Transmission, Distribution & Storage
Mechanical Properties and Hydrogen Embrittlement of Laser-Surface Melted AISI 430 Ferritic Stainless Steel
Feb 2020
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 to 4.8 × 10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
Evaluation of Conceptual Electrolysis-based Energy Storage Systems Using Gas Expanders
Feb 2020
Publication
In this study four energy storage systems (Power-to-Gas-to-Power) were analysed that allow electrolysis products to be fully utilized immediately after they are produced. For each option the electrolysis process was supplied with electricity from a wind farm during the off-peak demand periods. In the first two variants the produced hydrogen was directed to a natural gas pipeline while the third and fourth options assumed the use of hydrogen for synthetic natural gas production. All four variants assumed the use of a gas expander powered by high-temperature exhaust gases generated during gas combustion. In the first two options gas was supplied from a natural gas network while synthetic natural gas produced during methanation was used in the other two options. A characteristic feature of all systems was the combustion of gaseous fuels within a ballast-free oxidant atmosphere without nitrogen which is the fundamental component of air in conventional systems. The fifth variant was a reference for the systems equipped with gas expanders and assumed the use of fuel cells for power generation. To evaluate the individual variants the energy storage efficiency was defined and determined and the calculated overall efficiency ranged from 17.08 to 23.79% which may be comparable to fuel cells.
Analysis of Hydrogen in Inorganic Materials and Coatings: A Critical Review
Jun 2021
Publication
The currently used bulk analysis and depth profiling methods for hydrogen in inorganic materials and inorganic coatings are reviewed. Bulk analysis of hydrogen is based on fusion of macroscopic samples in an inert gas and the detection of the thereby released gaseous H2 using inert gas fusion (IGF) and thermal desorption spectroscopy (TDS). They offer excellent accuracy and sensitivity. Depth profiling methods involve glow discharge optical emission spectroscopy and mass spectrometry (GDOES and GDMS) laser-induced breakdown spectroscopy (LIBS) secondary ion mass spectrometry (SIMS) nuclear reaction analysis (NRA) and elastic recoil detection analysis (ERDA). The principles of all these methods are explained in terms of the methodology calibration procedures analytical performance and major application areas. The synergies and the complementarity of various methods of hydrogen analysis are described. The existing literature about these methods is critically evaluated and major papers concerning each method are listed.
Quaternary Hydrides Pd1-y-zAgyCuzHx Embedded Atom Method Potentials for Hydrogen Energy Applications
Jan 2021
Publication
The Pd-H system has attracted extensive attention. Pd can absorb considerable amount of H at room temperature this ability is reversible so it is suitable for multiple energy applications. Pd-Ag alloys possess higher H permeability solubility and narrower miscibility gap with better mechanical properties than pure Pd but sulfur poisoning remains an issue. Pd-Cu alloys have excellent resistance to sulfur and carbon monoxide poisoning and hydrogen embrittlement good mechanical properties and broader temperature working environments over pure Pd but relatively lower hydrogen permeability and solubility than pure Pd and Pd-Ag alloys. This suggests that alloying Pd with Ag and Cu to create Pd-Ag-Cu ternary alloys can optimize the overall performance and substantially lowers the cost. Thus in this paper we provide the first embedded atom method potentials for the quaternary hydrides Pd1-y-zAgyCuzHx. The fully analytical potentials are fitted utilizing the central atom method without performing time-consuming molecular dynamics simulations.
Towards Net-zero Smart System: An Power Synergy Management Approach of Hydrogen and Battery Hybrid System with Hydrogen Safety Consideration
May 2022
Publication
The building system is one of key energy consumption sector in the market and low-carbon building will make a significant contribution for the worldwide carbon emission reduction. The multiple energy systems including renewable generations hydrogen energy and energy storage is the perspective answer to the net-zero building system. However the research gap lies in the synergy power management among the renewable flexible loads batteries and hydrogen energy systems and at the same time taking the unique characteristic of different energy sectors into account by power managing. This paper proposed the power management approach based on the game theory by which the different characteristics of the energy players are described via creating the competing relationship against net-zero emission objective so that to achieve the power synergy. Under the proposed power management method the hydrogen and battery hybrid system including the fuel cell electrolyzer and battery is designed and investigated as to unlock the power management regions and control constraints within the building system. Particularly for the hydrogen system within the hybrid system the safe and long-lifetime operation is considered respectively by high-efficiency and pressure constraints within the power management. Simulation results show that providing the same energy storage services for the building system the fuel cell with the proposed power management method sustains for 9.9 years much longer than that of equivalent consumption minimization (4.98) model predictive control (4.61) and rule-based method (7.69). Moreover the maximum tank temperature of the hydrogen tank is reduced by 3.4 K and 2.9 K compared with consumption minimization strategy and model predictive control. Also the real-time of the proposed power management is verified by a scaled-down experiment platform.
Modelling of Fatigue Crack Initiation in Hydrogen Charged Polycrystalline Nickel
Jun 2019
Publication
Hydrogen Embrittlement (HE) leads to deterioration of the fracto-mechanical properties of metals. In spite of vast literature it is still not clearly understood and demands significant research on this topic. For better understanding of the hydrogen effect on fatigue behaviour of metals present work focuses on developing a computational framework for fatigue crack initiation studies in metals in the presence of hydrogen. The developed framework consists of a nonlocal crystal plasticity model coupled with hydrogen transport model to study the fatigue behaviour of hydrogen charged metals. The nonlocal crystal plasticity model accounts for the statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) in polycrytalline metal. Hydrogen transport model on the other hand accounts for diffusion and trapping behavior of hydrogen due to concentration gradient pressure gradient plastic strain-rate with dislocations as the only trapping sites along the slip systems. A polycrystalline representative volume element (RVE) with periodic boundary conditions is used in this study. Fatigue crack initiation criterion is proposed for the simulated RVE with controlled microstructure by considering a critical value of the fatigue indicator parameter (FIP). FIP is formulated based on the experimental observations of several crack initiation sites along the grain boundaries their normal direction with respect to loading direction and the accumulated plastic strain in nickel polycrystalline samples. Developed simulation framework correctly accounts cyclic stress-strain behavior and multiple fatigue crack initiation sites observed experimentally in the presence of hydrogen.
Adsorption-Based Hydrogen Storage in Activated Carbons and Model Carbon Structures
Jul 2021
Publication
The experimental data on hydrogen adsorption on five nanoporous activated carbons (ACs) of various origins measured over the temperature range of 303–363 K and pressures up to 20 MPa were compared with the predictions of hydrogen density in the slit-like pores of model carbon structures calculated by the Dubinin theory of volume filling of micropores. The highest amount of adsorbed hydrogen was found for the AC sample (ACS) prepared from a polymer mixture by KOH thermochemical activation characterized by a biporous structure: 11.0 mmol/g at 16 MPa and 303 K. The greatest volumetric capacity over the entire range of temperature and pressure was demonstrated by the densest carbon adsorbent prepared from silicon carbide. The calculations of hydrogen density in the slit-like model pores revealed that the optimal hydrogen storage depended on the pore size temperature and pressure. The hydrogen adsorption capacity of the model structures exceeded the US Department of Energy (DOE) target value of 6.5 wt.% starting from 200 K and 20 MPa whereas the most efficient carbon adsorbent ACS could achieve 7.5 wt.% only at extremely low temperatures. The initial differential molar isosteric heats of hydrogen adsorption in the studied activated carbons were in the range of 2.8–14 kJ/mol and varied during adsorption in a manner specific for each adsorbent.
Materials for End to End Hydrogen Roadmap
Jun 2021
Publication
This report is commissioned by the Henry Royce Institute for advanced materials as part of its role around convening and supporting the UK advanced materials community to help promote and develop new research activity. The overriding objective is to bring together the advanced materials community to discuss analyse and assimilate opportunities for emerging materials research for economic and societal benefit. Such research is ultimately linked to both national and global drivers namely Transition to Zero Carbon Sustainable Manufacture Digital & Communications Circular Economy as well as Health & Wellbeing.
This paper can be download from their website
This paper can be download from their website
Sulfide Stress Cracking of C-110 Steel in a Sour Environment
Jul 2021
Publication
The scope of this study includes modeling and experimental investigation of sulfide stress cracking (SSC) of high-strength carbon steel. A model has been developed to predict hydrogen permeation in steel for a given pressure and temperature condition. The model is validated with existing and new laboratory measurements. The experiments were performed using C-110 grade steel specimens. The specimens were aged in 2% (wt.) brine saturated with mixed gas containing CH4 CO2 and H2S. The concentration H2S was maintained constant (280 ppm) while varying the partial pressure ratio of CO2 (i.e. the ratio of partial pressure of CO2 to the total pressure) from 0 to 15%. The changes occurring in the mechanical properties of the specimens were evaluated after exposure to assess material embrittlement and SSC corrosion. Besides this the cracks developed on the surface of the specimens were examined using an optical microscope. Results show that the hydrogen permeation and subsequently SSC resistance of C-110 grade steel were strongly influenced by the Partial Pressure Ratio (PPR) of CO2 when the PPR was between 0 and 5%. The PPR of CO2 had a limited impact on the SSC process when it was between 10 and 15 percent.
Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis
Jun 2017
Publication
The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant for CO2 methanation (Sabatier reaction). The utilization of CO2 as a feedstock for producing methane contributes to alleviate global climate changes and sequestration related problems. The produced methane is a carbon neutral gas that fits into existing infrastructure and allows issues related to the aforementioned intermittency and non-programmability of solar energy to be overcome. In this paper an experimental apparatus composed of an electrolyzer and a tubular fixed bed reactor is built and used to produce methane via Sabatier reaction. The objective of the experimental campaign is the evaluation of the process performance and a comparison with other CO2 valorization paths such as methanol production. The investigated pressure range was 2–20 bar obtaining a methane volume fraction in outlet gaseous mixture of 64.75% at 8 bar and 97.24% at 20 bar with conversion efficiencies of respectively 84.64% and 99.06%. The methanol and methane processes were compared on the basis of an energy parameter defined as the spent energy/stored energy. It is higher for the methanol process (0.45) with respect to the methane production process (0.41–0.43) which has a higher energy storage capability.
Hydrogen Embrittlement in Pipelines Transporting Sour Hydrocarbons
Sep 2017
Publication
Lamination-like defects in pipeline steels can be of both metallurgical and operational origin. In pipelines transporting hydrocarbon usually such defects are not a big challenge since they do not propagate under operating conditions. Nonetheless in presence of a corrosion phenomenon and sour gas (H2S) it is possible to observe blisters and cracks which may propagate in the steel. The observed damage mechanisms is Hydrogen Embrittlement and in spite of a huge amount of study and publications available it is quite difficult for a pipeline owner to get practical data (crack propagation rate for instance) allowing a reliable estimate of the fitness for service of a pipeline. Taking advantage of a pipeline spool containing internal defects that was in service for more than 10 years and recently removed a comprehensive study is underway to obtain a complete assessment of the pipeline future integrity. The program is comprehensive of study and comparison of ILI reports of the pipeline to determine the optimum interval between inspections assessment of inspection results via an accurate nondestructive (UT) and destructive examination of the removed section to verify ILI results lab tests program on specimens from the removed spool at operating conditions (75-80 bar and 30°-36° C) in presence of a small quantity of water H2S (5%) and CO2 (7%) in order to assess defect propagation and to obtain an estimate of crack growth rate and test in field of available methods to monitor the presence of Hydrogen and/or the growth of defects in in-service pipelines. This quite ambitious program is also expected to be able of offering a small contribution toward a better understanding of HE mechanisms and the engineering application of such complex often mainly academic studies.
Towards a Unified and Practical Industrial Model for Prediction of Hydrogen Embrittlement and Damage in Steels
Jul 2016
Publication
Bearing in mind the multiple effects of hydrogen in steels the specific mechanism of hydrogen embrittlement (HE) is active depending on the experimental conditions and numerous factors which can be grouped as environmental mechanical and material influences. A large number of contemporary studies and models about hydrogen environment assisted cracking and HE in steels are presented in the form of critical review in this paper. This critical review represent the necessary background for the development of a multiscale structural integrity model based on correlation between simultaneously active HE micro-mechanisms: the hydrogen-enhanced localized plasticity (HELP) and the hydrogen-enhanced decohesion (HEDE) - (HELP+HEDE) and macro-mechanical response of material unevenly enriched with hydrogen during service of boiler tubes in thermal fossil fuel power plant. Several different experimental methods and techniques were used to determine the boiler tube failure mechanism and afterwards also the viable HE mechanisms in the investigated ferritic-pearlitic low carbon steel grade 20 - St.20 (equivalent to AISI 1020). That represent a background for the development of a structural integrity model based on the correlation of material macro-mechanical properties to scanning electron microscopy fractography analysis of fracture surfaces of Charpy specimens in the presence of confirmed and simultaneously active HE micro-mechanisms (HELP+HEDE) in steel. The aim of this paper is to show how to implement what we have learned from theoretical HE models into the field to provide industry with valuable data and practical structural integrity model.
Evaluation of Strength and Fracture Toughness of Ferritic High Strength Steels Under Hydrogen Environments
Sep 2017
Publication
The susceptibility of high strength ferritic steels to hydrogen-assisted fracture in hydrogen gas is usually evaluated by mechanical testing in high-pressure hydrogen gas or testing in air after pre-charging the specimens with hydrogen. We have used this second methodology conventionally known as internal hydrogen. Samples were pre-charged in an autoclave under 195 bar of pure hydrogen at 450ºC for 21 hours.<br/>Different chromium-molybdenum steels submitted to diverse quenching and tempering heat treatments were employed. Diverse specimens were also used: small cylindrical samples to measure hydrogen contents and the kinetics of hydrogen egression at room temperature tensile specimens notched tensile specimens with a sharp notch and also compact fracture toughness specimens. Fractographic examination in SEM was finally performed in order to know the way hydrogen modify fracture micromechanisms.<br/>The presence of hydrogen barely affects the conventional tensile properties of the steels but it clearly alters their notched tensile strength and fracture toughness. This is due to the strong effect that stress triaxiality (dependent also on the steel yield strength) has on the accumulation of hydrogen on the notch/crack front region being the displacement rate used in the test another important variable to be controlled due to its influence on hydrogen diffusion to the embrittled process zone. Moreover the modification of fracture micromechanisms was finally determined being ductile (initiation growth and coalescence of microvoids) in the absence of hydrogen and brittle and intergranular under the material conditions of maximum embrittlement.
Adaptation of Hydrogen Transport Models at the Polycrystal Scale and Application to the U-bend Test
Dec 2018
Publication
Hydrogen transport and trapping equations are implemented in a FE software using User Subroutines and the obtained tool is applied to get the diffusion fields in a metallic sheet submitted to a U-Bend test. Based on a submodelling process mechanical and diffusion fields have been computed at the polycrystal scale from which statistical evaluation of the risk of failure of the sample has been estimated.
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact implies that hydrogen must have a critical effect on the damage evolution because hydrogen enhances strain localization and lowers crack resistance. In this context the strain rate must be an important factor because it affects the time for microstructural hydrogen diffusion/segregation at a specific microstructural location or at the damage tip. In this study tensile tests were carried out on a DP steel with different strain rates of 10− 2 and 10− 4 s−1. We performed the damage quantification microstructure characterization and fractography. Specifically the quantitative data of the damage evolution was analyzed using the classification of the damage evolution regimes in order to separately elucidate the effects of the hydrogen on damage initiation resistance and damage arrestability. In this study we obtained the following conclusions with respect to the strain rate. Lowering the strain rate increased the damage nucleation rate at martensite and reduced the critical strain for fracture through shortening the damage arrest regime. However the failure occurred via ductile modes regardless of strain rate.
Thickness-Prediction Method Involving Tow Redistribution for the Dome of Composite Hydrogen Storage Vessels
Feb 2022
Publication
Traditional thickness-prediction methods underestimate the actual dome thickness at polar openings leading to the inaccurate prediction of the load-bearing capacity of composite hydrogen storage vessels. A method of thickness prediction for the dome section of composite hydrogen storage vessels was proposed which involved fiber slippage and tow redistribution. This method considered the blocking effect of the port on sliding fiber tows and introduced the thickness correlation to predict the dome thickness at polar openings. The arc length corresponding to the parallel circle radius was calculated and then the actual radius values corresponding to the bandwidth were obtained by the interpolation method. The predicted thickness values were compared with the actual measured thickness. The maximum relative error of the predicted thickness was 4.19% and the mean absolute percentage error was 2.04%. The results show that the present method had a higher prediction accuracy. Eventually this prediction method was used to perform progressive damage analysis on vessels. By comparing with the results of the cubic spline function method the analysis results of the present method approached the actual case. This showed that the present method improved the accuracy of the design.
Synthesis and Characterization of Carbon-Based Composites for Hydrogen Storage Application
Dec 2021
Publication
Recent development shows that carbon-based composites are proving to be the most promising materials in hydrogen energy production storage and conversion applications. In this study composites of the copper-based metal-organic framework with different ratios of graphite oxide have been prepared for hydrogen storage application. The developed materials are characterized by X-ray diffraction (XRD) gravimetric thermal analysis (TGA) scanning electron microscopy (SEM) and BET. The newly developed composites have an improved crystalline structure and an increased surface area. The results of the experiment showed that the composite material MOF/GO 20% can store 6.12% of hydrogen at −40 ◦C.
Coordinated Control Scheme of a Hybrid Renewable Power System Based on Hydrogen Energy Storage
Aug 2021
Publication
An all-weather energy management scheme for island DC microgrid based on hydrogen energy storage is proposed. A dynamic model of a large-scale wind–solar hybrid hydrogen-generation power generation system was established using a quasi-proportional resonance (QPR). We used the distributed Nautilus vertical axis wind power generation system as the main output of the system and it used the photovoltaic and hydrogen energy storage systems as alternative energy sources. Based on meeting the load power requirements and controlling the bus voltage stability we can convert the excess energy of the microgrid to hydrogen energy. With a shortage of load power we can convert the stored hydrogen into electrical energy for the load. Based on the ANSYS FLUENT software platform the feasibility and superiority over large-scale distributed Nautilus vertical axis wind power generation systems are verified. Through the MATLAB/Simulink software platform the effectiveness of the energy management method is verified. The results show that the large-scale distributed Nautilus vertical axis wind power generation system runs well in the energy system produces stable torque produces energy better than other types of wind turbines and has less impact on the power grid. The energy management method can ensure the normal operation of the system 24 h a day under the premise of maintaining the stable operation of the electric hydrogen system without providing external energy.
Optical, Electrical and Structural Study of Mg/Ti Bilayer Thin Film for Hydrogen Storage Applications
Apr 2021
Publication
Bilayer Mg/Ti (200 nm) thin films were successfully prepared by using D.C. magnetron sputtering unit. These films were vacuum annealed at 573 K temperature for one hour to obtain homogeneous and intermixed structure of bilayer. Hydrogenation of these thin film structures was made at different hydrogen pressure (15 30 & 45 psi) for 30 min to visualize the effect of hydrogen on film structure. The UV–Vis absorption spectra I-V characteristics and Raman spectroscopy were carried out to study the effect of hydrogen on optical electrical and structural properties of Mg/Ti bilayer thin films. The annealed thin film represents the semiconductor nature with the conductivity of the order of 10-5 Ώ−1-m−1 and it decreases as hydrogen pressure increases. The nonlinear dependence of resistivity on hydrogen pressure reveals inhomogeneous distribution of hydrogen in the thin film. Raman spectroscopy confirmed the presence of hydrogen in thin film where the intensity of peaks was found to be decreased with hydrogen pressure.
SimSES: A Holistic Simulation Framework for Modeling and Analyzing Stationary Energy Storage Systems
Feb 2022
Publication
The increasing feed-in of intermittent renewable energy sources into the electricity grids worldwide is currently leading to technical challenges. Stationary energy storage systems provide a cost-effective and efficient solution in order to facilitate the growing penetration of renewable energy sources. Major technical and economical challenges for energy storage systems are related to lifetime efficiency and monetary returns. Holistic simulation tools are needed in order to address these challenges before investing in energy storage systems. One of these tools is SimSES a holistic simulation framework specialized in evaluating energy storage technologies technically and economically. With a modular approach SimSES covers various topologies system components and storage technologies embedded in an energy storage application. This contribution shows the capabilities and benefits of SimSES by providing in-depth knowledge of the implementations and models. Selected functionalities are demonstrated with two use cases showing the easy-to-use simulation framework while providing detailed technical analysis for expert users. Hybrid energy storage systems consisting of lithium-ion and redox-flow batteries are investigated in a peak shaving application while various system topologies are analyzed in a frequency containment reserve application. The results for the peak shaving case study show a benefit in favor of the hybrid system in terms of overall cost and degradation behavior in applications that have a comparatively low energy throughput during lifetime. In terms of system topology a cascaded converter approach shows significant improvements in efficiency for the frequency containment reserve application.
No more items...