The other advantage is the wide distribution of resources globally that can be used to produce hydrogen. In Japan the Ministry of Economy Trade and Industry (METI) published a ‘Strategic Roadmap for Hydrogen and Fuel Cells’ in 2014 with a revised update published in March 2016. The goal of the roadmap is to achieve a hydrogen society. The roadmap aims to resolve technical problems and secure economic efficiency. The roadmap has been organized into the following three phases: Phase 1—Installation of fuel cells; Phase 2—Hydrogen power plant/mass supply chain; Phase 3—CO2- free hydrogen. This paper reports on the current status of fuel cells and fuel-cell vehicles in Japan and gives a description and status of the R&D programmes along with the results of global energy model study towards 2050.
Dynamic Crush Test on Hydrogen Pressurized Cylinder
Sep 2005
Publication
It is necessary to investigate cylinder crush behavior for improvement of fuel cell vehicle crash safety. However there have been few crushing behaviour investigations of high pressurized cylinders subjected to external force. We conducted a compression test of pressurized cylinders impacted by external force. We also investigated the cylinder strength and crushing behaviour of the cylinder. The following results were obtained.
- The crush force of high pressurized cylinders is different from the direction of external force. The lateral crush force of high pressurized cylinders is larger than the external axial crush force.
- Tensile stress occurs in the boundary area between the cylinder dome and central portion when the pressurized cylinder is subjected to axial compression force and the cylinder is destroyed.
- However the high pressurized cylinders tested had a high crush force which exceeded the assumed range of vehicle crash test procedures
Heuristic Design of Advanced Martensitic Steels That Are Highly Resistant to Hydrogen Embrittlement by ε-Carbide
Feb 2021
Publication
Many advanced steels are based on tempered martensitic microstructures. Their mechanical strength is characterized by fine sub-grain structures with a high density of free dislocations and metallic carbides and/or nitrides. However the strength for practical use has been limited mostly to below 1400 MPa owing to delayed fractures that are caused by hydrogen. A literature survey suggests that ε-carbide in the tempered martensite is effective for strengthening. A preliminary experimental survey of the hydrogen absorption and hydrogen embrittlement of a tempered martensitic steel with ε-carbide precipitates suggested that the proper use of carbides in steels can promote a high resistance to hydrogen embrittlement. Based on the surveys martensitic steels that are highly resistant to hydrogen embrittlement and that have high strength and toughness are proposed. The heuristic design of the steels includes alloying elements necessary to stabilize the ε-carbide and procedures to introduce inoculants for the controlled nucleation of ε-carbide.
The New Facility for Hydrogen and Fuel Cell Vehicle Safety Evaluation
Sep 2005
Publication
For the evaluation of hydrogen and fuel cell vehicle safety a new comprehensive facility was constructed in our institute. The new facility includes an explosion resistant indoor vehicle fire test building and high pressure hydrogen tank safety evaluation equipment. The indoor vehicle fire test building has sufficient strength to withstand even an explosion of a high pressure hydrogen tank of 260 liter capacity and 70 MPa pressure. It also has enough space to observe vehicle fire flames of not only hydrogen but also other conventional fuels such as gasoline or compressed natural gas. The inside dimensions of the building are a 16 meter height and 18 meter diameter. The walls are made of 1.2 meter thick reinforced concrete covered at the insides with steel plate. This paper shows examples of hydrogen vehicle fires compared with other fuel fires and hydrogen high pressure tank fire tests utilizing several kinds of fire sources. Another facility for evaluation of high pressure hydrogen tank safety includes a 110 MPa hydrogen compressor with a capacity of 200 Nm3/h a 300 MPa hydraulic compressor for burst tests of 70 MPa and higher pressure tanks and so on. This facility will be used for not only the safety evaluation of hydrogen and fuel cell vehicles but also the establishment of domestic/international regulations codes and standards.
Quantitative Evaluations of Hydrogen Diffusivity in V-X (X = Cr, Al, Pd) Alloy Membranes Based on Hydrogen Chemical Potential
Jan 2021
Publication
Vanadium (V) has higher hydrogen permeability than Pd-based alloy membranes but exhibits poor resistance to hydrogen-induced embrittlement. The alloy elements are added to reduce hydrogen solubility and prevent hydrogen-induced embrittlement. To enhance hydrogen permeability the alloy elements which improve hydrogen diffusivity in V are more suitable. In the present study hydrogen diffusivity in V-Cr V-Al and V-Pd alloy membranes was investigated in view of the hydrogen chemical potential and compared with the previously reported results of V-Fe alloy membranes. The additions of Cr and Fe to V improved the mobility of hydrogen atoms. In contrast those of Al and Pd decreased hydrogen diffusivity. The first principle calculations revealed that the hydrogen atoms cannot occupy the first-nearest neighbour T sites (T1 sites) of Al and Pd in the V crystal lattice. These blocking effects will be a dominant contributor to decreasing hydrogen diffusivity by the additions of Al and Pd. For V-based alloy membranes Fe and Cr are more suitable alloy elements compared with Al and Pd in view of hydrogen diffusivity.
Mach 4 Simulating Experiment of Pre-Cooled Turbojet Engine Using Liquid Hydrogen
Jan 2022
Publication
This study investigated a pre-cooled turbojet engine for a Mach 5 class hypersonic transport aircraft. The engine was demonstrated under takeoff and Mach 2 flight conditions and a Mach 5 propulsion wind tunnel test is planned. The engine is composed of a pre-cooler a core engine and an afterburner. The engine was tested under simulated Mach 4 conditions using an air supply facility. High-temperature air under high pressure was supplied to the engine components through an airflow control valve and an orifice flow meter and liquid hydrogen was supplied to the pre-cooler and the core engine. The results confirmed that the starting sequence of the engine components was effective under simulated Mach 4 conditions using liquid hydrogen fuel. The pre-cooling effect caused no damage to the rotating parts of the core engine in the experiment.
Development of High-pressure Hydrogen Gas Barrier Materials
Oct 2015
Publication
We prepared several gas barrier resins based on amorphous PVA derivative that has the T1C (13C spin-lattice relaxation time) of a long time component in amorphous phase. We confirmed it was important to control state in amorphous phase of gas barrier resin in order to achieve both moldability and good gas barrier property. Polymer alloy was designed to improve flexibility. Polymer alloy made of amorphous PVA and elastomer resin showed good hydrogen resistance. Even after its polymer alloy were repeatedly exposed to 70MPa hydrogen gas the influence on higher-order structure in amorphous phase was in negligible level.
Dispersion Tests on Concentration and its Fluctuations for 40MPa Pressurized Hydrogen
Sep 2007
Publication
Hydrogen is one of the important alternative fuels for future transportation. At the present stage research into hydrogen safety and designing risk mitigation measures are significant task. For compact storage of hydrogen in fuel cell vehicles storage of hydrogen under high pressure up to 40 MPa at refuelling stations is planned and safety in handling such high-pressure hydrogen is essential. This paper describes our experimental investigation into dispersion of high-pressure hydrogen gas which leaks through pinholes in the piping to the atmosphere. First in order to comprehend the basic behaviour of the steady dispersion of high-pressure hydrogen gas from the pinholes the time-averaged concentrations were measured. In our experiments initial release pressures of hydrogen gas were set at 20 MPa or 40 MPa and release diameters were in the range from 0.25 mm to 2 mm. The experimental results show that the hydrogen concentration along the axis of the dispersion plume can be expressed as a simple formula which is a function of the downwind distance X and the equivalent release diameter. This formula enables us to easily estimate the axial concentration (maximum concentration) at each downstream distance. However in order for the safety of flammable gas dispersion to be analyzed comparisons between time-averaged concentrations evaluated as above and lower flammable limit are insufficient. This is because even if time-averaged concentration is lower than the flammability limit instantaneous concentrations fluctuate and a higher instantaneous concentration occasionally appears due to turbulence. Therefore the time-averaged concentration value which can be used as a threshold for assessing safety must be determined considering concentration fluctuations. Once the threshold value is determined the safe distance from the leakage point can be evaluated by the above-mentioned simple formula. To clarify the phenomenon of concentration fluctuations instantaneous concentrations were measured with the fast-response flame ionization detector. A small amount of methane gas was mixed into the hydrogen as a tracer gas for this measurement. The relationship between the time-mean concentration and the occurrence probability of flammable concentration was analyzed. Under the same conditions spark-ignition experiments were also conducted and the relationship between the occurrence probability of flammable concentration and actual ignition probabilities were also investigated. The experimental results show that there is a clear correlation between the time-mean concentration the occurrence probability of flammable concentration flame length and occurrence probability of hydrogen flame.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
Leakage-type-based Analysis of Accidents Involving Hydrogen Fueling Stations in Japan and USA
Aug 2016
Publication
To identify the safety issues associated with hydrogen fuelling stations incidents at such stations in Japan and the USA were analyzed considering the regulations in these countries. Leakage due to the damage and fracture of main bodies of apparatuses and pipes in Japan and the USA is mainly caused by design error that is poorly planned fatigue. Considering the present incidents in these countries adequate consideration of the usage environment in the design is very important. Leakage from flanges valves and seals in Japan is mainly caused by screw joints. If welded joints are to be used in hydrogen fuelling stations in Japan strength data for welded parts should be obtained and pipe thicknesses should be reduced. Leakage due to other factors e.g. external impact in Japan and the USA is mainly caused by human error. To realize self-serviced hydrogen fuelling stations safety measures should be developed to prevent human error by fuel cell vehicle users.
Numerical Investigation of Vented Hydrogen-air Deflagration in a Chamber
Oct 2015
Publication
This paper shows numerical investigation related to hydrogen-air deflagration venting. The aim of this study is to clarify the influence of concentration gradient on the pressure histories and peak pressures in a chamber. The numerical analysis target is a 27 m3 cubic chamber which has 2.6 m2 vent area on the sidewall. The vent opening pressure is set to be gauge 10 kPa. Two different conditions of the hydrogen concentration are assumed which are uniform and gradient. In the uniform case 15 20 25 30 and 35 vol.% concentrations are assumed. In the gradient case the concentration linearly increases from 0 vol.% (at the ground) to 30 40 50 60 70 vol.% (at the ceiling). The initial total mass of hydrogen inside the chamber is the same as the uniform case. Moreover three different ignition points are assumed: on the rear center and the front of the chamber relative to the vent. The deflagrations are initiated by a single ignition source. In most gradient cases the highest peak is lower than in the uniform case though the initial total mass of hydrogen inside the chamber is the same as in the uniform case. This is because the generated burned gas per time is smaller in the gradient case than in the uniform case. In 15 vol.% gradient case however the peak pressure gets higher than in the uniform case. This is because in 15 vol.% gradient case the burning velocity around the ignition point gets faster and the flame surface gets larger which induces larger amount of burned gas per time.
Numerical Investigation on the Self-ignition Behavior of High Pressure Hydrogen Released from the Tube
Sep 2017
Publication
This paper shows the numerical investigation on the self-ignition behavior of high pressure hydrogen released from the tube. The present study aims to clarify the effect of parameters on the behavior and duration of self-ignition outside the tube using two-dimensional axisymmetric numerical simulation with detailed chemistry. The parameters in this study are release pressure tube diameter and tube length. The strength of the spherical shock wave to keep chemical reaction and expansion are important factors for self ignited hydrogen jet to be sustained outside the tube. The trend of strength of spherical shock wave is enhanced by higher release pressure and larger tube diameter. The chemical reaction weakens due to expansion and the degree of expansion becomes larger as the spherical shock wave propagates. The characteristic time for the chemical reaction becomes shorter in higher release pressure larger tube diameter and longer tube diameter cases from the induction time under constant volume assumption. The self ignited hydrogen jet released from the tube is sustained up to the distance where the characteristic time for chemical reaction is shorter than the characteristic time for the flow to expand and higher release pressure larger tube diameter and longer tube length expand the distance where the tip flame can propagate downstream. For the seed flame which is the key for jet fire the larger amount of the ignited volume when the shock wave reaches the tube exit contributes to the formation and stability of the seed flame. The amount of the ignited volume tends to be larger in the longer tube length higher release pressure and larger tube diameter cases.
Energy-efficient Conversion of Microalgae to Hydrogen and Power
Jun 2017
Publication
An integrated system for H2 production from microalgae and its storage is proposed employing enhanced process integration technology (EPI). EPI consists of two core technologies i.e. exergy recovery and process integration. The proposed system includes a supercritical water gasification H2 separation hydrogenation and combined cycle. Microalga Chlorella vulgaris is used as a material for evaluation. The produced syngas is separated to produce highly pure H2. Furthermore to store the produced H2 liquid organic H2 carrier of toluene-and-methylcyclohexane cycle is adopted. The remaining gas is used as fuel for combustion in combined cycle to generate electricity. The effects of fluidization velocity and gasification pressure to energy efficiency are evaluated. From process modelling and calculation it is shown that high total energy efficiency about 60% can be achieved. In addition about 40% of electricity generation efficiency can be realized.
Security Risk Analysis of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Sep 2017
Publication
Although many studies have looked at safety issues relating to hydrogen fuelling stations few studies have analyzed the security risks such as deliberate attack of the station by threats such as terrorists and disgruntled employees. The purpose of this study is to analyze security risks for a hydrogen fuelling station with an on-site production of hydrogen from methylcyclohexane. We qualitatively conducted a security risk analysis using American Petroleum Institute Standard 780 as a reference for the analysis. The analysis identified 93 scenarios including pool fires. We quantitatively simulated a pool fire scenario unique to the station to analyze attack consequences. Based on the analysis and the simulation we recommend countermeasures to prevent and mitigate deliberate attacks.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Jun 2020
Publication
The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions (2) comparability of hydrogen permeability (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.
3D Real Time Monitoring of H2 in FCV Applications
Sep 2019
Publication
In order to monitor a trace amount of Hydrogen in millisecond portable H2 sensor (Sx) was made by using mass spectrometer. The method of monitoring the hydrogen pulse of millisecond in exhaust gas is the increasing needed. Determining H2 concentration both inside and outside of the Fuel Cell Vehicle (FCV) for the optimized operations is becoming a critical issue. The exhaust gas of Fuel Cell Vehicle H2 consumption flushing and disposal around Fuel cell the real time monitoring of H2 in highly humid conditions is the problematic. To solve this issue the system volume of the sampling route was minimized with the heater and the dehumidifier to avoid condensation of water droplets. And also for an automatic calibration of H2 concentration the small cylinder of specific H2 concentration was mounted into the system.<br/>Our basic experiment started from a flow pattern analysis by monitoring H2 concentration in narrow tube. The flow patter analysis was carried out. When H2 gas was introduced in the N2 flow or air in the tube the highly concentrated H2 front phases were observed. This H2 sensor can provide the real time information of the hydrogen molecules and the clouds. The basic characterization of this sensor showed 0-100% H2 concentrations within milliseconds. Our observations showed the size of the high concentration phase of H2 and the low concentration phase after mixing process. The mixed and unmixed H2 unintended concentration of H2 cloud the high speed small cluster of H2 molecules in purged gas were explored by this system.
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Hydrogen-enhanced Fatigue Crack Growth in Steels and its Frequency Dependence
Jun 2017
Publication
In the context of the fatigue life design of components particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles it is important to understand the hydrogen-induced fatigue crack growth (FCG) acceleration in steels. As such the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further this frequency dependence is debated by introducing some potentially responsible elements along with new experimental data obtained by the authors.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
No more items...