Transmission, Distribution & Storage
Effect of α′ Martensite Content Induced by Tensile Plastic Prestrain on Hydrogen Transport and Hydrogen Embrittlement of 304L Austenitic Stainless Steel
Aug 2018
Publication
Effects of microstructural changes induced by prestraining on hydrogen transport and hydrogen embrittlement (HE) of austenitic stainless steels were studied by hydrogen precharging and tensile testing. Prestrains higher than 20% at 20 °C significantly enhance the HE of 304L steel as they induce severe α′ martensite transformation accelerating hydrogen transport and hydrogen entry during subsequent hydrogen exposure. In contrast 304L steel prestrained at 50 and 80 °C and 316L steel prestrained at 20 °C exhibit less HE due to less α′ after prestraining. The increase of dislocations after prestraining has a negligible influence on apparent hydrogen diffusivity compared with pre-existing α′. The deformation twins in heavily prestrained 304L steel can modify HE mechanism by assisting intergranular (IG) fracture. Regardless of temperature and prestrain level HE and apparent diffusivity ( Dapp ) increase monotonously with α′ volume fraction ( fα′ ). Dapp can be described as log Dapp=log(Dα′sα′/sγ)+log[fα′/(1−fα′)] for 10%<fα′<90% with Dα′ is diffusivity in α′ sα′ and sγ are solubility in α′ and austenite respectively. The two equations can also be applied to these more typical duplex materials containing both BCC and FCC phases.
Hydrogen Diffusion in Coal: Implications for Hydrogen Geo-storage
Oct 2021
Publication
Hypothesis: Hydrogen geo-storage is considered as an option for large scale hydrogen storage in a full-scale hydrogen economy. Among different types of subsurface formations coal seams look to be one of the best suitable options as coal’s micro/nano pore structure can adsorb a huge amount of gas (e.g. hydrogen) which can be withdrawn again once needed. However literature lacks fundamental data regarding H2 diffusion in coal. Experiments: In this study we measured H2 adsorption rate in an Australian anthracite coal sample at isothermal conditions for four different temperatures (20 C 30 C 45 C and 60 C) at equilibrium pressure 13 bar and calculated H2 diffusion coefficient (DH2 ) at each temperature. CO2 adsorption rates were measured for the same sample at similar temperatures and equilibrium pressure for comparison. Findings: Results show that H2 adsorption rate and consequently DH2 increases by temperature. DH2 values are one order of magnitude larger than the equivalent DCO2 values for the whole studied temperature range 20–60 C. DH2 / DCO2 also shows an increasing trend versus temperature. CO2 adsorption capacity at equilibrium pressure is about 5 times higher than that of H2 in all studied temperatures. Both H2 and CO2 adsorption capacities at equilibrium pressure slightly decrease as temperature rises.
Influence of Microstructural Anisotropy on the Hydrogen-assisted Fracture of Notched Samples of Progressively Drawn Pearlitic Steel
Dec 2020
Publication
In this study fracture surfaces of notched specimens of pearlitic steels subjected to constant extension rate tests (CERTs) are analyzed in an environment causing hydrogen assisted fracture. In order to obtain general results both different notched geometries (to generate quite distinct stress triaxiality distributions in the vicinity of the notch tip) and diverse loading rates were used. The fracture surfaces were classified in relation to four micromechanical models of hydrogen-assisted micro-damage. To this end fractographic analysis in each fracture surface was carried out with a scanning electron microscopy. Generated results increase the number of micromechanical models found in the scientific literature.
Crack Size Dependency of Shear-mode Fatigue Threshold in Bearing Steel Subjected to Continuous Hydrogen Charging
Jun 2019
Publication
Premature delamination failure characterized by the white structure flaking (WSF) or the white etching crack (WEC) often occurs in rolling element bearings and it deteriorates the durability of bearing substantially. It is known that this failure is caused by shear-mode (Mode II and Mode III) crack growth in conjunction with evolution and invasion of hydrogen into material during operation. To ensure the structural integrity associated with rolling element bearing it is important to clarify the effect of hydrogen on the shear-mode fatigue crack growth behavior near the threshold level.<br/>In our previous study the effect of hydrogen on the shear-mode fatigue crack growth behavior in a bearing steel of JIS SUJ2 was examined near the threshold level. Consequently it was shown that the threshold stress intensity factor (SIF) range for shear-mode fatigue crack growth decreased significantly by action of hydrogen. However the investigation was made only for a crack with a surface length of about 900 mm. To thoroughly understand the critical condition for delamination failure it is important to investigate the crack size dependency of the threshold level for a shear-mode small fatigue crack in the presence of hydrogen. In the present study correspondingly the threshold SIF ranges for a shear-mode crack with different length were additionally measured in the same material by using a novel technique that enables continuous charging of hydrogen in a specimen during long-term fatigue test. Then a clear reduction in crack growth rate and a crack size dependency of the threshold SIF range were observed under the environmental condition of continuous hydrogen charging.
Hydrogen Embrittlement in a 2101 Lean Duplex Stainless Steel
Sep 2019
Publication
Duplex Stainless Steels (DSSs) are an attractive class of materials characterized by a strong corrosion resistance in many aggressive environments. Thanks to the high mechanical performances DSSs are widely used for many applications in petrochemical industry chemical and nuclear plants marine environment desalination etc.<br/>Among the DSSs critical aspects concerning the embrittlement process it is possible to remember the steel sensitization and the hydrogen embrittlement.<br/>The sensitization of the DSSs is due to the peculiar chemical composition of these grades which at high temperature are susceptible to carbide nitrides and second phases precipitation processes mainly at grains boundary and in the ferritic grains. The hydrogen embrittlement process is strongly influenced by the duplex (austenitic-ferritic) microstructure and by the loading conditions.<br/>In this work a rolled lean ferritic-austenitic DSS (2101) has been investigated in order to analyze the hydrogen embrittlement mechanisms by means of slow strain rate tensile tests considering the steel after different heat treatments. The damaging micromechanisms have been investigated by means of the scanning electron microscope observations on the fracture surfaces.
Effect of Defects and Hydrogen on the Fatigue Limit of Ni-based Superalloy 718
Dec 2019
Publication
Tension-compression fatigue tests were performed on two types of Ni-based superalloy 718 with different microstructures to which small artificial defects of various shapes and sizes were introduced. Similar tests were also conducted on hydrogen-charged specimens with defects with a solute hydrogen content ranging from 26.3 to 91.0 mass ppm. In the non-charged specimens in particular the fatigue strength susceptibility to defects varied significantly according to the type of microstructural morphology i.e. a smaller grain size made the alloy more vulnerable to defects. The fatigue limit as a small-crack threshold was successfully predicted using the √area parameter model. Depending on the size of defects the fatigue limit was calculated in relation to three phases: (i) harmless-defect regime (ii) small-crack regime and (iii) large-crack regime. Such a classification enabled comprehensive fatigue limit evaluation in a wide array of defects taking into consideration (a) the defect size over a range of small crack and large crack and (b) the characteristics of the matrix represented by grain size and hardness. In addition the effect of defects and hydrogen on fatigue strength will be comprehensively discussed based on a series of experimental results.
Hydrogen-Assisted Cracking in GMA Welding of High-Strength Structural Steel—A New Look into This Issue at Narrow Groove
Jun 2021
Publication
Modern arc processes such as the modified spray arc (Mod. SA) have been developed for gas metal arc welding of high-strength structural steels with which even narrow weld seams can be welded. High-strength joints are subjected to increasingly stringent requirements in terms of welding processing and the resulting component performance. In the present work this challenge is to be met by clarifying the influences on hydrogen-assisted cracking (HAC) in a high-strength structural steel S960QL. Adapted samples analogous to the self-restraint TEKKEN test are used and analyzed with respect to crack formation microstructure diffusible hydrogen concentration and residual stresses. The variation of the seam opening angle of the test seams is between 30° and 60°. To prevent HAC the effectiveness of a dehydrogenation heat treatment (DHT) from the welding heat is investigated. As a result the weld metals produced at reduced weld opening angle show slightly higher hydrogen concentrations on average. In addition increased micro- as well as macro-crack formation can be observed on these weld metal samples. On all samples without DHT cracks in the root notch occur due to HAC which can be prevented by DHT immediately after welding.
Hydrogen Embrittlement and Notch Tensile Strength of Pearlitic Steel: A Numerical Approach
Dec 2020
Publication
This paper offers a numerical approach to the problem of hydrogen embrittlement and notch tensile strength of sharply notched specimens of high-strength pearlitic steel supplied in the form of hot rolled bars by using the finite element method in order to determine how the notch depth influences the concentration of hydrogen in the steady-state regime for different loading values. Numerical results show that the point of maximum hydrostatic stress (towards which hydrogen is transported by a mechanism of stress-assisted diffusion) shifts from the notch tip to the inner points of the specimen under increasing load with numerical evidence of an elevated inwards gradient of hydrostatic stress “pumping” hydrogen inside the sample.
Carbon Capture from Biogas by Deep Eutectic Solvents A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity
Jun 2021
Publication
Deep eutectic solvents (DES) are compounds of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) that contain a depressed melting point compared to their individual constituents. DES have been studied for their use as carbon capture media and biogas upgrading. However contaminants’ presence in biogas might affect the carbon capture by DES. In this study conductor-like screening model for real solvents (COSMO-RS) was used to determine the effect of temperature pressure and selective contaminants on five DES’ namely choline chloride-urea choline chloride-ethylene glycol tetra butyl ammonium chloride-ethylene glycol tetra butyl ammonium bromide-decanoic acid and tetra octyl ammonium chloride-decanoic acid. Impurities studied in this paper are hydrogen sulfide ammonia water nitrogen octamethyltrisiloxane and decamethylcyclopentasiloxane. At infinite dilution CO2 solubility dependence upon temperature in each DES was examined by means of Henry’s Law constants. Next the systems were modeled from infinite dilution to equilibrium using the modified Raoults’ Law where CO2 solubility dependence upon pressure was examined. Finally solubility of CO2 and CH4 in the various DES were explored with the presence of varying mole percent of selective contaminants. Among the parameters studied it was found that the HBD of the solvent is the most determinant factor for the effectiveness of CO2 solubility. Other factors affecting the solubility are alkyl chain length of the HBA the associated halogen and the resulting polarity of the DES. It was also found that choline chloride-urea is the most selective to CO2 but has the lowest CO2 solubility and is the most polar among other solvents. On the other hand tetraoctylammonium chloride-decanoic acid is the least selective has the highest maximum CO2 solubility is the least polar and is the least affected by its environment.
The UK Carbon Capture, Usage and Storage (CCUS) Deployment Pathway: An Action Plan
Nov 2018
Publication
CCUS has economy-wide qualities which could be very valuable to delivering clean industrial growth. It could deliver tangible results in tackling some of the biggest challenges we face in decarbonising our economy contributing to industrial competitiveness and generating new economic opportunities – a key part of our modern Industrial Strategy.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the added value which it can bring to our industrial centres and businesses all across the UK.
Our ambition is that the UK should have the option to deploy CCUS at scale during the 2030s subject to the costs coming down sufficiently.
Our Industrial Strategy set out four Grand Challenges to put the UK at the forefront of the industries of the future. The Clean Growth Grand Challenge seeks to maximise the advantages for UK industry from the global shift to clean growth. CCUS can be an important part of achieving these objectives.
Assessment of the Contribution of Internal Pressure to the Structural Damage in a Hydrogen-charged Type 316L Austenitic Stainless Steel During Slow Strain Rate Tensile Test
Dec 2018
Publication
The aim of this study is to provide a quantification of the internal pressure contribution to the SSRT properties of H-charged Type-316L steel tested in air at room temperature. Considering pre-existing penny-shaped voids the transient pressure build-up has been simulated as well as its impact on the void growth by preforming JIc calculations. Several void distributions (size and spacing) have been considered. Simulations have concluded that there was no impact of the internal pressure on the void growth regardless the void distribution since the effective pressure was on the order of 1 MPa during the SSRT test. Even if fast hydrogen diffusion related to dislocation pipe-diffusion has been assessed as a conservative case the impact on void growth was barely imperceptible (or significantly low). The effect of internal pressure has been experimentally verified via the following conditions: (I) non-charged in vacuum; (II) H-charged in vacuum; (III) H-charged in 115-MPa nitrogen gas; (IV) non-charged in 115-MPa nitrogen gas. As a result the relative reduction in area (RRA) was 0.84 for (II) 0.88 for (III) and 1.01 for (IV) respectively. The difference in void morphology of the H-charged specimens did not depend on the presence of external pressure. These experimental results demonstrate that the internal pressure had no effect on the tensile ductility and void morphology of the H-charged specimen.
Effect of Hydrogen on Short Crack Propagation in SA508 Grade 3 Class I Low Alloy Steel Under Cyclic Loading
Aug 2019
Publication
The effect of hydrogen on short crack propagation under cyclic loading in SA508 Grade 3 Class I low alloy steel is investigated. This low alloy steel is used in manufacturing of pressure vessel installed in Indian nuclear power plants. During operation these pressure vessels are subjected to continuous supply of pressurized hot water at 600 K and hence are susceptible to hydrogen embrittlement. In past research has been conducted on the effect of hydrogen embrittlement on long fatigue crack propagation in this material but the mechanistic understanding and correlation of hydrogen embrittlement with microstructural features in the material can be understood well by studying the effect of hydrogen embrittlement on short fatigue crack propagation. Short fatigue cracks are of the order of 10 µm to 1 mm and unlike long cracks these short cracks strongly interact with the microstructural features in the material such as grain/phase boundaries. The effect of hydrogen embrittlement on short crack propagation is studied by artificial hydrogen charging of the material through electrochemical process. The single edge notch tension (SENT) specimens with an initial notch of the order of 85 to 90 µm are used to study the short crack propagation. The short cracks in hydrogen charged samples initiated from the notch at lower number of loading cycles as compared to the uncharged notched samples for the same value of applied stress range (Δσ). After initiation the short fatigue crack in hydrogen charged samples propagated at higher rate as compared to uncharged samples. This dissimilarity in crack propagation behavior is due to the difference in the interaction of short fatigue crack with the microstructural features for a hydrogen charged and uncharged samples.
Kinetics of Brittle Fracture in Metals Under the Influence of Hydrogen
Jan 2020
Publication
Some aspects of damage accumulation modelling and brittle fracture processes mechanisms under the combined effect of mechanical loading and hydrogen has been discussed in the article. New mechanism of brittle fracture for metallic materials based on dislocation and phonon structure fingerprints and lattice hydrogen content under the static and dynamic loading at low temperature condition has been proposed. The mechanism based on theoretical research and experimental and numerical studies. The experiments include the energy spectrum of internal friction determination and impact toughness testing for low-temperature brittle-ductile transition revealing. The numerical study based on damage accumulation modeling under the influence of up-hill diffusion in the elastic-plastic problem of solid state by finite element method. A new simple activation model of low temperature and hydrogen influence on damage accumulation process has been proposed. The model shows the rate of damage strong dependence of stress level and hydrogen content and test temperature. The combination of low temperature and high hydrogen content is most dangerous so the weld structures in extreme environment such as the Arctic and Subarctic regions have a high risk of breakage. So it is possible to estimate the energy and phonon spectrum of crystal lattice and predict the properties of microcrystalline and nanostructured materials with the high cold-short threshold on the base of such the approach. There are the recommendations propose to improve the cold resistance of steels and alloys by controlling the characteristics of the dislocation structure of new materials with polycrystalline and ultrafine-grained structure.
Features of the Hydrogen-Assisted Cracking Mechanism in the Low-Carbon Steel at Ex- and In-situ Hydrogen Charging
Dec 2018
Publication
Hydrogen embrittlement has been intensively studied in the past. However its governing mechanism is still under debate. Particularly the details of the formation of specific cleavage-like or quasi-cleavage fracture surfaces related to hydrogen embrittled steels are unclear yet. Recently it has been found that the fracture surface of the hydrogen charged and tensile tested low-carbon steel exhibits quasi-cleavage facets having specific smoothly curved surface which is completely different from common flat cleavage facets. In the present contribution we endeavor to shed light on the origin of such facets. For this purpose the notched flat specimens of the commercial low carbon steel were tensile tested using ex- and in-situ hydrogen charging. It is found that in the ex-situ hydrogen charged specimens the cracks originate primarily inside the specimen bulk and expand radially form the origin to the specimen surface. This process results in formation of “fisheyes” – the round-shape areas with the surface composed of curved quasi-cleavage facets. In contrast during tensile testing with in-situ hydrogen charging the cracks initiate from the surface and propagate to the bulk. This process results in the formation of the completely brittle fracture surface with the quasi-cleavage morphology - the same as that in fisheyes. The examination of the side surface of the in-situ hydrogen charged specimens revealed the straight and S-shaped sharp cracks which path is visually independent of the microstructure and crystallography but is strongly affected by the local stress fields. Nano-voids are readily found at the tips of these cracks. It is concluded that the growth of such cracks occurs by the nano-void coalescence mechanism and is responsible for the formation of fisheyes and smoothly curved quasi-cleavage facets in hydrogen charged low-carbon steel.
Using Additives to Control the Decomposition Temperature of Sodium Borohydride
May 2020
Publication
Hydrogen (H2) shows great promise as zero-carbon emission fuel but there are several challenges to overcome in regards to storage and transportation to make it a more universal energy solution. Gaseous hydrogen requires high pressures and large volume tanks while storage of liquid hydrogen requires cryogenic temperatures; neither option is ideal due to cost and the hazards involved. Storage in the solid state presents an attractive alternative and can meet the U.S. Department of Energy (DOE) constraints to find materials containing > 7 % H2 (gravimetric weight) with a maximum H2 release under 125 °C.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review
Jun 2021
Publication
Metal–organic frameworks (MOFs) have significant potential for hydrogen storage. The main benefit of MOFs is their reversible and high-rate hydrogen adsorption process whereas their biggest disadvantage is related to their operation at very low temperatures. In this study we describe selected examples of MOF structures studied for hydrogen adsorption and different factors affecting hydrogen adsorption in MOFs. Approaches to improving hydrogen uptake are reviewed including surface area and pore volume in addition to the value of isosteric enthalpy of hydrogen adsorption. Nanoconfinement of metal hydrides inside MOFs is proposed as a new approach to hydrogen storage. Conclusions regarding MOFs with incorporated metal nanoparticles which may be used as nanoscaffolds and/or H2 sorbents are summarized as prospects for the near future.
Intelligent Natural Gas and Hydrogen Pipeline Dispatching Using the Coupled Thermodynamics-Informed Neural Network and Compressor Boolean Neural Network
Feb 2022
Publication
Natural gas pipelines have attracted increasing attention in the energy industry thanks to the current demand for green energy and the advantages of pipeline transportation. A novel deep learning method is proposed in this paper using a coupled network structure incorporating the thermodynamics-informed neural network and the compressor Boolean neural network to incorporate both functions of pipeline transportation safety check and energy supply predictions. The deep learning model is uniformed for the coupled network structure and the prediction efficiency and accuracy are validated by a number of numerical tests simulating various engineering scenarios including hydrogen gas pipelines. The trained model can provide dispatchers with suggestions about the number of phases existing during the transportation as an index showing safety while the effects of operation temperature pressure and compositional purity are investigated to suggest the optimized productions.
The Role of CCS in Meeting Climate Policy Targets
Oct 2017
Publication
Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat industrial processes and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies CCS is not without risks or uncertainties and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options in future years.
The full report can be found on the Global CSS Institute website at this link
The full report can be found on the Global CSS Institute website at this link
Microalloyed Steels through History until 2018: Review of Chemical Composition, Processing and Hydrogen Service
May 2018
Publication
Microalloyed steels have evolved in terms of their chemical composition processing and metallurgical characteristics since the beginning of the 20th century in the function of fabrication costs and mechanical properties required to obtain high-performance materials needed to accommodate for the growing demands of gas and hydrocarbons transport. As a result of this microalloyed steels present a good combination of high strength and ductility obtained through the addition of microalloying elements thermomechanical processing and controlled cooling processes capable of producing complex microstructures that improve the mechanical properties of steels. These controlled microstructures can be severely affected and result in catastrophic failures due to the atomic hydrogen diffusion that occurs during the corrosion process of pipeline steel. Recently a martensite–bainite microstructure with acicular ferrite has been chosen as a viable candidate to be used in environments with the presence of hydrogen. The aim of this review is to summarize the main changes of chemical composition processing techniques and the evolution of the mechanical properties throughout recent history on the use of microalloying in high strength low alloy steels as well as the effects of hydrogen in newly created pipelines examining the causes behind the mechanisms of hydrogen embrittlement in these steels.
Hydrogen Embrittlement in Super Duplex Stainless Steels
Nov 2019
Publication
In super duplex stainless steels (SDSSs) both austenite and ferrite are susceptible to hydrogen embrittlement however there is a lack of understanding into the effect of hydrogen in each phase. In this study in neutron diffraction was applied on hydrogen-charged (H-charged) samples to investigate the hydrogen embrittlement behaviour in super duplex stainless steels. The result reveals that austenite maintains good plasticity during tensile testing whilst a loss of it is realised in ferrite. Fractography analysis reveals the diffusion of hydrogen induced a brittle-to-ductile transition from the sample surface towards the centre; hydrogen embrittlement vanishes as the specimen’s centre is approached while it is demonstrated to disappear first in austenite but not in ferrite. This transition can be predicted by applying a physics-based hydrogen embrittlement model which incorporates the effects of hydrogen concentration hydrogen diffusivity residual stress loading state and temperature. The present work demonstrates the dissimilar susceptibility of austenite and ferrite to hydrogen embrittlement providing a tool to describe it.
No more items...