Japan
The Effect of Graphite Size on Hydrogen Absorption and Tensile Properties of Ferritic Ductile Cast Iron
Jun 2019
Publication
Ductile cast iron (DCI) is one of prospective materials used for the hydrogen equipment because of low-cost good workability and formability. The wide range of mechanical properties of DCI is obtained by controlling microstructural factors such as graphite size volume fraction of graphite matrix structure and so on. Therefore it is important to find out an optimal microstructural condition that is less susceptible to hydrogen embrittlement. In this study the effects of graphite size on the hydrogen absorption capability and the hydrogen-induced ductility loss of ferritic DCI were investigated.<br/>Several kinds of ferritic DCIs with a different graphite diameter of about 10 µm - 30 µm were used for the tensile test and the hydrogen content measurement. Hydrogen charging was performed prior to the tensile test by exposing a specimen to high-pressure hydrogen gas. Then the tensile test was performed in air at room temperature. The hydrogen content of a specimen was measured by a thermal desorption analyzer.<br/>It was found that the amount of hydrogen stored in DCI was dependent on the graphite size. As the graphite diameter increased the hydrogen content sharply increased at a certain graphite diameter and then it became nearly constant irrespective of increase in graphite diameter. In other words there was the critical graphite diameter that significantly changed the hydrogen absorption capability. The ductility was decreased by hydrogen and the hydrogen-induced ductility loss was dependent on the hydrogen content. Therefore the hydrogen embrittlement of DCI became remarkable when the graphite size was larger than the critical value.
Hydrogen Storage Mechanism in Sodium-Based Graphene Nanoflakes: A Density Functional Theory Study
Jan 2022
Publication
Carbon materials such as graphene nanoflakes carbon nanotubes and fullerene can be widely used to store hydrogen and doping these materials with lithium (Li) generally increases their H2 -storage densities. Unfortunately Li is expensive; therefore alternative metals are required to realize a hydrogen-based society. Sodium (Na) is an inexpensive element with chemical properties that are similar to those of lithium. In this study we used density functional theory to systematically investigate how hydrogen molecules interact with Na-doped graphene nanoflakes. A graphene nanoflake (GR) was modeled by a large polycyclic aromatic hydrocarbon composed of 37 benzene rings with GR-Na-(H2 )n and GR-Na+ -(H2 )n (n = 0–12) clusters used as hydrogen storage systems. Data obtained for the Na system were compared with those of the Li system. The single-H2 GR-Li and GR-Na systems (n = 1) exhibited binding energies (per H2 molecule) of 3.83 and 2.72 kcal/mol respectively revealing that the Li system has a high hydrogen-storage ability. This relationship is reversed from n = 4 onwards; the Na systems exhibited larger or similar binding energies for n = 4–12 than the Li-systems. The present study strongly suggests that Na can be used as an alternative metal to Li in H2 -storage applications. The H2 -storage mechanism in the Na system is also discussed based on the calculated results.
Comparison of Regulations Codes and Standards for Hydrogen Refueling Stations in Japan and France
Sep 2019
Publication
The states of Regulations Codes and Standards (RCS) of hydrogen refueling stations (HRSs) in Japan and France are compared and specified items to understand correspondence and differences among each RCSs for realizing harmonization in RCS. Japan has been trying to reform its RCSs to reduce HRS installation and operation costs as a governmental target. Specific crucial regulatory items such as safety distances mitigation means materials for hydrogen storage and certification of anti-explosion proof equipments are compared in order to identify the origins of the current obstacles for disseminating HRS.
Observation of the Hydrogen Dispersion by Using Raman Scattering Measurement and Increase of Measurable Distance
Sep 2017
Publication
Preparing for the arrival of the hydrogen society it is necessary to develop suitable sensors to use hydrogen safely. There are many methods to know the hydrogen concentration by using conventional sensors but it is difficult to know the behavior of hydrogen gas from long distance. This study measured hydrogen dispersion by using Raman scattering light. Generally some delays occur when using conventional sensors but there are almost no delays by using the new Raman sensor. In the experiments 6mm & 1mm diameter holes are used as a spout nozzle to change initial velocities. To ensure the result a special sheets are used which turns transparent when it detected hydrogen and visualized the hydrogen behaviour. As a result the behaviour of the hydrogen gas in the small container was observed. In addition measurable distance is increased by the improvement of the device.
Numerical Investigation of Detonation in Stratified Combustible Mixture and Oxidizer with Concentration Gradients
Sep 2019
Publication
Hydrogen leakage in a closed space is one of the causes of serious accidents because of its high detonability. Assuming the situation that hydrogen is accumulated in a closed space two-dimensional numerical simulation for hydrogen oxygen detonation which propagates in stratified fuel and oxidizer with concentration gradient is conducted by using detailed chemical reaction model. The concentration gradient between fuel and oxidizer is expressed by changing the number of hydrogen moles by using sigmoid function. Strength of discontinuity at the boundary is controlled by changing the gain of the function. The maximum pressure history shows that the behaviour of triple points is different depending on the strength of discontinuity between the two kind of gas. In without concentration gradient case the transverse waves are reflected at the boundary because of the sudden change of acoustic impedance ratio between two kind of gas. In contrast in with concentration gradient case the transverse wavs are not reflected in the buffer zone and they are flowed into the oxidizer as its structures are kept. As a result the confined effect declines as the strength of discontinuity between the two kind of gas is weakened and the propagating distance of detonation changes
The Study on Permissible Value of Hydrogen Gas Concentration in Purge Gas of Fuel Cell Vehicles
Sep 2019
Publication
Ignition conditions and risks of ignition on a permissible value of hydrogen concentration in purge gas prescribed by HFCV-GTR were reevaluated. Experiments were conducted to investigate burning behavior and thermal influence of continuous evacuation of hydrogen under continuous purge of air / hydrogen premixed gas which is close to an actual purge condition of FCV and thermal evacuation of hydrogen. As a result of the re-evaluation it was shown from the viewpoint of safety that the permissible value of hydrogen concentration in purge gas prescribed by the current HFCV GTR is appropriate.
Hydrogen: A Reviewable Energy Perspective
Sep 2019
Publication
Hydrogen has emerged as an important part of the clean energy mix needed to ensure a sustainable future. Falling costs for hydrogen produced with renewable energy combined with the urgency of cutting greenhouse-gas emissions has given clean hydrogen unprecedented political and business momentum.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
- Electrolysers can add demand-side flexibility. In advanced European energy markets electrolysers are growing from megawatt to gigawatt scale.
- Blue hydrogen is not inherently carbon free. This type of production requires carbon-dioxide (CO2) monitoring verification and certification.
- Synergies may exist between green and blue hydrogen deployment given the chance for economies of scale in hydrogen use or logistics.
- A hydrogen-based energy transition will not happen overnight. Hydrogen use is likely to catch on for specific target applications. The need for new supply infrastructure could limit hydrogen use to countries adopting this strategy.
- Dedicated hydrogen pipelines have existed for decades and could be refurbished along with existing gas pipelines. The implications of replacing gas abruptly or changing mixtures gradually should be further explored.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
Near-term Location of Hydrogen Refueling Stations in Yokohama City from the Perspective of Safety
Sep 2019
Publication
The roll-out of hydrogen refuelling stations is a key step in the transition to a hydrogen economy. Since Japan has been shifting from the demonstration stage to the implementation stage of a hydrogen economy a near-term city-level roll-out plan is required. The aim of this study is to plan near-term locations for building hydrogen refuelling stations in Yokohama City from a safety perspective. Our planning provides location information for hydrogen refuelling stations in Yokohama City for the period 2020–2030. Mobile type and parallel siting type refuelling stations have been considered in our planning and locations were determined by matching supply and demand to safety concerns. Supply and demand were estimated from hybrid vehicle ownership data and from space availability in existing gas stations. The results reaffirmed the importance of hydrogen station location planning and showed that use of mobile type stations is a suitable solution in response to the uncertain fuel cell vehicle fuel demand level during the implementation stage of a hydrogen economy.
Effect of Gasoline Pool Fire on Liquid Hydrogen Storage Tank in Hybrid Hydrogen-gasoline Fueling Station
Nov 2015
Publication
Multiple-energy-fuelling stations which can supply several types of energy such as gasoline CNG and hydrogen could guarantee the efficient use of space. To guide the safety management of hybrid hydrogen–gasoline fuelling stations which utilize liquid hydrogen as an energy carrier the scale of gasoline pool fires was estimated using the hazard assessment tool Toxic Release Analysis of Chemical Emissions (TRACE). Subsequently the temperature and the stress due to temperature distribution were estimated using ANSYS. Based on the results the safety of liquid hydrogen storage tanks was discussed. It was inferred that the emissivity of the outer material of the tank and the safety distance between liquid hydrogen storage tanks and gasoline dispensers should be less than 0.2 and more than 8.5 m respectively to protect the liquid hydrogen storage tank from the gasoline pool fire. To reduce the safety distance several measures are required e.g. additional thermal shields such as protective intumescent paint and water sprinkler systems and an increased slope to lead gasoline off to a safe domain away from the liquid hydrogen storage tank
Unusual Hydrogen Implanted Gold with Lattice Contraction at Increased Hydrogen Content
Mar 2021
Publication
The experimental evidence for the contraction of volume of gold implanted with hydrogen at low doses is presented. The contraction of lattice upon the addition of other elements is very rare and extraordinary in the solid-state not only for gold but also for many other solids. To explain the underlying physics the pure kinetic theory of absorption is not adequate and the detailed interaction of hydrogen in the lattice needs to be clarified. Our analysis points to the importance of the formation of hydride bonds in a dynamic manner and explains why these bonds become weak at higher doses leading to the inverse process of volume expansion frequently seen in metallic hydrogen containers.
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on the mechanical clinching. Hydrogen charge was carried out using an electrolytic cathode charge. After the charging mechanical clinching was performed. Mechanical clinching was carried out with steel plate and aluminium alloy plate. To clarify the influence of hydrogen mechanical clinching was conducted without hydrogen charring. To investigate the crack formation the test piece was cut and the cut surface was observed. When the joint was broken during the clinching the fracture surface was observed using an optical microscope and an electron microscope. The load-displacement diagram showed that without hydrogen charging the compressive load increased as the displacement increased. On the other hand the compressive load temporarily decreased with high hydrogen charging suggesting that cracks formed at the time. The cut surface observation showed that interlock was formed in both cases with low hydrogen charging and without hydrogen charging. With low hydrogen charging no cracks were formed in the joint. When high hydrogen charging was performed cracks were formed at the joining point. Fracture analysis showed brittle-like fracture surface. These results indicate that hydrogen induces crack formation in the mechanical clinching.
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact implies that hydrogen must have a critical effect on the damage evolution because hydrogen enhances strain localization and lowers crack resistance. In this context the strain rate must be an important factor because it affects the time for microstructural hydrogen diffusion/segregation at a specific microstructural location or at the damage tip. In this study tensile tests were carried out on a DP steel with different strain rates of 10− 2 and 10− 4 s−1. We performed the damage quantification microstructure characterization and fractography. Specifically the quantitative data of the damage evolution was analyzed using the classification of the damage evolution regimes in order to separately elucidate the effects of the hydrogen on damage initiation resistance and damage arrestability. In this study we obtained the following conclusions with respect to the strain rate. Lowering the strain rate increased the damage nucleation rate at martensite and reduced the critical strain for fracture through shortening the damage arrest regime. However the failure occurred via ductile modes regardless of strain rate.
Tensile and Fatigue Properties of 17-4PH Martensitic Stainless Steels in Presence of Hydrogen
Dec 2019
Publication
Effects of hydrogen on slow-strain-rate tensile (SSRT) and fatigue-life properties of 17-4PH H1150 martensitic stainless steel having an ultimate tensile strength of ~1GPa were investigated. Smooth and circumferentially-notched axisymmetric specimens were used for the SSRT and fatigue-life tests respectively. The fatigue-life tests were done to investigate the hydrogen effect on fatigue crack growth (FCG) properties. The specimens tested in air at ambient temperature were precharged by exposure to hydrogen gas at pressures of 35 and 100 MPa at 270°C for 200 h. The SSRT properties of the H-charged specimens were degraded by hydrogen showing a relative reduction in area (RRA) of 0.31 accompanied by mixed fracture surfaces composed of quasi-cleavage (QC) and intergranular cracking (IG). The fatigue-life tests conducted under wide test frequencies ranging from 10-3 Hz to 10 Hz revealed three distinct characteristics in low- and high-cycle regimes and at the fatigue limit. The fatigue limit was not degraded by hydrogen. In the high-cycle regime the hydrogen caused FCG acceleration with an upper bound ratio of 30 accompanied by QC surfaces. In the low-cycle regime the hydrogen caused FCG acceleration with a ratio of ~100 accompanied by QC and IG. The ordinary models such as process competition and superposition models hardly predicted the H-assisted FCG acceleration; therefore an interaction model successfully reproducing the experimental FCG acceleration was newly introduced.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
A Multiobjective Optimization of a Catalyst Distribution in a Methane/Steam Reforming Reactor Using a Genetic Algorithm
May 2020
Publication
The presented research focuses on an optimization design of a catalyst distribution inside a small-scale methane/steam reforming reactor. A genetic algorithm was used for the multiobjective optimization which included the search for an optimum of methane conversion rate and a minimum of the difference between highest and lowest temperatures in the reactor. For the sake of computational time the maximal number of the segment with different catalyst densities was set to be thirty in this study. During the entire optimization process every part of the reactor could be filled either with a catalyst material or non-catalytic metallic foam. In both cases the porosity and pore size was also specified. The impact of the porosity and pore size on the active reaction surface and permeability was incorporated using graph theory and three-dimensional digital material representation. Calculations start with the generation of a random set of possible reactors each with a different catalyst distribution. The algorithm calls reforming simulation over each of the reactors and after obtaining concentration and temperature fields the algorithms calculated fitness function. The properties of the best reactors are combined to generate a new population of solutions. The procedure is repeated and after meeting the coverage criteria the optimal catalyst distribution was proposed. The paper is summarized with the optimal catalyst distribution for the given size and working conditions of the system.
Interfacial Fracture Strength Property of Micro-scale SiN/Cu Components
Jul 2016
Publication
The strength against fracture nucleation from an interface free-edge of silicon-nitride (SiN)/copper (Cu) micro-components is evaluated. A special technique that combines a nano-indenter specimen holder and an environmental transmission electron microscope (E-TEM) is employed. The critical load at the onset of fracture nucleation from a wedge-shaped free-edge (opening angle: 90°) is measured both in a vacuum and in a hydrogen (H2) environment and the critical stress distribution is evaluated by the finite element method (FEM). It is found that the fracture nucleation is dominated by the near-edge elastic singular stress field that extends about a few tens of nanometers from the edge. The fracture nucleation strength expressed in terms of the stress intensity factor (K) is found to be eminently reduced in a H2 environment.
Simulation of a Multi-Functional Energy System for Cogeneration of Steam, Power and Hydrogen in a Coke Making Plant
Mar 2013
Publication
In this paper a multifunctional energy system (MES) is proposed for recovering energy from the extra of coke oven gas (COG) which is usually flared or vented out as a waste stream in coke making plants. The proposed system consists of a pressure swing adsorption (PSA) unit for extracting some of the hydrogen from COG a gas turbine for producing heat and power from PSA offgas and a heat recovery steam generator (HRSG) for generating the steam required by the plant's processes. o assess the performance of the system practically simulations are carried out on the basis of the design and operational conditions of Zarand Coke Making Plant in Iran. The results indicate that by utilizing about 4.39 tons of COG per hour 6.5 MW of net electric power can be approximately produced by the gas turbine which can supply the coke making plant's total electrical power demand. Furthermore through recovering heat from gas turbine's exhaust close to 57% of the plant's steam demand can be supplied by the HRSG unit. It is also found that around 350 kilograms per hour of nearly pure hydrogen (99.9% purity) at 200 bar can be produced by the PSA unit. According to the sensitivity analysis results if the hydrogen content of the coke oven gas decreases by about 10% the gross power output of the gas turbine also declines by around 5.2% due to the reduction of LHV of the PSA offgas. Moreover economic evaluation of the system shows that the payback period of the investment which is estimated at 36.1 M$ is about 5.5 years. The net present value (NPV) and internal rate of return on investment (ROI) are calculated to be 17.6% and 43.3 M$ respectively.
Energy Modeling Approach to the Global Energy-mineral Nexus: Exploring Metal Requirements and the Well-below 2 °C Target with 100 Percent Renewable Energy
Jun 2018
Publication
Detailed analysis of pathways to future sustainable energy systems is important in order to identify and overcome potential constraints and negative impacts and to increase the utility and speed of this transition. A key aspect of a shift to renewable energy technologies is their relatively higher metal intensities. In this study a bottom-up cost-minimizing energy model is used to calculate aggregate metal requirements in different energy technology including hydrogen and climate policy scenarios and under a range of assumptions reflecting uncertainty in future metal intensities recycling rate and life time of energy technologies. Metal requirements are then compared to current production rates and resource estimates to identify potentially “critical” metals. Three technology pathways are investigated: 100 percent renewables coal & nuclear and gas & renewables each under the two different climate policies: net zero emissions satisfying the well-below 2 °C target and business as usual without carbon constraints resulting together in six scenarios. The results suggest that the three different technology pathways lead to an almost identical degree of warming without any climate policy while emissions peaks within a few decades with a 2 °C policy. The amount of metals required varies significantly in the different scenarios and under the various uncertainty assumptions. However some can be deemed “critical” in all outcomes including Vanadium. The originality of this study lies in the specific findings and in the employment of an energy model for the energy-mineral nexus study to provide better understanding for decision making and policy development.
Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains
Jun 2017
Publication
Hydrogen is a promising energy carrier in the clean energy systems currently being developed. However its effectiveness in mitigating greenhouse gas (GHG) emissions requires conducting a lifecycle analysis of the process by which hydrogen is produced and supplied. This study focuses on the hydrogen for the transport sector in particular renewable hydrogen that is produced from wind- or solar PV-powered electrolysis. A life cycle inventory analysis is conducted to evaluate the Well-to-Tank (WtT) GHG emissions from various renewable hydrogen supply chains. The stages of the supply chains include hydrogen being produced overseas converted into a transportable hydrogen carrier (liquid hydrogen or methylcyclohexane) imported to Japan by sea distributed to hydrogen filling stations restored from the hydrogen carrier to hydrogen and filled into fuel cell vehicles. For comparison an analysis is also carried out with hydrogen produced by steam reforming of natural gas. Foreground data related to the hydrogen supply chains are collected by literature surveys and the Japanese life cycle inventory database is used as the background data. The analysis results indicate that some of renewable hydrogen supply chains using liquid hydrogen exhibited significantly lower WtT GHG emissions than those of a supply chain of hydrogen produced by reforming of natural gas. A significant piece of the work is to consider the impacts of variations in the energy and material inputs by performing a probabilistic uncertainty analysis. This suggests that the production of renewable hydrogen its liquefaction the dehydrogenation of methylcyclohexane and the compression of hydrogen at the filling station are the GHG-intensive stages in the target supply chains.
The Impact of Operating Conditions on the Performance of a CH4 Dry Reforming Membrane Reactor for H2 Production
May 2020
Publication
Biogas is a promising resource for the production of H2 since it liberates energy by recycling waste along with the reduction of CO2. In this paper the biogas dry reforming membrane reactor is proposed to produce H2 for use in fuel cells. Pd/Cu alloy membrane is used to enhance the performance of the biogas dry reforming reactor. This study aims at understanding the effect of operating parameters such as feed ratio of sweep gas pressure in the reactor and reaction temperature on the performance of the biogas dry reforming membrane reactor. The effect of the molar ratio of the supplied CH4:CO2 feed ratio of the sweep gas and the valve located at the outlet of the reaction chamber on the performance of biogas dry reforming are investigated. Besides the thermal efficiency of the proposed reactor is also evaluated. The results show that the concentration of H2 in the closed valve condition is higher than that of the open valve and the optimum feed ratio of the sweep gas to produce H2 is 1 irrespective of the molar ratio of supplied CH4:CO2. Also H2 selectivity and CO selectivity increases and decreases respectively when the reaction temperature increases irrespective of the molar ratio of supplied CH4:CO2. Therefore the thermal efficiency of the closed valve is higher than that of the opened valve. Also the thermal efficiency is the maximum when the feed ratio of the sweep gas is 1 due to high H2 production performance.
No more items...