Safety
3D Quantitative Risk Assessment on a Hydrogen Refuelling Station in Shanghai
Sep 2019
Publication
The number of hydrogen refuelling stations worldwide is growing rapidly in recent years. The first large capacity hydrogen refuelling station in China is under construction. A 3D quantitative risk assessment QRA)is conducted for this station. Hazards associated with hydrogen systems are identified. Leakage frequency of hydrogen equipment are analyzed. Jet flame explosion scenarios and corresponding accident consequences are simulated. Risk acceptance criteria for hydrogen refuelling stations are discussed. The results show that the risk of this refuelling station is acceptable. And the maximum lethality frequency is 6.3*10-6. The area around compressors has the greatest risk. People should be avoided as far as possible from the compressor when the compressor does not need to be maintained. With 3D QRA the visualization of the evaluation results will help stakeholders to observe the hazardous areas of the hydrogen refuelling station at a glance.
A Comparative Study of Detonability and Propensity to Sustain High-speed Turbulent Deflagrations in Hydrogen and Methane Mixtures
Sep 2013
Publication
We’ve studied the conditions enabling a detonation to be quenched when interacting with an obstruction and the propensity for establishing subsequent fast-flame. Oxy-hydrogen detonations were found quench more easily than oxy-methane detonations when comparing the ratio of gap size and the detonation cell size. High-speed turbulent deflagrations that re-accelerate back to a detonation were only observed in methane-oxygen mixtures. Separate hot-spot ignition calculations revealed that the higher detonability of methane correlates with its stronger propensity to develop localized hot-spots. The results suggest that fast-flames are more difficult to form in hydrogen than in methane mixtures.
Hydrogen Compatibility of Austenitic Stainless Steel Tubing and Orbital Tube Welds
Sep 2013
Publication
Refueling infrastructure for use in gaseous hydrogen powered vehicles requires extensive manifolding for delivering the hydrogen from the stationary fuel storage at the refueling station to the vehicle as well as from the mobile storage on the vehicle to the fuel cell or combustion engine. Manifolds for gas handling often use welded construction (as opposed to compression fittings) to minimize gas leaks. Therefore it is important to understand the effects of hydrogen on tubing and tubing welds. This paper provides a brief overview of on-going studies on the effects of hydrogen precharging on the tensile properties of austenitic stainless tubing and orbital tube welds of several austenitic stainless steels.
Hydrogen Related Risks Within a Private Garage: Concentration Measurements in a Realistic Full Scale Experimental Facility
Sep 2007
Publication
Next generation of hydrogen energy based vehicles is expected to come into widespread use in the near future. Various topics related to hydrogen including production storage and application of hydrogen as an energy carrier have become subjects of discussion in the framework of various European and International projects. Safety information is vital to support the successful introduction into mainstream and public acceptance of hydrogen as an energy carrier. One of such issues which is seeking major attention is related to hydrogen powered vehicles parked inside a confined area (such as in a private garage). It is of utmost importance to predict if uncontrolled release of hydrogen from a vehicle parked inside a confined area can create an explosive atmosphere. Subsequently how the preventive measures can be implied to control these explosive atmospheres if present inside a confined area? There is a little guidance currently developed for confined areas accommodating hydrogen fuelled vehicles. It is essential that mitigation measures for such conditions become established.<br/>Characterization of different scenarios those may arise in a real situation from hydrogen fuelled vehicle parked inside a garage and furthermore the investigation of an optimal ventilation rate for hydrogen risk mitigation are some of the main objectives described in the framework of the present study. This work is an effort to provide detail experimental information’s in view of establishing guidelines for hydrogen powered vehicles parked inside a private garage. The present work is developed in the framework of a European Network of Excellence HySafe and French project DRIVE. Present paper describes a purpose built realistic Garage test facility at CEA to study the dispersion of hydrogen leakage. The studied test cases evaluate the influence of injected volumes of hydrogen and the initial conditions at the leakage source on the dispersion and mixing characteristics inside the free volume of the unventilated garage. The mixing process and build-up of hydrogen concentration is measured for the duration of 24 hours. Due to safety reasons helium gas is used to simulate the hydrogen dispersion characteristics.
The Study on Permissible Value of Hydrogen Gas Concentration in Purge Gas of Fuel Cell Vehicles
Sep 2019
Publication
Ignition conditions and risks of ignition on a permissible value of hydrogen concentration in purge gas prescribed by HFCV-GTR were reevaluated. Experiments were conducted to investigate burning behavior and thermal influence of continuous evacuation of hydrogen under continuous purge of air / hydrogen premixed gas which is close to an actual purge condition of FCV and thermal evacuation of hydrogen. As a result of the re-evaluation it was shown from the viewpoint of safety that the permissible value of hydrogen concentration in purge gas prescribed by the current HFCV GTR is appropriate.
Acoustic Emission Characteristics of Used 70 MPa Type IV Hydrogen Storage Tanks During Hydrostatic Burst Tests
Sep 2019
Publication
Currently the periodic inspection of composite tanks is typically achieved via hydrostatic test combined with internal and external visual inspections. Acoustic emission (AE) technology demonstrates a promising non destructive testing method for damage mode identification and damage assessment. This study focuses on AE signals characteristics and evolution behaviours for used 70 MPa Type IV hydrogen storage tanks during hydrostatic burst tests. AE-based tensile tests for epoxy resin specimen and carbon fiber tow were implemented to obtain characteristics of matrix cracking and fiber breakage. Then broadband AE sensors were used to capture AE signals during multi-step loading tests and hydrostatic burst tests. K-means ++ algorithm and wavelet packet transform are performed to cluster AE signals and verify the validity. Combining with tensile tests three clusters are manifested via matrix cracking fiber/matrix debonding and fiber breakage according to amplitude duration counts and absolute energy. The number of three clustering signals increases with the increase of pressure showing accumulated and aggravated damage. The sudden appearance of a large number of fiber breakage signals during hydrostatic burst tests suggests that the composite tank structure is becoming mechanically unstable namely the impending burst failure of the tank.
Effect of the Time Dependent Loading of Type IV Cylinders Using a Multi-scalemodel
Sep 2019
Publication
The current requirements for composite cylinders are still based on an arbitrary approach derived from the behaviour of metal structures that the designed burst pressure should be at least 2.5 times the maximum in-service pressure. This could lead to an over-designed composite cylinder for which the weight saving would be less than optimum. Moreover predicting the lifetime of composite cylinders is a challenging task due to their anisotropic characteristics. A federal research institute in Germany (BAM) has proposed a minimum load-cycle requirement that mitigates this issue by using a MonteCarlo analysis of the burst test results. To enrich this study more experiments are required however they are normally limited by the necessity of long duration testing times (loading rate and number of cylinders) and the design (stacking sequence of the composite layer). A multi-scale model incorporating the micromechanical behaviour of composite structures has been developed at Mines ParisTech. The model has shown similar behaviour to that of composite cylinders under different loading rates. This indicates that the model could assist the Monte-Carlo analysis study. An evaluation of the multi-scale model therefore has been carried out to determine its limitations in predicting lifetimes of composite cylinders. The evaluation starts with the comparison of burst pressures with type IV composite cylinders under different loading rates. A μCT-Scan of a type IV cylinder has been carried out at the University of Southampton. The produced images were analysed using the Fast-Fourier Transform (FFT) technique to determine the configuration of the composite layers which is required by the model. Finally the time dependent effect studied by using the multi scale model has been described. In the long-term this study can be used to conduct a parametric study for creating more efficient design of type IV cylinders.
Validated Equivalent Source Model for an Under-expanded Hydrogen Jet
Oct 2015
Publication
As hydrogen fuel cell vehicles become more widely adopted by consumers the demand for refuelling stations increases. Most vehicles require high-pressure (either 350 or 700 bar) hydrogen and therefore the refuelling infrastructure must support these pressures. Fast running reduced order physical models of releases from high-pressure sources are needed so that quantitative risk assessment can guide the safety certification of these stations. A release from a high pressure source is choked at the release point forming the complex shock structures of an under-expanded jet before achieving a characteristic Gaussian pro le for velocity density mass fraction etc. downstream. Rather than using significant computational resources to resolve the shock structure an equivalent source model can be used to quickly and accurately describe the ow in terms of velocity diameter and thermodynamic state after the shock structure. In this work we present correlations for the equivalent boundary conditions of a subsonic jet as a high-pressure jet downstream of the shock structure. Schlieren images of under-expanded jets are used to show that the geometrical structure of under-expanded jets scale with the square root of the static to ambient pressure ratio. Correlations for an equivalent source model are given and these parameters are also found to scale with square root of the pressure ratio. We present our model as well as planar laser Rayleigh scattering validation data for static pressures up to 60 bar.
An Experimental Study Dedicated to Wind Influence on Helium Build-up and Concentration Distribution Inside a 1 m 3 Semi-confined Enclosure Considering Hydrogen Energy Applications Conditions of Use
Oct 2015
Publication
Hydrogen energy applications can be used outdoor and thus exposed to environmental varying conditions like wind. In several applications natural ventilation is the first mitigation means studied to limit hydrogen build-up inside a confined area. This study aims at observing and understanding the influence of wind on light gas build-up in addition. Experiments were performed with helium as releasing gas in a 1-m 3 enclosure equipped with ventilation openings varying wind conditions openings location release flow rate; obstructions in front of the openings to limit effects of wind were studied as well. Experimental results were compared together and with the available analytical models.
CFD Evaluation Against a Large Scale Unconfined Hydrogen Deflagration
Oct 2015
Publication
In the present work CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen–air mixture occupies a 20 m hemisphere. Two combustion models are compared and evaluated against the experiment: the Eddy Dissipation Concept model and a multi-physics combustion model which calculates turbulent burning velocity based on Yakhot's equation. Sensitivity analysis on the value of fractal dimension of the latter model is performed. A semi-empirical relation which estimates the fractal dimension is also tested. The effect of the turbulence model on the results is examined. LES approach and k-ε models are used. The multi-physics combustion model with constant fractal dimension value equal to 2.3 using the RNG LES turbulence model achieves the best agreement with the experiment.
The Effect of Vacancy Concentration on Hydrogen Diffusion in Alpha-Fe by Molecular Dynamic
Sep 2017
Publication
Diffusion coefficient is in significant dependence on vacancy concentration due to that migration of vacancy is the dominant mechanism of atom transport or diffusion in processes such as void formation dislocation movement and solid phase transformation. This study aims to investigate the effect of vacancy concentration on hydrogen diffusion in alpha-Fe by molecular dynamics simulations especially at low temperatures and with loading. Comparisons of the diffusion coefficients between alpha-Fe with a perfect structure and different-concentration vacancies as well as comparisons between experimental and theoretical results had been made to characterize and summarize the effect of vacancy on hydrogen diffusion coefficient.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Characterising the Performance of Hydrogen Sensitive Coatings for Nuclear Safety Applications
Sep 2017
Publication
The detection of hydrogen gas is essential in ensuring the safety of nuclear plants. However events at Fukushima Daiichi NPP highlighted the vulnerability of conventional detection systems to extreme events where power may be lost. Herein chemochromic hydrogen sensors have been fabricated using transition metal oxide thin films sensitised with a palladium catalyst to provide passive hydrogen detection systems that would be resilient to any plant power failures. To assess their viability for nuclear safety applications these sensors have been gamma-irradiated to four total doses (0 5 20 50 kGy) using a Co-60 gamma radioisotope. Optical properties of both un-irradiated and irradiated samples were investigated to compare the effect of increased radiation dose on the sensors resultant colour change. The results suggest that gamma irradiation at the levels examined (>5 kGy) has a significant effect on the initial colour of the thin films and has a negative effect on the hydrogen sensing abilities.
CFD Investigation of Filling and Emptying of Hydrogen Tanks
Oct 2015
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Overview of the DOE Hydrogen Safety, Codes and Standards Program Part 3- Advances in Research and Development to Enhance the Scientific Basis for Hydrogen Regulations, Codes and Standards
Oct 2015
Publication
Hydrogen fuels are being deployed around the world as an alternative to traditional petrol and battery technologies. As with all fuels regulations codes and standards are a necessary component of the safe deployment of hydrogen technologies. There has been a focused effort in the international hydrogen community to develop codes and standards based on strong scientific principles to accommodate the relatively rapid deployment of hydrogen-energy systems. The need for science-based codes and standards has revealed the need to advance our scientific understanding of hydrogen in engineering environments. This brief review describes research and development activities with emphasis on scientific advances that have aided the advancement of hydrogen regulations codes and standards for hydrogen technologies in four key areas: (1) the physics of high-pressure hydrogen releases (called hydrogen behaviour); (2) quantitative risk assessment; (3) hydrogen compatibility of materials; and (4) hydrogen fuel quality.
Continuous Codes and Standards Improvement (CCSI)
Oct 2015
Publication
As of 2014 the majority of the Codes and Standards required to initially deploy hydrogen technologies infrastructure in the US have been promulgated1. These codes and standards will be field tested through their application to actual hydrogen technologies projects. CCSI is process of identifying code issues that arise during project deployment and then develop codes solutions to these issues. These solutions would typically be proposed amendments to codes and standards. The process is continuous because of technology and the state of safety knowledge develops there will be a need for monitoring the application of codes and standards and improving them based on information gathered during their application. This paper will discuss code issues that have surfaced through hydrogen technologies infrastructure project deployment and potential code changes that would address these issues. The issues that this paper will address include:
- Setback distances for bulk hydrogen storage
- Code mandated hazard analyses
- Sensor placement and communication
- The use of approved equipment
- System monitoring and maintenance requirements
Overview of the DOE Hydrogen Safety, Codes and Standards Program part 2- Hydrogen and Fuel Cells, Emphasizing Safety to Enable Commercialization
Oct 2015
Publication
Safety is of paramount importance in all facets of the research development demonstration and deployment work of the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Program. The Safety Codes and Standards sub-program (SC&S) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing and disseminating information and knowledge resources for their safe use. A comprehensive safety management program utilizing the Hydrogen Safety Panel to raise safety consciousness at the project level and developing/disseminating a suite of safety knowledge resources is playing an integral role in DOE and SC&S efforts. This paper provides examples of accomplishments achieved while reaching a growing and diverse set of stakeholders involved in research development and demonstration; design and manufacturing; deployment and operations. The work of the Hydrogen Safety Panel highlights new knowledge and the insights gained through interaction with project teams. Various means of collaboration to enhance the value of the program’s safety knowledge tools and training resources are illustrated and the direction of future initiatives to reinforce the commitment to safety is discussed.
HYRAM: A Methodology and Toolkit for Quantitative Risk Assessment of Hydrogen Systems
Oct 2015
Publication
HyRAM is a methodology and accompanying software toolkit which is being developed to provide a platform for integration of state-of-the-art validated science and engineering models and data relevant to hydrogen safety. As such the HyRAM software toolkit establishes a standard methodology for conducting quantitative risk assessment (QRA) and consequence analysis relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates fast-running deterministic and probabilistic models for quantifying risk of accident scenarios for predicting physical effects and for characterizing the impact of hydrogen hazards (thermal effects from jet fires thermal and pressure effects from deflagrations and detonations). HyRAM incorporates generic probabilities for equipment failures for nine types of hydrogen system components generic probabilities for hydrogen ignition and probabilistic models for the impact of heat flux and pressure on humans and structures. These are combined with fast-running computationally and experimentally validated models of hydrogen release and flame behaviour. HyRAM can be extended in scope via user contributed models and data. The QRA approach in HyRAM can be used for multiple types of analyses including codes and standards development code compliance safety basis development and facility safety planning. This manuscript discusses the current status and vision for HyRAM.
Overview of the DOE Hydrogen Safety, Codes and Standards Program Part 1- Regulations, Codes and Standards (RCS) for Hydrogen Technologies - An Historical Overview
Oct 2015
Publication
RCS for hydrogen technologies were first developed approximately sixty years ago when hydrogen was being sold as an industrial commodity. The advent of new hydrogen technologies such as Fuel Cell Electric Vehicles (FCEVs) created a need for new RCS. These RCS have been developed with extensive support from the US DOE. These new hydrogen technologies are approaching commercial deployment and this process will produce information on RCS field performance that will create more robust RCS.
First Responder Training Supporting Commercialization of Hydrogen and Fuel Cell Technologies
Oct 2015
Publication
A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. The California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released. This training resource serves the delivery of a variety of training regimens. Associated materials are adaptable for different training formats ranging from high-level overview presentations to more comprehensive classroom training. This paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online classroom hands-on) by the respective organizations. The collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input will be discussed.
No more items...