Transmission, Distribution & Storage
Mechanical Properties of Gas Main Steels after Long-Term Operation and Peculiarities of Their Fracture Surface Morphology
Feb 2019
Publication
Regularities of steel structure degradation of the “Novopskov-Aksay-Mozdok” gas main pipelines (Nevinnomysskaya CS) as well as the “Gorky-Center” pipelines (Gavrilovskaya CS) were studied. The revealed peculiarities of their degradation after long-term operation are suggested to be treated as a particular case of the damage accumulation classification (scheme) proposed by prof. H.M. Nykyforchyn. It is shown that the fracture surface consists of sections of ductile separation and localized zones of micro-spalling. The presence of the latter testifies to the hydrogen-induced embrittlement effect. However the steels under investigation possess sufficiently high levels of the mechanical properties required for their further safe exploitation both in terms of durability and cracking resistance.
Hydrogen Storage in Depleted Gas Reservoirs: A Comprehensive Review
Nov 2022
Publication
Hydrogen future depends on large-scale storage which can be provided by geological formations (such as caverns aquifers and depleted oil and gas reservoirs) to handle demand and supply changes a typical hysteresis of most renewable energy sources. Amongst them depleted natural gas reservoirs are the most cost-effective and secure solutions due to their wide geographic distribution proven surface facilities and less ambiguous site evaluation. They also require less cushion gas as the native residual gases serve as a buffer for pressure maintenance during storage. However there is a lack of thorough understanding of this technology. This work aims to provide a comprehensive insight and technical outlook into hydrogen storage in depleted gas reservoirs. It briefly discusses the operating and potential facilities case studies and the thermophysical and petrophysical properties of storage and withdrawal capacity gas immobilization and efficient gas containment. Furthermore a comparative approach to hydrogen methane and carbon dioxide with respect to well integrity during gas storage has been highlighted. A summary of the key findings challenges and prospects has also been reported. Based on the review hydrodynamics geochemical and microbial factors are the subsurface’s principal promoters of hydrogen losses. The injection strategy reservoir features quality and operational parameters significantly impact gas storage in depleted reservoirs. Future works (experimental and simulation) were recommended to focus on the hydrodynamics and geomechanics aspects related to migration mixing and dispersion for improved recovery. Overall this review provides a streamlined insight into hydrogen storage in depleted gas reservoirs.
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Apr 2018
Publication
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However according to recent studies the hydrogen leads to the decline of the mechanical properties of steel which is known as hydrogen embrittlement is another reason for flake formation. In addition the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure hydrogen embrittlement and stress induced hydrogen re-distribution. The analysis model was established using the finite element method and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap a stress field formed. In addition the trap is the center of stress concentration. Then hydrogen is concentrated in a distribution around this trap and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However when the trap size exceeds the specified value the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm the critical hydrogen content of Cr5VMo steel is 2.2 ppm which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel.
Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels
May 2018
Publication
In the present study the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition simulations were carried out on the short fatigue crack growth in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition crack propagation and crack path could be simulated well with the simulation model.
Hydrogen Assisted Crack Initiation and Propagation in Nickel-cobalt Heat Resistant Superalloys
Aug 2019
Publication
It has been investigated the Ni-Co alloys (obtained from powder 0.1...0.3 mm under hot gaseous (in argon) isostatic pressure (up to 300 MPa) (Ni60Co15Cr8W8Al2Mo3) (Firth Rixon Metal Ltd Sheffield) and deformed (obtained by vacuum induced remealting) materials (Ni62Cr14Co10Mo5Nb3Al3Ti3) for gaseous turbine discs. Investigation has performed in the range of temperature 25…800°С and hydrogen pressure up to 70 MPa. By the 3D visualization of crack morphology it has been discovered the structure of fatigue crack surface and established the refer points on crack path including the boundary between the matrix and intermetallic particles (400×200 μm) crack opening structural elements distributions on the surface for selection of next local areas for more precision fracture surface and TEM examinations. Hydrogen influence on cyclic crack resistance parameters appears in the decreasing of loading cycles number (with amplitudes 15 MPa) in hydrogenated specimens of both alloys and increase with hydrogen concentration. At the highest hydrogen saturation regimes of Ni60Co15Cr8W8Al2Mo3 alloy (800°С 35 MPa Н2 36 hours СН = 32.7 ppm) number of cycles which necessary for crack initiation is 3 times less in comparison with specimen in initial state. At crack initiation step in hydrogenated Ni56Cr14Co15Mo5Al3Ti3 alloy it has been established that before intermetallic inclusion (400×200 μm) local stresses increased after its passing – has decreased. By fracture surface investigation it has been found the micro cracks up to 40 μm. Thin structure of heat resistant superalloys has characterises by disperse phase agglomeration with dimensions from 5 to 30 nm and crack propagation has a jumping character with no less then 50…70 nm steps.
Tensile and Fatigue Properties of 17-4PH Martensitic Stainless Steels in Presence of Hydrogen
Dec 2019
Publication
Effects of hydrogen on slow-strain-rate tensile (SSRT) and fatigue-life properties of 17-4PH H1150 martensitic stainless steel having an ultimate tensile strength of ~1GPa were investigated. Smooth and circumferentially-notched axisymmetric specimens were used for the SSRT and fatigue-life tests respectively. The fatigue-life tests were done to investigate the hydrogen effect on fatigue crack growth (FCG) properties. The specimens tested in air at ambient temperature were precharged by exposure to hydrogen gas at pressures of 35 and 100 MPa at 270°C for 200 h. The SSRT properties of the H-charged specimens were degraded by hydrogen showing a relative reduction in area (RRA) of 0.31 accompanied by mixed fracture surfaces composed of quasi-cleavage (QC) and intergranular cracking (IG). The fatigue-life tests conducted under wide test frequencies ranging from 10-3 Hz to 10 Hz revealed three distinct characteristics in low- and high-cycle regimes and at the fatigue limit. The fatigue limit was not degraded by hydrogen. In the high-cycle regime the hydrogen caused FCG acceleration with an upper bound ratio of 30 accompanied by QC surfaces. In the low-cycle regime the hydrogen caused FCG acceleration with a ratio of ~100 accompanied by QC and IG. The ordinary models such as process competition and superposition models hardly predicted the H-assisted FCG acceleration; therefore an interaction model successfully reproducing the experimental FCG acceleration was newly introduced.
Hydrogen Embrittlement of Steel Pipelines During Transients
May 2021
Publication
Blending hydrogen into natural gas pipelines is a recent alternative adopted for hydrogen transportation as a mixture with natural gas. In this paper hydrogen embrittlement of steel pipelines originally designed for natural gas transportation is investigated. Solubility permeation and diffusion phenomena of hydrogen molecules into the crystalline lattice structure of the pipeline material are followed up based on transient evolution of internal pressure applied on the pipeline wall. The transient regime is created through changes of gas demand depending on daily consumptions. As a result the pressure may reach excessive values that lead to the acceleration of hydrogen solubility and its diffusion through the pipeline wall. Furthermore permeation is an important parameter to determine the diffusion amount of hydrogen inside the pipeline wall resulting in the embrittlement of the material. The numerical obtained results have shown that using pipelines designed for natural gas conduction to transport hydrogen is a risky choice. Actually added to overpressure and great fluctuations during transients that may cause fatigue and damage the structure also the latter pressure evolution is likely to induce the diffusion phenomena of hydrogen molecules into the lattice of the structure leading to brittle the pipe material. The numerical simulation reposes on solving partial differential equations describing transient gas flow in pipelines coupled with the diffusion equation for mass transfer. The model is built using the finite elements based software COMSOL Multiphysics considering different cases of pipe material; API X52 (base metal and nutrided) and API X80 steels. Obtained results allowed tracking the evolution with time of hydrogen concentration through the pipeline internal wall based on the pressure variation due to transient gas flow. Such observation permits to estimate the amount of hydrogen diffused in the metal to avoid leakage of this flammable gas. Thus precautions may be taken to prevent explosive risks due to hydrogen embrittlement of steel pipelines among other effects that can lead to alter safe conditions of gas conduction.
Requirements for Hydrogen Resistance of Materials in CI Engine Toxic Substances Powered by Biofuels
Aug 2019
Publication
It has been described the conception of using platinum catalytic layer in multi hole fuel injector atomizer. The catalytic layer has been placed on not working part of atomizer needle. The aim of modification was activation of dehydrogenation reaction paraffin to olefin hydrocarbons with escape hydrogen molecule in CI engine bio fuel. The modification of atomizer with catalytic layer and reaction process leads to the presence of hydrogen and its influence on structural materials properties after the catalysis which requires the high hydrogen and crack resistance of used materials. There is used high speed steel as material. Article describes how hydrogen and combustion gases influence on thermal friction processes on this material. First of all the investigations were conduct 359 engine with biodiesel. During test had been observed nitrogen oxides carbon monoxide and particles emission. The obtained results show that there is possibility to lower toxic substances emission in exhaust gases CI engine powered by biodiesel. On the second it has been described the influence of biodiesel (including hydrogen) on fuel injector components and their influence on structural materials characteristics. There has been presented how biodiesel with hydrogen influences on precision elements and injection and return discharges. The investigation has been made by using engine test bench and fuel injector and pumps test equipment.
A New Model For Hydrogen-Induced Crack (HIC) Growth in Metal Alloy Pipelines Under Extreme Pressure
Dec 2020
Publication
Pipeline failure caused by Hydrogen-Induced Cracking (HIC) also known as Hydrogen Embrittlement (HE) is a pressing issue for the oil and natural gas industry. Bursts in pipelines are devastating and extremely costly. The explosive force of a bursting pipe can inflict fatal injuries to workers while the combined loss of product and effort to repair are highly costly to producers. Further pipeline failures due to HIC have a long lasting impact on the surrounding environment. Safe use and operation of such pipelines depend on a good understanding of the underlying forces that cause HIC. Specifically a reliable way to predict the growth rate of hydrogen-induced cracks is needed to establish a safe duration of service for each length of pipeline. Pipes that have exceeded or are near the end of their service life can then be retired before the risk of HIC-related failures becomes too high. However little is known about the mechanisms that drive HIC. To date no model has been put forth that accurately predicts the growth rate of fractures due to HIC under extreme pressures such as in the context of natural gas and petroleum pipelines. Herein a mathematical model for the growth of fractures by HIC under extreme pressures is presented. This model is derived from first principles and the results are compared with other models. The implications of these findings are discussed and a description of future work based on these findings is presented.
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on the mechanical clinching. Hydrogen charge was carried out using an electrolytic cathode charge. After the charging mechanical clinching was performed. Mechanical clinching was carried out with steel plate and aluminium alloy plate. To clarify the influence of hydrogen mechanical clinching was conducted without hydrogen charring. To investigate the crack formation the test piece was cut and the cut surface was observed. When the joint was broken during the clinching the fracture surface was observed using an optical microscope and an electron microscope. The load-displacement diagram showed that without hydrogen charging the compressive load increased as the displacement increased. On the other hand the compressive load temporarily decreased with high hydrogen charging suggesting that cracks formed at the time. The cut surface observation showed that interlock was formed in both cases with low hydrogen charging and without hydrogen charging. With low hydrogen charging no cracks were formed in the joint. When high hydrogen charging was performed cracks were formed at the joining point. Fracture analysis showed brittle-like fracture surface. These results indicate that hydrogen induces crack formation in the mechanical clinching.
NanoSIMS Analysis of Hydrogen and Deuterium in Metallic Alloys: Artefacts and Best Practice
Apr 2021
Publication
Hydrogen embrittlement can cause catastrophic failure of high strength alloys yet determining localised hydrogen in the microstructure is analytically challenging. NanoSIMS is one of the few techniques that can map hydrogen and deuterium in metal samples at microstructurally relevant length scales. Therefore it is essential to understand the artefacts and determine the optimum methodology for its reliable detection. An experimental methodology/protocol for NanoSIMS analysis of deuterium (as a proxy for hydrogen) has been established uncovering unreported artefacts and a new approach is presented to minimise these artefacts in mapping hydrogen and deuterium in alloys. This method was used to map deuterium distributions in electrochemically charged austenitic stainless steel and precipitation hardened nickel-based alloys. Residual deuterium contamination was detected in the analysis chamber as a result of deuterium outgassing from the samples and the impact of this deuterium contamination was assessed by a series of NanoSIMS experiments. A new analysis protocol was developed that involves mapping deuterium in the passive oxide layer thus mitigating beam damage effects that may prevent the detection of localised deuterium signals when the surface is highly deuterated.
Hydrogen Enhanced Fatigue Crack Growth Rates in a Ferritic Fe-3wt%Si Alloy
Dec 2018
Publication
It is well known that ferrous materials can be damaged by absorption of hydrogen. If a sufficient quantity of hydrogen penetrates into the material static fracture and the material's fatigue performances can be affected negatively in particular causing an increase in the material crack growth rates. The latter is often referred as Hydrogen Affected-Fatigue Crack Growth Rate (HA-FCGR). It is therefore of paramount importance to quantify the impact in terms of hydrogen induce fatigue crack growth acceleration in order to determine the life of components exposed to hydrogen and avoid unexpected catastrophic failures. In this study in-situ fatigue crack growth rate testing on Compact Tension (CT) specimens were carried out to determine the fatigue crack growth behaviour for a Fe-3 wt%Si alloy and X70 pipeline steel. Tests were carried out in two environmental conditions i.e. laboratory air and in-situ electrochemically charged hydrogen and different mechanical conditions in terms of load ratio (R = 0.1 and R = 0.5 for the Fe-3 wt%Si R = 0.1 for the X70 steel) and test frequency (f = 0.1 Hz 1 Hz and 10 Hz) were adopted under electrochemically charged hydrogen conditions. The results show a clear detrimental effect of H for the specimens tested in hydrogen when compared to the specimens tested in air for both materials and that the impact of hydrogen is test frequency-dependent: the hydrogen induced acceleration is more prominent as the frequency is decreased. Post-mortem surface investigations consistently relate the global crack growth acceleration to a shift from transgranular to Quasi-cleavage fracture mechanism. Despite such consistency the acceleration factor strongly depends on the material: Fe-3wt%Si features acceleration up to 1000 times while X70 accelerates up to 76 times when compare to the material fatigue crack growth rate recorded in air. Observation of the deformation activities in the crack wake in relation to the transition into hydrogen accelerated regime in fatigue crack growth show a tendency toward restricted plastic activity in presence of hydrogen.
Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review
Apr 2021
Publication
Hydrogen has been long known to provide a solution toward clean energy systems. With this notion many efforts have been made to find new ways of storing hydrogen. As a result decades of studies has led to a wide range of hydrides that can store hydrogen in a solid form. Applications of these solid-state hydrides are well-suited to stationary applications. However the main challenge arises in making the selection of the Metal Hydrides (MH) that are best suited to meet application requirements. Herein we discuss the current state-of-art in controlling the properties of room temperature (RT) hydrides suitable for stationary application and their long term behavior in addition to initial activation their limitations and emerging trends to design better storage materials. The hydrogen storage properties and synthesis methods to alter the properties of these MH are discussed including the emerging approach of high-entropy alloys. In addition the integration of intermetallic hydrides in vessels their operation with fuel cells and their use as thermal storage is reviewed.
Reversible Hydrogen Storage Using Nanocomposites
Jul 2020
Publication
In the field of energy storage recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several carbonaceous nanovariants like carbon nanotubes (CNTs) fullerenes and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-organic framework (MOF) show room temperature uptake of hydrogen. Metal or complex hydrides either in the nanocomposite form and its subset nanocatalyst dispersed alloy phases illustrate the concept of nanoengineering and nanoconfinement of particles with tailor-made properties for reversible hydrogen storage. Another class of materials comprising polymeric nanostructures such as conducting polyaniline and their functionalized nanocomposites are versatile hydrogen storage materials because of their unique size high specific surface-area pore-volume and bulk properties. The salient features of nanocomposite materials for reversible hydrogen storage are reviewed and discussed.
Prospecting Stress Formed by Hydrogen or Isotope Diffused in Palladium Alloy Cathode
Oct 2018
Publication
The objective of this project is to take into account the mechanical constraints formed by diffusion of hydrogen or tritium in watertight palladium alloy cathode. To know the origin of these it was necessary to discriminating the damaging effects encountered. Effectively hydrogen and isotope induce deformation embrittlement stress corrosion cracking and cathodic corrosion in different regions of cathode. Palladium can be alloyed with silver or yttrium to favourably increase diffusion and reduce these constraints. Effects of electrochemical factors temperature cathode structure adsorbed transient complex of palladium and porous material support are given to estimate and to limit possible damage.
Effect of Hydrogen on the Deformation Behavior and Localization of Plastic Deformation of the Ultrafine-Grained Zr–1Nb Alloy
Oct 2020
Publication
In this paper comparison studies of the hydrogen effect on the structural and phase state deformation behavior and mechanical properties of the fine- (average grain size 4 µm) and ultrafine-grained (average element size 0.3 and 0.4 µm) Zr–1wt.%Nb (hereinafter Zr–1Nb) alloy under tension at temperatures in the range of 293–873 K were conducted. The formation of an ultrafine-grained structure is established to increase the strength characteristics of the Zr–1Nb alloy by a factor of 1.5–2 with a simultaneous reduction of its resistance to the localization of plastic deformation at the macro level and the value of deformation to failure. The presence of hydrogen in the Zr–1Nb alloy in the form of a solid solution and hydride precipitates increases its resistance to the localization of plastic deformation at the macro level if the alloy has an ultrafine-grained structure and decreases if the structure of the alloy is fine-grained. In the studied temperature range the Zr–1Nb alloy in the ultrafine-grained state has a higher resistance to hydrogen embrittlement than the alloy in the fine-grained state.
Hydrogen Embrittlement of Medium Mn Steels
Feb 2021
Publication
Recent research efforts to develop advanced–/ultrahigh–strength medium-Mn steels have led to the development of a variety of alloying concepts thermo-mechanical processing routes and microstructural variants for these steel grades. However certain grades of advanced–/ultrahigh–strength steels (A/UHSS) are known to be highly susceptible to hydrogen embrittlement due to their high strength levels. Hydrogen embrittlement characteristics of medium–Mn steels are less understood compared to other classes of A/UHSS such as high Mn twinning–induced plasticity steel because of the relatively short history of the development of this steel class and the complex nature of multiphase fine-grained microstructures that are present in medium–Mn steels. The motivation of this paper is to review the current understanding of the hydrogen embrittlement characteristics of medium or intermediate Mn (4 to 15 wt pct) multiphase steels and to address various alloying and processing strategies that are available to enhance the hydrogen-resistance of these steel grades.
Mn-based Borohydride Synthesized by Ball-milling KBH4 and MnCl2 for Hydrogen Storage
Dec 2013
Publication
In this work a mixed-cation borohydride (K2Mn(BH4)4) with P21/n structure was successfully synthesized by mechanochemical milling of the 2KBH4–MnCl2 sample under argon. The structural and thermal decomposition properties of the borohydride compounds were investigated using XRD Raman spectroscopy FTIR TGA-MS and DSC. Apart from K2Mn(BH4)4 the KMnCl3 and unreacted KBH4 compounds were present in the milled 2KBH4–MnCl2. The two mass loss regions were observed for the milled sample: one was from 100 to 160 °C with a 1.6 ± 0.1 wt% loss (a release of majority hydrogen and trace diborane) which was associated with the decomposition of K2Mn(BH4)4 to form KBH4 boron and finely dispersed manganese; the other was from 165 to 260 °C with a 1.9 ± 0.1 wt% loss (only hydrogen release) which was due to the reaction of KBH4 with KMnCl3 to give KCl boron finely dispersed manganese. Simultaneously the formed KCl could dissolve in KBH4 to yield a K(BH4)xCl1−x solid solution and also react with KMnCl3 to form a new compound K4MnCl6.
Estimation of Filling Time for Compressed Hydrogen Refueling
Mar 2019
Publication
In order to facilitate the application of hydrogen energy and ensure its safety the compressed hydrogen storage tank on board needs to be full of hydrogen gas within 3 minutes. Therefore to meet this requirement the effects of refueling parameters on the filling time need to be investigated urgently. For the purpose of solving this issue a novel analytical solution of filling time is obtained from a lumped parameter model in this paper. According to the equation of state for real gas and dimensionless numbers Nu and Re the function relationships between the filling time and the refueling parameters are presented. These parameters include initial temperature initial pressure inflow temperature final temperature and final pressure. These equations are used to fit the reference data the results of fitting show good agreement. Then the values of fitting parameters are further utilized so as to verify the validity of these formulas. We believe this study can contribute to control the hydrogen filling time and ensure the safety during fast filling process.
Improving Hydrogen Embrittlement Resistance of Hot-Stamped 1500 MPa Steel Parts That Have Undergone a Q&P Treatment by the Design of Retained Austenite and Martensite Matrix
Nov 2020
Publication
Hydrogen embrittlement is one of the largest obstacles against the commercialisation of ultra-high strength quenching and partitioning (Q&P) steels with ultimate tensile strength over 1500 MPa including the hot stamped steel parts that have undergone a Q&P treatment. In this work the influence of partitioning temperature on hydrogen embrittlement of ultra-high strength Q&P steels is studied by pre-charged tensile tests with both dog-bone and notched samples. It is found that hydrogen embrittlement resistance is enhanced by the higher partitioning temperature. Then the hydrogen embrittlement mechanism is analysed in terms of hydrogen retained austenite and martensite matrix. Thermal desorption analysis (TDA) shows that the hydrogen trapping properties are similar in the Q&P steels which cannot explain the enhancement of hydrogen embrittlement resistance. On the contrary it is found that the relatively low retained austenite stability after the higher temperature partitioning ensures more sufficient TRIP effect before hydrogen-induced fracture. Additionally dislocation recovery and solute carbon depletion at the higher partitioning temperature can reduce the flow stress of the martensite matrix improving its intrinsic toughness and reducing its hydrogen sensitivity both of which result in the higher hydrogen embrittlement resistance.
No more items...