Safety
CFD Computations of Liquid Hydrogen Releases
Sep 2011
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid (liquid hydrogen or LH2) as it requires much less volume compared to gaseous hydrogen. In order to exist as a liquid H2 must be cooled to a very low temperature 20.28 K. LH2 is a common liquid fuel for rocket applications. It can also be used as the fuel storage in an internal combustion engine or fuel cell for transport applications. Models for handling liquid releases both two-phase flashing jets and pool spills have been developed in the CFD-model FLACS. The very low normal boiling point of hydrogen (20 K) leads to particular challenges as this is significantly lower than the boiling points of oxygen (90 K) and nitrogen (77 K). Therefore a release of LH2 in the atmosphere may induce partial condensation or even freezing of the oxygen and nitrogen present in the air. A pool model within the CFD software FLACS is used to compute the spreading and vaporization of the liquid hydrogen depositing on the ground where the partial condensation or freezing of the oxygen and nitrogen is also taken into account. In our computations of two-phase jets the dispersed and continuous phases are assumed to be in thermodynamic and kinematic equilibrium. Simulations with the new models are compared against selected experiments performed at the Health and Safety Laboratory (HSL).
Hydrogen Onboard Storage: An Insertion of the Probabilistic Approach Into Standards & Regulations?
Sep 2005
Publication
The growing attention being paid by car manufacturers and the general public to hydrogen as a middle and long term energy carrier for automotive purpose is giving rise to lively discussions on the advantages and disadvantages of this technology – also with respect to safety. In this connection the focus is increasingly and justifiably so on the possibilities offered by a probabilistic approach to loads and component characteristics: a lower weight obliged with a higher safety level basics for an open minded risk communication the possibility of a provident risk management the conservation of resources and a better and not misleading understanding of deterministic results. But in the case of adequate measures of standards or regulations completion there is a high potential of additional degrees of freedom for the designers obliged with a further increasing safety level. For this purpose what follows deals briefly with the terminological basis and the aspects of acceptance control conservation of resources misinterpretation of deterministic results and the application of regulations/standards.<br/>This leads into the initial steps of standards improvement which can be taken with relatively simple means in the direction of comprehensively risk-oriented protection goal specifications. By this it’s not focused on to provide to much technical details. It’s focused on the context of different views on probabilistic risk assessment. As main result some aspects of the motivation and necessity for the currently running pre-normative research studies within the 6th frame-work program of the EU will be shown.
Requirements for the Safety Assessment for the Approval of a Hydrogen Refueling Station
Sep 2007
Publication
The EC 6th framework research project HyApproval will draft a Handbook which will describe all relevant issues to get approval to construct and operate a Hydrogen Refuelling Station (HRS) for hydrogen vehicles. In WP3 of the HyApproval project it is under investigation which safety information competent authorities require to give a licence to construct an operate an HRS. The paper describes the applied methodology to collect the information from the authorities in 5 EC countries and the USA. The results of the interviews and recommendations for the information to include in the Handbook are presented.
Determination of Clearance Distances for Venting of Hydrogen Storage
Sep 2005
Publication
This paper discusses the results of computational fluid dynamics (CFD) modelling of hydrogen releases and dispersion outdoors during venting of hydrogen storage in real environment and geometry of a hydrogen refuelling or energy station for a given flow rate and dimensions of vent stack. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy model and turbulence models. Also thermal effects resulting from potential ignition of flammable hydrogen clouds were assessed using TNO “Yellow Book” recommended approaches. The obtained results were then applied to determine appropriate clearance distances for venting of hydrogen storage for contribution to code development and station design considerations. CFD modelling of hydrogen concentrations and TNO-based modelling of thermal effects have proven to be reliable effective and relatively inexpensive tools to evaluate the effects of hydrogen releases.
Integral Models for High Pressure Hydrogen - Methane Releases
Sep 2009
Publication
The development of hydrogen as energy carrier is promoted by the increasing in energy demand depletion of fossil resources and the global warming. However this issue relies primarily on the safety aspect which requires the knowledge in the case of gas release of the quantities such as the flammable cloud size release path and the location of the lower flammability limit of the mixture. The integral models for predicting the atmospheric dispersion were extensively used in previous works for low pressure releases such as pollutant and flammable gas transport. In the present investigation this approach is extended to the high pressure gas releases. The model is developed in the non-Boussinesq approximation and is based on Gaussian profiles for buoyant variable density jet or plume in stratified atmosphere with a crossflow. Validations have been performed on a broad range of hydrogen methane and air dispersion cases including vertical or horizontal jets or plumes into a quiescent atmosphere or with crosswind.
Safety Demands for Automotive Hydrogen Storage Systems
Sep 2005
Publication
Fuel storage systems for vehicles require a fail-safe design strategy. In case of system failures or accidents the control electronics have to switch the system into a safe operation mode. Failure Mode and Effect Analysis (FMEA) or Failure Tree Analysis (FTA) are performed already in the early design phase in order to minimize the risk of design failures in the fuel storage system. Currently the specifications of requirements for pressurized and liquid hydrogen fuel tanks are based on draft UN-ECE Regulations developed by the European Integrated Hydrogen Project (EIHP). Used materials and accessories shall be compatible with hydrogen. A selection of metallic and non-metallic materials will be presented. Complex components have to be optimised by FEM simulations in order to determine weak spots in the design which will be overstressed in case of pressure thermal expansion or dynamic vibrations. According to automotive standards the performance of liquid hydrogen fuel tank systems has to be verified in various destructive and non-destructive tests.
Experimental Investigation of Hydrogen Jet Fire Mitigation by Barrier Walls
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. While reducing the extent of unacceptable consequences the walls may introduce other hazards if not properly configured. This paper describes experiments carried out to characterize the effectiveness of different barrier wall configurations at reducing the hazards created by jet fires. The hazards that are evaluated are the generation of overpressure during ignition the thermal radiation produced by the jet flame and the effectiveness of the wall at deflecting the flame.<br/>The tests were conducted against a vertical wall (1-wall configuration) and two “3-wall” configurations that consisted of the same vertical wall with two side walls of the same dimensions angled at 135° and 90°. The hydrogen jet impinged on the center of the central wall in all cases. In terms of reducing the radiation heat flux behind the wall the 1-wall configuration performed best followed by the 3-wall 135° configuration and the 3-wall 90°. The reduced shielding efficiency of the three-wall configurations was probably due to the additional confinement created by the side walls that limited the escape of hot gases to the sides of the wall and forced the hot gases to travel over the top of the wall.<br/>The 3-wall barrier with 135° side walls exhibited the best overall performance. Overpressures produced on the release side of the wall were similar to those produced in the 1-wall configuration. The attenuation of overpressure and impulse behind the wall was comparable to that of the three-wall configuration with 90° side walls. The 3-wall 135° configuration’s ability to shield the back side of the wall from the heat flux emitted from the jet flame was comparable to the 1-wall and better than the 3-wall 90° configuration. The ratio of peak overpressure (from in front of the wall and from behind the wall) showed that the 3-wall 135° configuration and the 3-wall 90° configuration had a similar effectiveness. In terms of the pressure mitigation the 3-wall configurations performed significantly better than the 1-wall configuration
The New Facility for Hydrogen and Fuel Cell Vehicle Safety Evaluation
Sep 2005
Publication
For the evaluation of hydrogen and fuel cell vehicle safety a new comprehensive facility was constructed in our institute. The new facility includes an explosion resistant indoor vehicle fire test building and high pressure hydrogen tank safety evaluation equipment. The indoor vehicle fire test building has sufficient strength to withstand even an explosion of a high pressure hydrogen tank of 260 liter capacity and 70 MPa pressure. It also has enough space to observe vehicle fire flames of not only hydrogen but also other conventional fuels such as gasoline or compressed natural gas. The inside dimensions of the building are a 16 meter height and 18 meter diameter. The walls are made of 1.2 meter thick reinforced concrete covered at the insides with steel plate. This paper shows examples of hydrogen vehicle fires compared with other fuel fires and hydrogen high pressure tank fire tests utilizing several kinds of fire sources. Another facility for evaluation of high pressure hydrogen tank safety includes a 110 MPa hydrogen compressor with a capacity of 200 Nm3/h a 300 MPa hydraulic compressor for burst tests of 70 MPa and higher pressure tanks and so on. This facility will be used for not only the safety evaluation of hydrogen and fuel cell vehicles but also the establishment of domestic/international regulations codes and standards.
Safety of Hydrogen-fueled Motor Vehicles with IC Engines.
Sep 2005
Publication
Clarification of questions of safety represents a decisive contribution to the successful introduction of vehicles fuelled by hydrogen. At the moment the safety of hydrogen is being discussed and investigated by various bodies. The primary focus is on fuel-cell vehicles with hydrogen stored in gaseous form. This paper looks at the safety of hydrogen-fuelled vehicles with an internal combustion engine and liquefied hydrogen storage. The safety concept of BMW’s hydrogen vehicles is described and the specific aspects of the propulsion and storage concepts discussed. The main discussion emphasis is on the utilization of boil-off parking of the vehicles in an enclosed space and their crash behaviour. Theoretical safety observations are complemented by the latest experimental and test results. Finally reference is made to the topic-areas in the field of hydrogen safety in which cooperative research work could make a valuable contribution to the future of the hydrogen-powered vehicle.
Flame Characteristics of High-Pressure Hydrogen Gas Jet
Sep 2005
Publication
It is expected that hydrogen will serve as a nonpolluting carrier of energy for the next generation of vehicles and guidelines for its safe use are required. Hydrogen-gas service stations for supplying fuel cell vehicles will have to handle high-pressure hydrogen gas but safety regulations for such installations have not received much investigation. In this study we experimentally investigated the flame characteristics of a rapid leakage of high-pressure hydrogen gas. A hydrogen jet diffusion flame was injected horizontally from convergent nozzles of various diameters between 0.1 and 4 mm at reservoir over pressures of between 0.01 and 40 MPa. The sizes of the flame were measured and experimental equations were obtained for the length and the width of the flame. Flame sizes depend not only on the nozzle diameter but also on the spouting pressure. Blow-off limits exists and are determined by the nozzle diameter and the spouting pressure. Furthermore the radiation from a hydrogen flame can be predicted from the flow rate of the gas and the distance from the flame.
Role of Chemical Kinetics on the Detonation Properties of Hydrogen, Natural Gas & Air Mixtures
Sep 2005
Publication
The first part of the present work is to validate a detailed kinetic mechanism for the oxidation of hydrogen – methane – air mixtures in a detonation waves. A series of experiments on auto-ignition delay times have been performed by shock tube technique coupled with emission spectrometry for H2 / CH4 / O2 mixtures highly diluted in argon. The CH4/H2 ratio was varied from 0 to 4 and the equivalence ratio from 0.4 up to 1. The temperature range was from 1250 K to 2000 K and the pressure behind reflected shock waves was between 0.15 and 1.6 MPa. A correlation was proposed between temperature (K) concentration of chemical species (mol m-3) and ignition delay times. The experimental auto-ignition delay times were compared to the modelled ones using four different mechanisms from the literature: GRI [22] Marinov et al. [23] Hughes et al. [24] Konnov [25]. A large discrepancy was generally found between the different models. The Konnov’s model that predicted auto-ignition delay times close to the measured ones has been selected to calculate the ignition delay time in the detonation waves. The second part of the study concerned the experimental determination of the detonation properties namely the detonation velocity and the cell size. The effect of the initial composition hydrogen to methane ratio and the amount of oxygen in the mixture as well as the initial pressure on the detonation velocity and on the cell size were investigated. The ratio of methane / (methane + hydrogen) varied between 0 and 0.6 for 2 different equivalence ratio (0.75 and 1) while the initial pressure was fixed to 10 kPa. A correlation was established between the characteristic cell size and the ignition delay time behind the leading shock of the detonation. It was clearly showed that methane has an important inhibitor effect on the detonation of these combustible mixtures.
Experimental Study of Hot Inert Gas Jet Ignition of Hydrogen-Oxygen Mixture
Sep 2005
Publication
Experiments were performed to investigate the diffusion ignition process that occurs when hot inert gas (argon or nitrogen) is injected into the stoichiometric hydrogen-oxygen mixture at the test section. Detonation wave initiated by spark plug in the driver section in stoichiometric acetylene-oxygen mixture At P=0.5 MPa and room temperature propagates as incident shockwave in the driven section through inert gas after bursting the diaphragm separating the sections. At the end wall of driver section the inert gas is heated behind the reflected shock wave and then injected in to the test section with the stoichiometric hydrogen-oxygen mixture through the hole 8mm in diameter. An increase of the initial pressure of the combustible mixture in the test section from 0.2 to 0.6MPa resulted in decrease of the minimum temperature of injected gas causing ignition from 1650K to 850K. At the same time the induction time for ignition process has increased from 190 to 320μs when hot argon was injected. For the injection of hot nitrogen an increase of the initial pressure of the combustible mixture from 0.2 to 0.4 MPa resulted in decrease of the minimum temperature of injected inert gas giving ignition from 1150K to 850Kand an increase of the induction time from 170 to 240μs.The results of experiments indicate that ignition occurs when the static enthalpy of injected mass of inert gas exceeds some critical value. The mechanism of ignition process was also studied by schlieren photography.
Measuring and Modelling Unsteady Radiation of Hydrogen Combustion
Sep 2005
Publication
Burning hydrogen emits thermal radiation in UV NIR and IR spectral range. Especially in the case of large cloud explosion the risk of heat radiation is commonly underestimated due to the non-visible flame of hydrogen-air combustion. In the case of a real explosion accident organic substances or inert dust might be entrained from outer sources to produce soot or heated solids to substantially increase the heat release by continuum radiation. To investigate the corresponding combustion phenomena different hydrogen-air mixtures were ignited in a closed vessel and the combustion was observed with fast scanning spectrometers using a sampling rate up to 1000 spectra/s. In some experiments to take into account the influence of organic co-combustion a spray of a liquid glycol-ester and milk powder was added to the mixture. The spectra evaluation uses the BAM code of ICT to model bands of reaction products and thus to get the temperatures. The code calculates NIR/IR-spectra (1 - 10 μm) of non-homogenous gas mixtures of H2O CO2 CO NO and HCl taking into consideration also emission of soot particles. It is based on a single line group model and makes also use of tabulated data of H2O and CO2 and a Least Squares Fit of calculated spectra to experimental ones enables the estimation of flame temperatures. During hydrogen combustion OH emits an intense spectrum at 306 nm. This intermediary radical allows monitoring the reaction progress. Intense water band systems between 1.2 and 3 μm emit remarkable amounts of heat radiation according to a measured flame temperature of 2000 K. At this temperature broad optically-thick water bands between 4.5 μm and 10 μm contribute only scarcely to the total heat output. In case of co-combustion of organic materials additional emission bands of CO and CO2 as well as a continuum radiation of soot and other particles occur and particularly increase the total thermal output drastically.
Experimental Study on Hydrogen Explosions in a Full-scale Hydrogen Filling Station Model
Sep 2005
Publication
In order for fuel cell vehicles to develop a widespread role in society it is essential that hydrogen refuelling stations become established. For this to happen there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow dispersion and explosion behaviour. In the first phase homogeneous hydrogen-air-mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure the hydrogen concentration varied as the inlet airflow changed depending on the ventilation area of the room the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8-8.0mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition distance from ignition point.
Explosion Characteristics of Hydrogen-air and Hydrogen-Oxygen Mixtures at Elevated Pressures
Sep 2005
Publication
An essential problem for the operation of high pressure water electrolyzers and fuel cells is the permissible contamination of hydrogen and oxygen. This contamination can create malfunction and in the worst case explosions in the apparatus and gas cylinders. In order to avoid dangerous conditions the exact knowledge of the explosion characteristics of hydrogen/air and hydrogen/oxygen mixtures is necessary. The common databases e.g. the CHEMSAFE® database published by DECHEMA BAM and PTB contains even a large number of evaluated safety related properties among other things explosion limits which however are mainly measured according to standard procedures under atmospheric conditions.<br/>Within the framework of the European research project “SAFEKINEX” and other research projects the explosion limits explosion pressures and rates of pressure rise (KG values) of H2/air and H2/O2 mixtures were measured at elevated conditions of initial pressures and temperatures by the Federal Institute of Materials Research and Testing (BAM). Empirical equations of the temperature influence could be deduced from the experimental values. An anomaly was found at the pressure influence on the upper explosion limits of H2/O2 and H2/air mixtures in the range of 20 bars. In addition explosion pressures and also rates of pressure rises have been measured for different hydrogen concentrations inside the explosion range. Such data are important for constructive explosion protection measures. Furthermore the mainly used standards for the determination of explosion limits have been compared. Therefore it was interesting to have a look at the systematic differences between the new EN 1839 tube and bomb method ASTM E 681-01 and German DIN 51649-1.
Large-Scale Hydrogen Deflagrations and Detonations
Sep 2005
Publication
Large-scale deflagration and detonation experiments of hydrogen and air mixtures provide fundamental data needed to address accident scenarios and to help in the evaluation and validation of numerical models. Several different experiments of this type were performed. Measurements included flame front time of arrival (TOA) using ionization probes blast pressure heat flux high-speed video standard video and infrared video. The large-scale open-space tests used a hemispherical 300-m3 facility that confined the mixture within a thin plastic tent that was cut prior to initiating a deflagration. Initial homogeneous hydrogen concentrations varied from 15% to 30%. An array of large cylindrical obstacles was placed within the mixture for some experiments to explore turbulent enhancement of the combustion. All tests were ignited at the bottom center of the facility using either a spark or in one case a small quantity of high explosive to generate a detonation. Spark-initiated deflagration tests were performed within the tunnel using homogeneous hydrogen mixtures. Several experiments were performed in which 0.1 kg and 2.2 kg of hydrogen were released into the tunnel with and without ventilation. For some tunnel tests obstacles representing vehicles were used to investigate turbulent enhancement. A test was performed to investigate any enhancement of the deflagration due to partial confinement produced by a narrow gap between aluminium plates. The attenuation of a blast wave was investigated using a 4-m-tall protective blast wall. Finally a large-scale hydrogen jet experiment was performed in which 27 kg of hydrogen was released vertically into the open atmosphere in a period of about 30 seconds. The hydrogen plume spontaneously ignited early in the release.
Analysis Methodology for Hydrogen Behaviour in Accident Scenarios
Sep 2005
Publication
Hydrogen is not more dangerous than current fossil energy carriers but it behaves differently. Therefore hydrogen specific analyses and countermeasures will be needed to support the development of safe hydrogen technologies. A systematic step-by-step procedure for the mechanistic analysis of hydrogen behaviour and mitigation in accidents is presented. The procedure can be subdivided into four main parts:<br/>1) 3D modelling of the H2-air mixture generation<br/>2) hazard evaluation for this mixture based on specifically developed criteria for flammability flame acceleration and detonation on-set<br/>3) numerical simulation of the appropriate combustion regime using verified 3D-CFD codes and<br/>4) consequence analysis based on the calculated pressure and temperature loads.
CFD Modeling OF LH2 Dispersion Using the ADREA-HF Code
Sep 2011
Publication
In the present work the computational fluid dynamics (CFD) code ADREA-HF has been applied to simulate the very recent liquefied hydrogen spill experiments performed by the Health Safety Laboratory (HSL). The experiment consists of four LH2 release trials over concrete at a fixed rate of 60 lt/min but with different release direction height and duration. In the modeling the hydrogen source was treated as a two phase jet enabling simultaneous modeling of pool formation spreading as well as hydrogen vapor dispersion. Turbulence was modeled with the standard k- model modified for buoyancy effects. The effect of solidification of the atmospheric humidity was taken into account. The predicted concentration at the experimental sensors? locations was compared with the observed one. The results from the comparison of the predicted concentration with and without solidification of the atmospheric humidity indicate that the released heat from the solidification affects significantly the buoyant behavior of the hydrogen vapor. Therefore the simulation with solidification of the atmospheric humidity is in better agreement with the experiment.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
A Safety Assessment of Hydrogen Supply Piping System by Use of FDS
Sep 2017
Publication
At least once air filling a piping from main hydrogen pipe line to an individual home end should be replaced with hydrogen gas to use the gas in the home. Special attention is required to complete the replacing operation safely because air and supplied hydrogen may generate flammable/explosive gas mixture in the piping. The most probable method to fulfill the task is that at first an inert gas is used to purge air from the piping and then hydrogen will be supplied into the piping. It is easily understood that the amount of the inert gas consumed by this method is much to purge whole air especially in long piping system. Hence to achieve more economical efficiency an alternative method was considered. In this method previously injected nitrogen between air and hydrogen prevents them from mixing. The key point is that how much nitrogen is required to prevent the dangerous mixing and keep the condition in the piping safe. The authors investigated to find the minimum amount of nitrogen required to keep the replacing operation safe. The main objective of this study is to assess the effect of nitrogen and estimate a pipe length that the safety is maintained under various conditions by using computational fluid dynamic (CFD). The effects of the amount of injected nitrogen hydrogen-supply conditions and the structure of piping system are discussed.
Safety System Design for Mitigating Risks of Intended Hydrogen Releases from Thermally Activated Pressure Relief Device of Onboard Storage
Sep 2019
Publication
All vehicular high-pressure hydrogen tanks are equipped with thermally-activated pressure relief devices (TPRDs) required by Global Technical Regulation. This safety device significantly reduces the risk of tank catastrophic rupture by venting the hydrogen pressure outside. However the released flammable hydrogen raises additional safety problems. Japan Automobile Research Institute has demonstrated that in the vehicle fire event once the TPRD opens the hydrogen fires will engulf the whole vehicle making it difficult for the drivers and passenger to evacuate from the vehicle. This paper designs a new safety system to solve the evacuation problem. The safety system includes a rotatable pressure relief device with a motor a sensory system that consists of infrared sensors ultrasonic radar and temperature sensors a central control unit and an alarm device. The new design of the pressure relief device allows the system actively adjusting the release direction towards void open space outside the vehicle to minimize the risks of hydrogen fires. The infrared sensors located at the roof of the vehicles collect info inside the vehicle and the ultrasonic radar detect the region outside the vehicle. Temperature sensors tell when to trigger the alarm and set the motor in standby mode and the central control unit determines where to rotate based on the info from the infrared sensors and ultrasonic radars. A control strategy is also proposed to operate the safety system in an appropriate way. The cost-benefit analysis show that the new safety system can significantly reduce the risks of intended hydrogen releases from onboard pressure relief devices with total cost increases by less than 1% of the vehicle cost making it a good cost-effective engineering solution.
Experimental Measurements of Structural Displacement During Hydrogen Vented Deflagrations for FE Model Validation
Sep 2017
Publication
Vented deflagration tests were conducted by UNIPI at B. Guerrini Laboratory during the experimental campaign for HySEA project. Experiments included homogeneous hydrogen-air mixture in a 10-18% vol. range of concentrations contained in an about 1 m3 enclosure called SSE (Small Scale Enclosure). Displacement measurements of a test plate were taken in order to acquire useful data for the validation of FE model developed by IMPETUS Afea. In this paper experimental facility displacement measurement system and FE model are briefly described then comparison between experimental data and simulation results is discussed.
Non-adiabatic Blowdown Model: A Complimentary Tool for the Safety Design of Tank-TPRD System
Sep 2017
Publication
Previous studies have demonstrated that while blowdown pressure is reproduced well by both adiabatic and isothermal analytical models the dynamics of temperature cannot be predicted well by either model. The reason for the last is heat transfer to cooling during expansion gas from the vessel wall. Moreover when exposed to an external fire the temperature inside the vessel increases i.e. when a thermally activated pressure relief device (TPRD) is still closed with subsequent pressure increase that may lead to a catastrophic rupture of the vessel. The choice of a TPRD exit orifice size and design strategy are challenges: to provide sufficient internal pressure drop in a fire when the orifice size is too small; to avoid flame blow off expected with the decrease of pressure during the blowdown; to decrease flame length of subsequent jet fire as much as possible by the decrease of the orifice size under condition of sufficient fire resistance provisions to avoid pressure peaking phenomenon etc. The adiabatic model of blowdown [1] was developed using the Abel-Nobel equation of state and the original theory of underexpanded jet [2]. According to experimental observations e.g. [3] heat transfer plays a significant role during the blowdown. Thus this study aims to modify the adiabatic blowdown model to include the heat transfer to non-ideal gas. The model accounts for a change of gas temperature inside the vessel due to two “competing” processes: the decrease of temperature due to gas expansion and the increase of temperature due to heat transfer from the surroundings e.g. ambience or fire through the vessel wall. This is taken into account in the system of equations of adiabatic blowdown model through the change of energy conservation equation that accounts for heat from outside. There is a need to know the convective heat transfer coefficient between the vessel wall and the surroundings and wall size and properties to define heat flux to the gas inside the vessel. The non-adiabatic model is validated against available experimental data. The model can be applied as a new engineering tool for the inherently safer design of hydrogen tank-TPRD system.
Safety and Environmental Standards for Fuel Storage Sites
Jan 2009
Publication
The main purpose of this report is to specify the minimum standards of control which should be in place at all establishments storing large volumes of gasoline.<br/>The PSLG also considered other substances capable of giving rise to a large flammable vapour cloud in the event of a loss of primary containment. However to ensure priority was given to improving standards of control to tanks storing gasoline PSLG has yet to determine the scale and application of this guidance to such substances. It is possible that a limited number of other substances (with specific physical properties and storage arrangements) will be addressed in the future.<br/>This report also provides guidance on good practice in relation to secondary and tertiary containment for facilities covered by the CA Control of Major Accident Hazards (COMAH) Parts of this guidance may also be relevant to other major hazard establishments.
Structural Response for Vented Hydrogen Deflagrations: Coupling CFD and FE Tools
Sep 2017
Publication
This paper describes a methodology for simulating the structural response of vented enclosures during hydrogen deflagrations. The paper also summarises experimental results for the structural response of 20-foot ISO (International Organization for Standardization) containers in a series of vented hydrogen deflagration experiments. The study is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The project is funded by the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671461. The HySEA project focuses on vented hydrogen deflagrations in containers and smaller enclosures with internal congestion representative of industrial applications. The structural response modelling involves one-way coupling of pressure loads taken either directly from experiments or from simulations with the computational fluid dynamics (CFD) tool FLACS to the non-linear finite element (FE) IMPETUS Afea Solver. The performance of the FE model is evaluated for a range of experiments from the HySEA project in both small-scale enclosures and 20-foot ISO containers. The paper investigates the sensitivity of results from the FE model to the specific properties of the geometry model. The performance of FLACS is evaluated for a selected set of experiments from the HySEA project. Furthermore the paper discusses uncertainties associated with the combined modelling approach.
Detonability of Binary H2/Ch4 - Air Mixture
Sep 2009
Publication
Abatement of greenhouse gas emissions and diversification of energy sources will probably lead to an economy based on hydrogen. In order to evaluate safety conditions during transport and distribution experimental data is needed on the detonation of Hydrogen/Natural gas blend mixtures. The aim of this study is to constitute detonation and deflagration to detonation transition (DDT) database of H2/CH4-air mixtures. More precisely the detonability of such mixtures is evaluated by the detonation cell size and the DDT run up distance measurements. Large experimental conditions are investigated (i) various equivalence ratios from 0.6 to 3 (ii) various H2 molar fraction x ( ( )2 2 4x H H CH= + ) from 0.5 to 1 (iii) different initial pressure P0 from 0.2 to 2 bar at fixed ambient temperature T0=293 K. Detonation pressures P velocities D and cell sizes ? were measured in two smooth tubes with different i.d. d (52 and 106 mm). For DDT data minimum DDT run up distances LDDT were determined in the d=52 mm tube containing a 2.8 m long Schelkin spiral with a blockage ratio BR = 0.5 and a pitch equal to the diameter. Measured detonation velocities D are very close to the Chapman Jouguet values (DCJ). Concerning the effect of detonation cell size ? follows a classical U shaped- curve with a minimum close to =1 and concerning the effect of x ? decreases when x increases. The ratio ik L?= obtained from different chemical kinetics (Li being the ZND induction length) is well approximated by the value 40 in the range 0.5 < x < 0.9 and 50 for x 0.9. Minimum DDT run up distance LDDT varies from 0.36 to 1.1m when x varies from 1 to 0.8. The results show that LDDT obeys the linear law LDDT ~ 30-40? previously validated in H2/Air mixtures. Adding Hydrogen in Natural Gas promotes the detonability of the mixtures and for x 0.65 these mixtures are considered more sensitive than common heavy Alkane-Air mixtures.
Thermal Loading Cases of Hydrogen High Pressure Storage Cylinders
Sep 2007
Publication
Composite cylinders with metal liner are used for the storage of compressed hydrogen in automotive application. These hybrid pressure cylinders are designed for a nominal working pressure of up to 70 MPa. They also have to withstand a temperature range between -40°C and +85°C according GRPE draft [1] and for short periods up to a maximum temperature of 140°C during filling (fast filling) [2]. In order to exploit the material properties efficiently with a high degree of lightweight optimization and a high level of safety on the same time a better understanding of the structural behavior of hybrid designs is necessary. Work on this topic has been carried out in the frame of a work package on safety aspects and regulation (Subproject SAR) of the European IP StorHy (www.storhy.net). The temperature influence on the composite layers is distinctive due to there typical polymer material behavior. The stiffness of the composite layer is a function of temperature which influences global strains and stress levels (residual stresses) in operation. In order to do an accurate fatigue assessment of composite hybrid cylinders a realistic modeling of a representative temperature load is needed. For this climate data has been evaluated which were collected in Europe over a period of 30 years [3]. Assuming that the temperature follows a Gaussian (normal) distribution within the assessed period of 30 years it is possible to generate a frequency distribution for different temperature classes for the cold extreme and the hot extreme. Combining these distributions leads to the overall temperature range distribution (frequency over temperature classes). The climatic temperature influence the filling temperature and the pressure load have to be considered in combination with the operation profile of the storage cylinder to derive a complete load vector for an accurate assessment of the lifetime and safety level.
Numerical Simulation of The Laminar Hydrogen Flame In The Presence of a Quenching Mesh
Sep 2009
Publication
Recent studies of J.H. Song et al. and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size.<br/>Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment in particular the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter).<br/>In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically.
Hyper Experiments on Catastrophic Hydrogen Releases Inside a Fuel Cell Enclosure
Sep 2009
Publication
As a part of the experimental work of the EC-funded project HYPER Pro-Science GmbH performed experiments to evaluate the hazard potential of a severe hydrogen leakage inside a fuel cell cabinet. During this study hydrogen distribution and combustion experiments were performed using a generic enclosure model with the dimensions of the fuel cell "Penta H2" provided by ARCOTRONICS (now EXERGY Fuel Cells) to the project partner UNIPI for their experiments on small foreseeable leaks. Hydrogen amounts of 1.5 to 15 g H2 were released within one second into the enclosure through a nozzle with an internal diameter of 8 mm. In the distribution experiments the effects of different venting characteristics and different amounts of internal enclosure obstruction on the hydrogen concentrations measured at fixed positions in- and outside the model were investigated. Based on the results of these experiments combustion experiments with ignition positions in- and outside the enclosure and two different ignition times were performed. BOS (Background-Oriented-Schlieren) observation combined with pressure and light emission measurements were performed to describe the characteristics and the hazard potential of the induced hydrogen combustions. The experiments provide new experimental data on the distribution and combustion behaviour of hydrogen that is released into a partly vented and partly obstructed enclosure with different venting characteristics.
Numerical Investigation of a Vertical Surface on the Flammable Extent of Hydrogen and Methane Vertical Jets
Sep 2011
Publication
The effect of vertical surface on the extent of high pressure unignited jets of both hydrogen and methane is studied using computer fluid dynamics simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm round leak orifice from 100 barg 250 barg 400 barg 550 barg and 700 barg compressed gas systems are presented for vertical jets. To quantify the effect of the surface on the jet the jet exit is positioned at various distances from the surface ranging from 0.029 m to 12 m. Free jets simulations are performed for comparison purposes.
Effects of Surface on the Flammable Extent of Hydrogen Jets
Sep 2009
Publication
The effect of surfaces on the extent of high pressure horizontal unignited jets of hydrogen and methane is studied using CFD numerical simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm PRD from 100 barg and 700 barg storage units are presented for horizontal hydrogen and methane jets. To quantify the effect of a horizontal surface on the jet the jet exit is positioned at various heights above the ground ranging from 0.1 m to 10 m. Free jet simulations are performed for comparison purposes.
Deflagration-to-detonation Transition in Highly Reactive Combustible Mixtures
Sep 2011
Publication
High resolution numerical simulations used to study the mechanism of deflagration-to-detonation transition (DDT). The computations solved two-dimensional time-dependent reactive Navier-Stokes equations including the effects of compressibility molecular diffusion thermal conduction viscosity and detailed chemical kinetics for the reactive species with subsequent chain branching production of radicals and energy release. It is shown that from the beginning the flame accelerates exponentially producing shock waves far ahead. On the next stage the flame acceleration decreases and the shocks are formed close ahead of the flame front. The final stage is the actual transition to detonation. During the second stage a compressed unreacted mixture of increased density enters the flame producing a high pressure pulse which enhances reaction rate and the heat release in the reaction zone with a positive feedback coupling between the pressure pulse and the reaction rate. As a result the peak of the pressure pulse grows exponentially steepens into a strong shock which is coupled with the reaction zone forming the overdriven detonation. This new mechanism of DDT is different from the Zel’dovich’s gradient mechanism. The temperature gradients which appear in the form of hot spots and the like are not suitable to initiate detonation.
Consequences of Catastrophic Releases of Ignited and Unignited Hydrogen Jet Releases
Sep 2009
Publication
The possibility of using a risk based approach for the safe installation and siting of stationary fuel cell systems depends upon the availability of normative data and guidance on potential hazards and the probabilities of their occurrence. Such guidance data is readily available for most common hydrocarbon fuels. For hydrogen however data is still required on the hazards associated with different release scenarios. This data can then be related to the probability of different types of scenarios from historical fault data to allow safety distances to be defined and controlled using different techniques. Some data on releases has started to appear but this data generally relates to hydrogen vehicle refuelling systems that are designed for larger throughput higher pressures and the general use of larger pipe diameters than are likely to be used for small fuel cell systems.
A Comparison Exercise on the CFD Detonation Simulation in Large Scale Confined Volumes
Sep 2009
Publication
The use of hydrogen as an energy carrier is going to widen exponentially in the next years. In order to ensure the public acceptance of the new fuel not only the environmental impact has to be excellent but also the risk management of its handling and storage must be improved. As a part of modern risk assessment procedure CFD modeling of the accident scenario development must provide reliable data on the possible pressure loads resulted from explosion processes. The expected combustion regimes can be ranged from slow flames to deflagration-to-detonation transition and even to detonation. In the last case the importance of the reliability of simulation results is particularly high since detonation is usually considered as a worst case state of affairs. A set of large-scale detonation experiments performed in Kurchatov Institute at RUT facility was selected as benchmark. RUT has typical industry-relevant characteristic dimensions. The CFD codes possibilities to correctly describe detonation in mixtures with different initial and boundary conditions were surveyed. For the modeling two detonation tests HYD05 and HYD09 were chosen; both tests were carried out in uniform hydrogen/air mixtures; first one with concentration of 20.0% vol. and the second one with 25.5% vol. In the present exercise three CFD codes using a number of different models were used to simulate these experiments. A thorough inter-comparison between the CFD results including codes models and obtained pressure predictions was carried out and reported. The results of this inter comparison should provide a solid basis for the further code development and detonation models’ validation thus improving CFD predictive capabilities.
Mechanism of High Pressure Hydrogen Auto-Ignition When Spouting Into Air
Sep 2009
Publication
High pressure hydrogen leak is one of the top safety issues presently. This study elucidates the physics and mechanism of high pressure hydrogen jet ignition when the hydrogen suddenly spouts into the air. The experimental work was done elsewhere while we did the numerical work on this high pressure hydrogen leak problem. The direct numerical simulation based on the compressible fluid dynamics considering viscous effect was carried out with the two-dimensional axisymmetric coordinate system A detailed model of hydrogen reaction is applied and a narrow tube attached to a high pressure reservoir is assumed in the numerical simulation. The exit of the tube is opened in the atmosphere. When high pressure hydrogen is passing through the tube filled by atmospheric air a strong shock wave is formed and heats up hydrogen behind the shock wave by compression effect. The leading shock wave is expanded widely after the exit hydrogen then mixed with air by several vortices generated around the exit of the tube. As a result a couple of auto-ignitions of hydrogen occur. It is found that there is a certain relationship between the auto-ignition and tube length. When the tube becomes longer the tendency of auto-ignition is increased. Additionally other type of auto-ignitions is predicted. An explosion is also occurred in the tube under a certain condition. Vortex is generated behind the shock wave in the long tube. There is a possibility of an auto-ignition induced by vortices.
Safety Considerations and Approval Procedures for the Integration of Fuel Cells on Board of Ships
Sep 2009
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's hare of emissions to air is regarded to be significant and public concern lead to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce additional regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or main propulsion. The presentation summarizes the legal background in international shipping related to the use for gas as ship fuel and fuel cells. The focus of the presentation will be on the safety principles for the use of gas as fuel and fuel cells on board of ships and boats. The examples given show the successful integration of such systems on board of ships. Furthermore a short outlook will be given to the ongoing and planed projects for the use of fuel cells on board of ships.
Vented Confined Explosions Involving Methane/Hydrogen Mixtures
Sep 2009
Publication
The EC funded Naturalhy project is assessing the potential for using the existing gas infrastructure for conveying hydrogen as a mixture with natural gas (methane). The hydrogen could then be removed at a point of use or the natural gas/hydrogen mixture could be burned in gas-fired appliances thereby providing reduced carbon emissions compared to natural gas. As part of the project the impact on the safety of the gas system resulting from the addition of hydrogen is being assessed. A release of a natural gas/hydrogen mixture within a vented enclosure (such as an industrial housing of plant and equipment) could result in a flammable mixture being formed and ignited. Due to the different properties of hydrogen the resulting explosion may be more severe for natural gas/hydrogen mixtures compared to natural gas. Therefore a series of large scale explosion experiments involving methane/hydrogen mixtures has been conducted in a 69.3 m3 enclosure in order to assess the effect of different hydrogen concentrations on the resulting explosion overpressures. The results showed that adding up to 20% by volume of hydrogen to the methane resulted in a small increase in explosion flame speeds and overpressures. However a significant increase was observed when 50% hydrogen was added. For the vented confined explosions studied it was also observed that the addition of obstacles within the enclosure representing congestion caused by equipment and pipework etc. increased flame speeds and overpressures above the levels measured in an empty enclosure. Predictions of the explosion overpressure and flame speed were also made using a modified version of the Shell Global Solutions model SCOPE. The modifications included changes to the burning velocity and other physical properties of methane/hydrogen mixtures. Comparisons with the experimental data showed generally good agreement.
Environmental Reactivity of Solid State Hydride Materials
Sep 2009
Publication
In searching for high gravimetric and volumetric density hydrogen storage systems it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems it is important to understand quantitatively the hazards involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential hazards and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials as codified by the United Nations have been used to evaluate two potential hydrogen storage materials 2LiBH4·MgH2 and NH3BH3. The modified U.N. procedures include identification of self-reactive substances pyrophoric substances and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH4 and MgH2). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. Relative to 2LiBH4·MgH2 the chemical hydride NH3BH3 was observed to be less environmentally reactive.
Dependency of Equivalence Ratio on Hydrogen Cylindrical Detonation Induced by Direct Initiation
Sep 2011
Publication
A hydrogen fuel is expected to expand its demand in the future. However hydrogen has to be treated with enough caution because of wide combustible conditions and easiness to ignite. Detonation accidents are caused in hydrogen gas such as the explosion accident in Fukushima first nuclear plant (2011). Therefore it is necessary to comprehend initiation conditions of detonation to prevent its detonation explosion. In the present study cylindrical detonation induced by direct initiation is simulated to understand the dependency of equivalence ratios in hydrogen-oxygen mixture. The several detailed kinetic models are compared to select the most appropriate model for detonation in a wide range of equivalence ratios. The Petersen-Hanson model is used in the present study due to the best agreement among the other models. In the numerical results of cylindrical detonation induced by direct initiation a cellular structure which is similar to the experimental smoked foil record is observed. The local pressure is up to 12 MPa under the condition at the standard state. The ignition process of cylindrical detonation has two stages. At the first stage the normalized cell width /L1/2 at each equivalence ratio increases linearly. At the second stage cell bifurcations appear due to a generation of new transverse waves. It is observed that a transverse wave transforms to a transverse detonation at the end of the first stage and after that some disturbance is developed to be a new transverse wave at the beginning of the second stage.
Experimental Study on a Hydrogen Stratification Induced by PARs Installed in a Containment
Oct 2020
Publication
Hydrogen can be produced in undesired ways such as a high temperature metal oxidation during an accident. In this case the hydrogen must be carefully managed. A hydrogen mitigation system (HMS) should be installed to protect a containment of a nuclear power plant (NPP) from hazards of hydrogen produced by an oxidation of the fuel cladding during a severe accident in an NPP. Among hydrogen removal devices passive auto-catalytic recombiners (PARs) are currently applied to many NPPs because of passive characteristics such as not requiring a power supply nor an operators’ manipulations. However they offer several disadvantages resulting in issues related to hydrogen control by PARs. One of the issues is a hydrogen stratification in which hydrogen is not well-mixed in a compartment due to the high temperature exhaust gas of PARs and accumulation in the lower part. Therefore experimental simulation on hydrogen stratification phenomenon by PARs is required. When the hydrogen stratification by PARs is observed in the experiment the verification and improvement of a PAR analysis model using the experimental results can be performed and the hydrogen removal characteristics by PARs installed in an NPP can be evaluated using the improved PAR model. View Full-Text
Numerical and Experimental Investigation of Buoyant Gas Release
Sep 2009
Publication
Buoyant round vertical jet had been investigated using Large Eddy Simulations at low Mach number. For the purpose of comparison with in-house experimental data in the present work helium has been used as a substitute for hydrogen. The influence of the transient concentration fields on the volume of gas with concentration within flammability limits has been investigated and their evolution and relation with average fields ad been characterized. Transient concentration fields created during initial jet development had been considered. Numerical results have been compared with in-house experiments and data published in the literature.
Validation of CFD Modelling of LH2 Spread and Evaporation Against Large-Scale Spill Experiments
Sep 2009
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid. Therefore loss of hydrogen containments may lead to the formation of a pool on the ground. In general very large spills will give a pool whereas moderate sized spills may evaporate immediately. Accurate hazard assessments of storage systems require a proper prediction of the liquid hydrogen pool evaporation and spreading. A new pool model handling the spread and the evaporation of liquid spills on different surfaces has recently been developed in the 3D Computational Fluid Dynamics (CFD) tool FLACS [1-4]. As the influence of geometry on the liquid spread is taken into account in the new pool model realistic industrial scenarios can be investigated. The model has been validated for LNG spills on water with the Burro and Coyote experiments [56]. The model has previously been tested for LH2 release in the framework of the EU-sponsored Network of Excellence HySafe where experiments carried out by BAM were modelled. In the large scale BAM experiments [7] 280 kg of liquid hydrogen was spilled in 6 tests adjacent to buildings. In these tests the pool spreading the evaporation and the cloud formation were investigated. Simulations of these tests are found to compare reasonably well with the experimental results. In the present work the model is extended and the liquid hydrogen spill experiments carried out by NASA are simulated with the new pool model. The large scale NASA experiments [89] consisted of 7 releases of liquefied hydrogen at White Sand New Mexico. The release test 6 is used. During these experiments cloud concentrations were measured at several distances downwind of the spill point. With the new pool model feature the FLACS tool is shown to be an efficient and accurate tool for the investigation of complex and realistic accidental release scenarios of cryogenic liquids.
Experimental Study of Hydrogen Releases Combustion
Sep 2009
Publication
The objectives of the presented experimental work were investigation of hydrogen release distribution and combustion modelling possible emergency situation at industry scale. Results of large scale experiments on distribution and combustion in an open and congested area are presented. The mass of hydrogen in experiments varied from 50g to 1000g with release rate from 180 to 220 g/s. Qualitative characteristics of high momentum hydrogen jet releases distribution and subsequent combustion were obtained. It is shown that obstacles slow down jet speed promote combustible mixture formation in a large volume and accelerate combustion process. The maximum overpressure in experiments with additional congested area reached ΔР = 0.4 atm. Using partial confinement of congested area turbulent combustion regime with the maximum overpressure more than 10 atm. was obtained.
Achievements of The EC Network of Excellence Hysafe
Sep 2009
Publication
In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to facilitate the safe introduction of hydrogen as an energy carrier by removing the safety related obstacles. The prioritisation of the HySafe internal project activities was based on a phenomena identification and ranking exercise (PIRT) and expert interviews. The identified research headlines were “Releases in (partially) confined areas” “Mitigation” and “Quantitative Risk Assessment”. Along these headlines existing or planned research work was re-orientated and slightly modified to build up three large internal research projects “InsHyde” “HyTunnel” and “HyQRA”. In InsHyde realistic indoor hydrogen leaks and associated hazards have been investigated to provide recommendations for the safe use of indoor hydrogen systems including mitigation and detection means. The appropriateness of available regulations codes and standards (RCS) has been assessed. Experimental and numerical work was conducted to benchmark simulation tools and to evaluate the related recommendations. HyTunnel contributed to the understanding of the nature of the hazards posed by hydrogen vehicles inside tunnels and its relative severity compared to other fuels. In HyQRA quantitative risk assessment strategies were applied to relevant scenarios in a hydrogen refuelling station and the performance was compared to derive also recommendations. The integration provided by the network is manifested by a series of workshops and benchmarks related to experimental and numerical work. Besides the network generated the following products: the International Conference on Hydrogen Safety the first academic education related to hydrogen safety and the Safety Handbook. Finally the network initiated the founding of the International Association for Hydrogen Safety which will open up the future networking to all interested parties on an international level. The indicated results of this five years integration activity will be described in short.
Experiments on the Distribution of Concentration Due to Buoyant Gas Low Flow Rate Release in an Enclosure.
Sep 2009
Publication
Hydrogen energy based vehicles or power generators are expected to come into widespread use in the near future. Safety information is of major importance to support the successful public acceptance of hydrogen as an energy carrier. One of the most important issues in terms of safety is the use of such system in closed area such as a private garage in which a fuel cell car may be parked. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of a stably stratified distribution of concentration. Most of them consider the cases of accidental situation in which the flow rate is relatively important (of the order of 10Nl/min to 100Nl/min). We present a set of experiments conducted on a full scale facility of the size of a typical private garage with helium as a model gas for hydrogen. In this study we focus on the low flow rates that can be characteristic of chronic leaks that may not be detected by security devices of the system (of the order of 0.1Nl/min to 10Nl/min). The facility allows changing natural ventilation conditions and experiments have been conducted from the tightest which is less than 0.01ACH to that typical of a real garage say of the order of 0.1ACH.
Hydrogen Storage in Glass Capillary Arrays for Portable and Mobile Systems
Sep 2009
Publication
A crucial problem of new hydrogen technologies is the lightweight and also safe storage of acceptable amounts of hydrogen for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure safe infusion storage and controlled release of hydrogen gas although storage pressures up to 1200 bar are applied. This technology enables the storage of a significantly greater amount of hydrogen than other approaches. In storage tests with first capillary arrays a gravimetric storage capacity of about 33% and a volumetric capacity of 28% was determined at a comparative low pressure of only 400 bar. This is much more than the actual published storage capacities which are to find for other storage systems. This result already surpassed the US Department of Energy's 2010 target and it is expected to meet the DOE's 2015 target in the near future.<br/>Different safety aspects have been evaluated. On the one hand experiments with single capillaries or arrays of them have been carried out. The capillaries are made of quartz and other glasses. Especially quartz has a three times higher strength than steel. At the same time the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in dependence of capillary materials and dimensions wall thickness etc. in order to find out optimal parameters for the “final” capillaries. In these tests also the sudden release of hydrogen was tested in order to observe possible spontaneous ignitions. On the other hand a theoretical evaluation of explosion hazards was done. Different situations were analyzed e.g. release of hydrogen by diffusion or sudden rupture.
Experimental Study of Explosion Wave Propagation in Hydrogen-Air Mixtures of Variable Compositions
Sep 2009
Publication
Results are given of experimental study of propagation of explosion waves in hydrogen-air mixtures of different compositions under conditions of cumulation. The investigations are performed in a setup consisting of two parts namely the upper part in the form of a metal cone and the lower part in the form of a rubber envelope hermetically attached to the cone. The upper and lower parts of the experimental setup are separated by a thin rubber film and may be filled with hydrogen-air mixtures of different compositions.
Numerical Modelling of Hydrogen Deflagration Dynamics in Enclosed Space
Sep 2009
Publication
A three-dimensional mathematical model of gaseous hydrogen deflagration in the enclosed space is developed. The process is described by the system of gas dynamics differential equations. Thermodynamic parameters of the mixture and its components are defined as functions of the local temperature and mixture composition. The concentration changes of the fuel and combustion products are determined using conservation laws taking into account rates of component disappearance and formation and turbulent diffusion. It is assumed that the chemical reaction takes place only in the volume where the fuel concentration is within the limits of inflammability. The mathematical model is validated during an intercomparison test to predict deflagration of a large-scale hydrogen-air mixture in open atmosphere. An algorithm of numerical solution based on the Godunov method is developed. A computer system of engineering analysis of gas-dynamic processes of hydrogen-air mixture formation and combustion in enclosed space with natural ventilation is created. It allows predicting the history of the changes of overpressure temperature concentrations of hydrogen and combustion products and other thermogasdynamic parameters of the mixture in space. This prognosis can be used to estimate dangerous zones of destruction and recommend some safety measures.
Discrete Event Simulation in Support to Hydrogen Supply Reliability
Sep 2009
Publication
Discrete Event Simulation (DES) environments are rapidly developing and they appear to be promising tools for developing reliability and risk analysis models of safety-critical systems. DES models are an alternative to the conventional methods such as fault and event trees Bayesian networks and cause-consequence diagrams that could be used to assess the reliability of fuel supply. DES models can rather easily account for the dynamic dimensions and other important features that can hardly be captured by the conventional models. The paper describes a novel approach to estimate gas supply security and the reliability/safety of gas installations and argues that this approach can be transferred to estimate future hydrogen supply reliability. The core of the approach is a DES model of gas or other fuel propulsion through a pipeline to the customers and failures of the components of the pipeline. We will argue in the paper that the experience gained in the modelling of gas supply reliability is very relevant to the security and safety of a future hydrogen supply and worth being employed in this area.
Risk Quantification of Hydride Based Hydrogen Storage Systems for Automotive Applications
Sep 2009
Publication
For hydrogen fuelled vehicles to attain significant market penetration it is essential that any potential risks be controlled within acceptable levels. To achieve this goal on-board vehicle hydrogen storage systems should undergo risk analyses during early concept development and design phases. By so doing the process of eliminating safety-critical failure modes will help guide storage system development and be more efficient to implement than if undertaken after the design-freeze stage. The focus of this paper is the development of quantitative risk analyses of storage systems which use onboard reversible materials such as conventional AB5 metal hydrides the complex hydride NaAlH4 or other material candidates currently being researched. Collision of a vehicle having such a hydrogen storage system was selected as a dominant accident initiator and a probabilistic event tree model has been developed for this initiator. The event tree model contains a set of comprehensive mutually exclusive accident sequences. The event tree represents chronological ordering of key events that are postulated to occur sequentially in time during the accident progression. Each event may represent occurrence of a phenomenon (e.g. hydride chemical reaction and dust cloud explosion) or a hardware failure (e.g. hydride storage vessel rupture). Event tree branch probabilities can be quantified using fault tree models or basic events with probability distributions. A fault tree model for hydride dust cloud explosion is provided as an example. Failure probabilities assigned to the basic events in the fault tree can be estimated from test results published data or expert opinion elicitation. To account for variabilities in the probabilities assigned to fault tree basic events and hence to propagate uncertainties in event tree sequences Monte Carlo sampling and Latin Hypercube sampling were employed and the statistics of the results from both techniques were compared.
Prediction of Third Party Damage Failure Frequency for Pipelines Transporting Mixtures of Natural Gas and Hydrogen
Sep 2009
Publication
As Europe is gradually moving towards a hydrogen based society it has been acknowledged that adding certain amount of hydrogen as a clean energy carrier to the existing natural gas pipeline will help reduce the CO2 emissions which contribute to the greenhouse effect. On the other hand hydrogen has been demonstrated to be able to change the behaviour of the pipeline steel such as lower toughness and faster crack growth due to hydrogen embrittlement. Therefore it is necessary that the risks associated with the failure of the pipeline carrying mixtures of natural gas and hydrogen be assessed.<br/>The study reported in this paper is part of European NATURALHY project whose aim is to investigate the possibility of using the existing natural gas transmission pipelines to convey natural gas/hydrogen mixtures. According to the EGIG database the most common cause of failure for the existing natural gas pipelines is third party damage which mainly refers to a gouge a dent/gouge combination of known geometry. Among third party damage failures 90% are the result of immediate failure i.e. leakage or rupture of the pipeline and only 10% of them are the result of delayed failure. While its not expected that hydrogen will impact the immediate failure it could increase the vulnerability of the pipe to delayed failure through the initiation or activation of crack like defects.<br/>This paper will present a methodology to predict the probability of increased failures and describe a software tool that has been developed to perform the calculations.
Model-based Determination of Hydrogen System Emissions of Motor Vehicles Using Climate-Chamber Test Facilities
Sep 2007
Publication
Because of air quality problems the problem of CO2 related greenhouse gas emissions and shortage of fossil fuels many vehicles with gaseous fuels (CNG biogas hydrogen etc.) are under research and development. Such vehicles have to prove that as well as their exhaust emissions their overall system emissions (including running loss) remain below certain safety limits before they can be used in practice. This paper presents a cost-effective way of monitoring such system emissions from hydrogen or other gaseous fuel powered vehicles within an air-conditioned chassis dynamometer test cell as commonly used for low ambient emission tests on gasoline vehicles. The only additional equipment needed is a low-concentration sensor for the gas of interest (e.g hydrogen). The method is based on concentration measurements and a dynamic mass balance model. This method is based on the fact that atoms cannot vanish. Applied to a room containing a gas mixture this means that the change of mass of a gaseous matter (called gas G subsequently) inside the chamber is the difference of all mass of G flowing into the chamber and all mass of G flowing out of the chamber. This assumes that no chemical reactions of the gas in mind with other matter take place. By measuring the flow rates and concentrations of ventilation-in flow and ventilation-out flow as well as room concentration the emissions of G of a source i.e. the vehicle to be tested can be calculated. These concentrations need to be measured as functions of time to be able to give values of emissions per time unit. It is shown by a real experiment that very low emissions can be recorded. Additionally error bounds and sensitivities on different parameters such as air exchange ratio are quantified.
Safe Testing of Catalytic Devices in Hydrogen-Air Flow
Sep 2009
Publication
Any experimental study of catalysts and catalytic recombining devices for removal of hydrogen gas from industrial environments is known to carry a risk of ignition of hydrogen. Experiments conducted in an atmosphere with a high concentration of hydrogen present a particular danger. Here a technique is reported that allows conducting such experiments with relative safety. This technique has been developed and applied by the company ‘Russian Energy Technologies’ for the last five years without any significant incident.<br/>A “Gas stream method” for testing and analysis of the characteristics of a catalyst for hydrogen/oxygen recombination is proposed. Tests with a variety of catalysts in a passive recombining device were carried out in a climatic chamber (86 l in volume) with a hydrogen/air mixture containing up to 20% (v/v) hydrogen flowing through it. The balance equation for hydrogen and oxygen flows entering reacting and exiting the chamber led to a formula for calculating the efficiency of a catalyst or a catalytic device under stationary conditions.<br/>Fluctuations in local temperatures of the catalyst and other parts of the chamber along with variation in the concentration of hydrogen gave the authors an insight into the thermal regime of an active catalyst. This enabled them to develop new catalysts for removal of hydrogen from the environment using industrial recombining devices.
Numerical Investigation of Subsonic Hydrogen Jet Release
Sep 2011
Publication
A buoyant round vertical hydrogen jet is investigated using Large Eddy Simulations at low Mach number (M = 0.3). The influence of the transient concentration fields on the extent of the gas envelope with concentrations within the flammability limits is analyzed and their structure are characterized. The transient flammable region has a complex structure that extends up to 30% beyond the time-averaged flammable volume with high concentration pockets that persist sufficiently long for potential ignition. Safety envelopes devised on the basis of simplified time-averaged simulations would need to include a correction factor that accounts for transient incursions of high flammability concentrations.
Experimental Results on The Dispersion of Buoyant Gas in a Full Scale Garage from a Complex Source
Sep 2009
Publication
The lack of experimental data on hydrogen dispersion led to the experimental project DRIVE (Experimental Data for Hydrogen Automotive Risks Assessment for the validation of numerical tools and for the Edition of guidelines) that involves the CEA (French Atomic Energy Commission) the National Institute of Industrial Environment and Risks (INERIS) the French car manufacturer PSA PEUGEOT CITROËN and the Research Institute on Out of Equilibrium Phenomena (IRPHE). The CEA has developed an experimental setup named GARAGE in order to analyze the condition of formation of an explosive atmosphere in an enclosure. This is a full scale facility in which a real car can be parked. Hydrogen releases were simulated with helium which volume fraction was measured with mini-katharometers. These thermal conductivity probes allow spatial and time volume fraction variations measurements. We present experimental results on the dispersion of helium in the enclosure due to releases in a typical car. The tested parameters are the location of the source (engine bottom of the car storage) and the flow rate. Emphasis is put on the influence of these parameters on the time evolution of the volume fraction in the enclosure as well as on the vertical distribution of helium.
Modelling Of Hydrogen Explosion on a Pressure Swing Adsorption Facility
Sep 2011
Publication
Computational fluid dynamic simulations have been performed in order to study the consequences of a hydrogen release from a pressure swing adsorption installation operating at 30 barg. The simulations were performed using FLACS-Hydrogen software from GexCon. The impact of obstruction partial confinement leak orientation and wind on the explosive cloud formation (size and explosive mass) and on explosion consequences is investigated. Overpressures resulting from ignition are calculated as a function of the time to ignition.
Can the Addition of Hydrogen to Natural Gas Reduce the Explosion Risk?
Sep 2009
Publication
One of the main benefits sought by including hydrogen in the alternative fuels mix is emissions reduction – eventually by 100%. However in the near term there is a very significant cost differential between fossil fuels and hydrogen. Hythane (a blend of hydrogen and natural gas) can act as a viable next step on the path to an ultimate hydrogen economy as a fuel blend consisting of 8−30 % hydrogen in methane can reduce emissions while not requiring significant changes in existing infrastructure. This work seeks to evaluate whether hythane may be safer than both hydrogen and methane under certain conditions. This is due to the fact hythane combines the positive safety properties of hydrogen (strong buoyancy high diffusivity) and methane (much lower flame speeds and narrower flammability limits as compared to hydrogen). For this purpose several different mixture compositions (e.g. 8 % 20 % and 30 % hydrogen) are considered. The evaluation of (a) dispersion characteristics (which are more positive than for methane) (b) combustion characteristics (which are closer to methane than hydrogen) and (c) Combined dispersion + explosion risk is performed. This risk is expected to be comparable to that of pure methane possibly lower in some situations and definitely lower than for pure hydrogen. The work is performed using the CFD software FLACS that has been well-validated for safety studies of both natural gas/methane and hydrogen systems. The first part of the work will involve validating the flame speeds and flammability limits predicted by FLACS against values available in literature. The next part of the work involves validating the overpressures predicted by the CFD tool for combustion of premixed mixtures of methane and hydrogen with air against available experimental data. In the end practical systems such as vehicular tunnels garages etc. is used to demonstrate positive safety benefits of hythane with comparisons to similar simulations for both hydrogen and methane.
Blast Wave from Bursting Enclosure with Internal Hydrogen-air Deflagration
Oct 2015
Publication
Most studies on blast waves generated by gas explosions have focused on gas explosions occurring in open spaces. However accidental gas explosions often occur in confined spaces and the blast wave generates from a bursting vessel as a result of an increase in pressure caused by the gas explosion. In this study blast waves from bursting plastic vessels in which gas explosions occurred are investigated. The flammable mixtures used in the experiments were hydrogen-air mixtures at several equivalence ratios and a stoichiometric methane-air mixture. The overpressures of the blast waves were generated by venting high-pressure gas in the enclosure and volumetric expansion with a combustion reaction. The measured intensities of the blast waves were greater than the calculated values resulting from high-pressure bursting without a combustion reaction. The intensities of the blast waves resulting from the explosions of hydrogen-air mixtures were much greater than those of the methane-air mixture.
Self-ignition of Hydrogen-nitrogen Mixtures During High-pressure Release Into Air
Oct 2015
Publication
This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition respectively. Additionally simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release.
Vented Hydrogen-air Deflagration in a Small Enclosed Volume
Sep 2013
Publication
Since the rapid development of hydrogen stationary and vehicle fuel cells the last decade it is of importance to improve the prediction of overpressure generated during an accidental explosion which could occur in a confined part of the system. To this end small-scale vented hydrogen–air explosions were performed in a transparent cubic enclosure with a volume of 3375 cm3. The flame propagation was followed with a high speed camera and the overpressure inside the enclosure was recorded using high frequency piezoelectric transmitters. The effects of vent area and ignition location on the amplitude of pressure peaks in the enclosed volume were investigated. Indeed vented deflagration generates several pressures peaks according to the configuration and each peak can be the dominating pressure. The parametric study concerned three ignition locations and five square vent sizes.
Large-scale Hydrogen Release in an Isothermal Confined Area
Sep 2007
Publication
INERIS has set up large-scale fully instrumented experiments to study the formation of flammable clouds resulting from a finite duration spillage of hydrogen in a quiescent room (80 m3 chamber). Concentration temperature and mass flow measurements were monitored during the release period and several hours after. Experiments were carried out for mass flow rates ranging from 02 g/s to 1 g/s. The instrumentation allowed the observation and quantification of rich hydrogen layers stratification effects. This paper presents both the experimental facility and the test results. These experimental results can be used to assess and benchmark CFD tools capabilities.
Compatibility and Suitability of Existing Steel Pipelines for Transport of Hydrogen and Hydrogen-natural Gas Blends
Sep 2017
Publication
Hydrogen is being considered as a pathway to decarbonize large energy systems and for utility-scale energy storage. As these applications grow transportation infrastructure that can accommodate large quantities of hydrogen will be needed. Many millions of tons of hydrogen are already consumed annually some of which is transported in dedicated hydrogen pipelines. The materials and operation of these hydrogen pipeline systems however are managed with more constraints than a conventional natural gas pipeline. Transitional strategies for deep decarbonization of energy systems include blending hydrogen into existing natural gas systems where the materials and operations may not have the same controls. This study explores the hydrogen compatibility of existing pipeline steels and the suitability of these steels in hydrogen pipeline systems. Representative fracture and fatigue properties of pipeline grade steels in gaseous hydrogen are summarized from the literature. These properties are then considered in idealized design life calculations to inform materials performance for a typical gas pipeline.
Non-monotonic Overpressure vs. H2 Concentration Behaviour During Vented Deflagration. Experimental Results
Oct 2015
Publication
Explosion relief panels or doors are often used in industrial buildings to reduce damages caused by gas explosions. Decades of research have contributed to the understanding of the phenomena involved in gas explosions in order to establish an effective method to predict reliably the explosion overpressure. All the methods predict a monotonic increase of the overpressure with the concentration of the gas in the range from the lower explosion limit to the stoichiometric one. Nevertheless in few cases a non-monotonic behaviour of the maximum developed pressure as a function of hydrogen concentration was reported in the literature. The non-monotonic behaviour was also observed during experimental tests performed at the Scalbatraio laboratory at the University of Pisa in a 25 m3 vented combustion test facility with a vent area of 112 m2. This paper presents the results obtained during the tests and investigates the possible explanations of the phenomena.
Simulation of Small-Scale Releases from Liquid Hydrogen Storage Systems
Sep 2009
Publication
Knowledge of the concentration field and flammability envelope from small-scale leaks is important for the safe use of hydrogen. These small-scale leaks may occur from leaky fittings or o-ring seals on liquid hydrogen-based systems. The present study focuses on steady-state leaks with large amounts of pressure drop along the leak path such that hydrogen enters the atmosphere at near atmospheric pressure (i.e. Very low Mach number). A three-stage buoyant turbulent entrainment model is developed to predict the properties (trajectory hydrogen concentration and temperature) of a jet emanating from the leak. Atmospheric hydrogen properties (temperature and quality) at the leak plane depend on the storage pressure and whether the leak occurs from the saturated vapor space or saturated liquid space. In the first stage of the entrainment model ambient temperature air (295 K) mixes with the leaking hydrogen (20–30 K) over a short distance creating an ideal gas mixture at low temperature (∼65 K). During this process states of hydrogen and air are determined from equilibrium thermodynamics using models developed by NIST. In the second stage of the model (also relatively short in distance) the radial distribution of hydrogen concentration and velocity in the jet develops into a Gaussian profile characteristic of free jets. The third and by far the longest stage is the part of the jet trajectory where flow is fully developed. Results show that flammability envelopes for cold hydrogen jets are generally larger than those of ambient temperature jets. While trajectories for ambient temperature jets depend solely on the leak densimetric Froude number results from the present study show that cold jet trajectories depend on the Froude number and the initial jet density ratio. Furthermore the flammability envelope is influenced by the hydrogen concentration in the jet at the beginning of fully developed flow.
Safety Requirements for Liquefied Hydrogen Tankers
Oct 2015
Publication
R&D projects for establishing hydrogen supply chain have already been started in Japan in collaboration among the industry government and universities. One of the important subjects of the project is development of liquefied hydrogen tankers i.e. ships carrying liquefied hydrogen in bulk. In general basic safety requirements should be determined to design ships. However the existing regulations do not specify the requirements for hydrogen tankers while requirements for ships carrying many kinds of liquefied gases are specified in “International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk” (IGC Code) issued by the International Maritime Organization i.e. a special organization under the United Nations. Therefore the basic safety requirements for hydrogen tankers should be developed. We conducted bibliographic survey on the IGC Code ISO/TR 15916:2004 “Basic considerations for the safety of hydrogen systems” and so on; in order to provide safety requirements taking into account the properties of liquid and gaseous hydrogen. In this paper we provide safety requirements for liquefied hydrogen tankers as the basis for further consideration by relevant governments.
Numerical Simulation on Low-speed Hydrogen Jet Diffusion
Oct 2015
Publication
The numerical simulation for the hydrogen jet experiments performed by Schefer et al. is conducted using the compressible multicomponent Navier-Stokes equations with the preconditioning method. The simulated results for the hydrogen jet agree with the theoretical results of Tollmien. As far as comparing with the experiments by Schefer et al. the concentration profiles along the radial direction agree with the present numerical results and that along the centerline also agree well with the experimental results after the data are normalized by the equivalent nozzle diameter. It is confirmed that the spread of the jet width from the jet exit to downstream is affected by the Kelvin-Helmholtz instability. It is also confirmed that the jet flow field is formed alternately by the high pressure region and the low pressure one to cause the jet flow fluctuation.
Unsteady Lumped-Parameter Modelling Of Hydrogen Combustion in The Presence of a Water Spray
Sep 2009
Publication
In case of severe accidents in Pressurized Water Reactors a great amount of hydrogen can be released the resulting heterogeneous gaseous mixture (hydrogen-air-steam) can be flammable or inert and the pressure effects could alter the confinement of the reactor. Water spray systems have been designed in order to reduce overpressures in the containment but the presence of water droplets could enhance flame propagation through turbulence or generate flammable mixtures since the steam present in the vessel could condense on the droplets and could not inert the mixture anymore. However beneficial effects would be heat sinks and homogenization of mixtures. On-going work is devoted to the modelling of the interaction between fine water droplets and a hydrogen-air flame. We present in this paper an unsteady Lumped Parameter model in detail with a special focus on hydrogen-air flame propagation in the presence of water droplets. The effects of the initial concentration of droplets steam and hydrogen concentrations on flame propagation are discussed in the paper and a comparison between this model and our previous steady Lumped-Parameter model highlights the features of the unsteady approach. This physical model can serve as a validation tool for a CFD modelling. The results will be further validated against experimental data.
Safe Processing Route for the Synthesis of MG Based Metallic Hydrides
Sep 2009
Publication
Metallic hydrides represent a safe way of storing hydrogen minimising explosion and flammability risks. Nowadays there are several methods for the storage of hydrogen and the more conventional techniques are high-pressure tanks for gaseous hydrogen and cryogenic vessels for liquid hydrogen. However there are two main drawbacks in the storage of gaseous and liquid hydrogen. First as a fuel hydrogen in the gaseous and liquid states is very combustible and the related law imposes strict regulations on its utilization storage and transportation. Secondly even under a high pressure hydrogen gas is not dense enough for compact storage. Moreover the gas storage at high pressure involves significant safety risks. Hydrogen storage in the metal hydrides does not have such deficiencies. Metal hydrides are safe and can be easily store and transported. For that reason it should be stressed that metallic hydrides represent a safe way of storing hydrogen minimising explosion and flammability risks. Among metallic hydrides one of the most promising hydrides in terms of absorbed hydrogen content is Mg2NiH4. However it is difficult to obtain Mg2Ni by the conventional melting method because of the large difference in vapour pressure and melting point between magnesium and nickel. This paper presents an alternative and safe method for obtaining such hydride: HCS (Hydriding Combustion Synthesis). This method presents some interesting advantages over its conventional counterpart: the process is carried out at lower reaction process which means safer process and the alloy stoichiometry is closer to the nominal (Mg2Ni) which allow better hydrogen absorption behaviour. The aim of this work is to investigate the formation mechanism of this compound and to study some parameters of the process.
Safe Operation of Combined Cycle Gas Turbine and Gas Engine Systems Using Hydrogen Rich Fuels
Oct 2015
Publication
This paper describes work performed by a consortium led by the UK Health and Safety Laboratory(HSL)to identify the safe operating conditions for combined cycle power generating systems running on high hydrogen fuels. The work focuses on hydrogen and high hydrogen syngas and biogas waste-stream fuel mixtures which may prove hazardous in the event of a turbine or engine flame out resulting in a flammable fuel mixture entering the hot exhaust system and igniting. The paper describes the project presenting some initial results from this work including the development of large scale experimental facilities on the550 acre HSL site near Buxton Derbyshire UK. It describes the large scale experimental facility which utilises the exhaust gas from a Rolls-Royce Viper jet-engine (converted to run on butane) feeding into a 12 m long 0.60 m diameter instrumented tube at a pre-combustion velocity of 22 m/s. A variable geometry simulated heat exchanger with a 40 %2blockage ratio is present in the tube. Flammable mixtures injected into the tube close to the Viper outlet together with make-up oxygen are then ignited. Extensive optical ionisation temperature and pressure sensors are employed along the length of the tube to measure the pressures and flame speeds resulting from the combustion event. Some preliminary results from the test programme are discussed including deflagration to detonation transitions at high equivalence ratios.
Mixed E-learning and Virtual Reality Pedagogical Approach for Innovative Hydrogen Safety Training for First Responders
Oct 2015
Publication
Within the scope of the HyResponse project the development of a specialised training programme is currently underway. Utilizing an andragogy approach to teaching distance learning is mixed with classroom instructors-led activities while hands-on training on a full-scale simulator is coupled with an innovative virtual reality based experience. Although the course is dedicated mainly to first responders provision has been made to incorporate not only simple table-top and drill exercises but also full-scale training involving all functional emergency response organisations at multi-agency cooperation level. The developed curriculum includes basics of hydrogen safety first responders' procedures and incident management expectations
Characteristic of Cryogenic Hydrogen Flames from High-aspect Ratio Nozzles
Sep 2019
Publication
Unintentional leaks at hydrogen fuelling stations have the potential to form hydrogen jet flames which pose a risk to people and infrastructure. The heat flux from these jet flames are often used to develop separation distances between hydrogen components and buildings lot-lines etc. The heat flux and visible flame length is well understood for releases from round nozzles but real unintended releases would be expected to be be higher aspect-ratio cracks. In this work we measured the visible flame length and heat-flux characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. We compare this data to flames of both cryogenic and compressed hydrogen from round nozzles. The aspect ratio of the release does not affect the flame length or heat flux significantly for a given mass flow under the range of conditions studied. The engineering correlations presented in this work that enable the prediction of flame length and heat flux can be used to assess risk at hydrogen fuelling stations with liquid hydrogen and develop science-based separation distances for these stations.
Gas Detection of Hydrogen/Natural Gas Blends in the Gas Industry
Sep 2019
Publication
A key element in the safe operation of a modern gas distribution system is gas detection. The addition of hydrogen to natural gas will alter the characteristics of the fuel and therefore its impact on gas detection must be considered. It is important that gas detectors remain sufficiently sensitive to the presence of hydrogen and natural gas mixtures and that they do not lead to false readings. This paper presents analyses of work performed as part of the Office for Gas and Energy Markets (OFGEM) funded HyDeploy project on the response of various natural gas industry detectors to blended mixtures up to 20 volume percent (vol%) of hydrogen in natural gas. The scope of the detectors under test included survey instruments and personal monitors that are used in the gas industry. Four blend ratios were analysed (0 10 15 and 20 vol% hydrogen in natural gas). The laboratory testing undertaken investigated the following:
- Flammable response to blends in the ppm range (0-0.2 vol%);
- Flammable response to blends in the lower explosion limit range (0.2-5 vol%);
- Flammable response to blends in the volume percent range (5-100 vol%);
- Oxygen response to blends in the volume percent range (0-25 vol%); and
- Carbon monoxide response to blends in the ppm range (0-1000 ppm).
Hydrogen Ventilation Test Facility or Underground Mining and Tunneling
Sep 2019
Publication
One of the focus areas in the heavy-duty transport industry globally is de-carbonization of trucks dozers shovels semi-trucks buses etc. Hydrogen fuel cells (FCs) technology is one considered solution for the industry due to its zero-emissions its MW scalability and capacity to store large amounts of energy for long duration continuous power operation. Underground deep mines is another option for deployment and operation of hydrogen FCs. Benefits include lower emissions improved health comfort and safety as well as reduced operating costs. Underground mining trucks loaders and other machines have power ratings up to 750 kW which proves difficult for battery and tethered electric energy. Hydrogen FCs have the ability to overcome these power and energy storage limitations. The risks and technologies associated with delivering storing and using hydrogen underground first need to be investigated and proven safe. This work presents the design construction and operation of a mining ventilation test facility (VTF) at the North-West University in South Africa that aims to quantify the risk of hydrogen in confined ventilated environments. Initial work has been conducted on measuring concentrations of hydrogen released in the temporary ventilation site and is discussed.
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape e.g. in case of tank rupture under a vehicle the non-instantaneous opening of tank walls etc. Two conservative correlations are built using theoretical analysis numerical simulations and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere
Communicating Leakage Risk in the Hydrogen Economy: Lessons Already Learned from Geoenergy Industries
Sep 2019
Publication
Hydrogen may play a crucial part in delivering a net zero emissions future. Currently hydrogen production storage transport and utilisation are being explored to scope opportunities and to reduce barriers to market activation. One such barrier could be negative public response to hydrogen technologies. Previous research around socio-technical risks finds that public acceptance issues are particularly challenging for emerging remote technical sensitive uncertain or unfamiliar technologies - such as hydrogen. Thus while the hydrogen value chain could offer a range of potential environmental economic and social benefits each will have perceived risks that could challenge the introduction and subsequent roll-out of hydrogen. These potential issues must be identified and managed so that the hydrogen sector can develop adapt or respond appropriately. Geological storage of hydrogen could present challenges in terms of perceived safety. Valuable lessons can be learned from international research and practice of CO2 and natural gas storage in geological formations (for carbon capture and storage CCS and for power respectively). Here we explore these learnings. We consider the similarities and differences between these technologies and how these may affect perceived risks. We also reflect on lessons for effective communication and community engagement. We draw on this to present potential risks to the perceived safety of - and public acceptability of – the geological storage of hydrogen. One of the key lessons learned from CCS and natural gas storage is that progress is most effective when risk communication and public acceptability is considered from the early stages of technology development.
Materials Aspects Associated with the Addition of up to 20 mol% Hydrogen into an Existing Natural Gas Distribution Network
Sep 2019
Publication
The introduction of hydrogen into the UK natural gas main has been reviewed in terms of how materials within the gas distribution network may be affected by contact with up to 80% Natural Gas : 20 mol% hydrogen blend at up to 2 barg. A range of metallic polymeric and elastomeric materials in the gas distribution network (GDN) were assessed via a combination of literature review and targeted practical test programmes.
The work considered:
The work considered:
- The effect of hydrogen on metallic materials identified in the network
- The effect of hydrogen on polymeric materials identified in the network
- The effect of hydrogen exposure on polyethylene pipeline techniques (squeeze off and collar electrofusion)
Testing, Evaluation and Development of Hydrogen Sensors for an Underground Mining Ventilation Test Facility
Sep 2019
Publication
An underground mining ventilation testing facility (VTF) was designed and constructed at the HySA facility at the North-West University South Africa. The purpose was to evaluate risks associated with different hydrogen storage technologies in a confined environment. The work included initial calculations of hydrogen movement in specific spaces and the development of simulation tools to compare these modelled results with experimental work. For this purpose hydrogen sensors that could accurately measure hydrogen concentrations during a controlled hydrogen leak at the VTF were required. Hazardous hydrogen sensors capable of measuring >4% hydrogen are not readily available commercially. Typically hydrogen sensors rated for hazardous environments are designed for safety actions (e.g. activating emergency measures when hydrogen is detected) at concentrations of 8%. (Measuring concentrations higher than this is not required for commercial use hence there is no market for such sensors.) At the VTF it is necessary to be able to measure hydrogen concentrations >4% in order to obtain information on the flammable hydrogen concentrations at specified distances and orientations around a controlled hydrogen leak. Initial experimental work was conducted at low pressures resulting in very low hydrogen concentrations. Commercial available original equipment manufacturer (OEM) hydrogen sensors were capable of measuring 0.2% hydrogen which for the low pressures and gas flows here proved sufficient to enable us to make sensible conclusions. However higher pressures and gas flows are essential in practical use hence higher concentrations of hydrogen need to be measured. A custom sensor was developed by HySA while commercial sensors (OEM) were investigated. This work reports on the testing and evaluation of several hydrogen sensors. Results of initial ventilation tests are presented.
Development of a Hydrogen and Fuel Cell Vehicle Emergency Response National Template
Sep 2013
Publication
The California Fuel Cell Partnership (CaFCP) is currently working with key stakeholders like the US Department of Energy (DOE) and National Fire Protection Association (NFPA) to develop a national template for educating and training first responders about hydrogen fuel cell-powered vehicles (FCV) and hydrogen fuelling infrastructure. Currently there are several existing programs that either have some related FCV/hydrogen material or have plans to incorporate this in the future. To create a robust national emergency responder (ER) program the strongest elements from these existing programs are considered for incorporation into the template. Working with the key stakeholders the national template will be evaluated on a regular basis to ensure accurate and up to date information and resources and effective teaching techniques for the emergency response community. This paper describes the evaluation process discusses elements of the template and reports on the steps and progress to implementation; all in the effort to effectively support the emergency response community as hydrogen infrastructure develops and FCVs are leased or sold.
Observation of the Hydrogen Dispersion by Using Raman Scattering Measurement and Increase of Measurable Distance
Sep 2017
Publication
Preparing for the arrival of the hydrogen society it is necessary to develop suitable sensors to use hydrogen safely. There are many methods to know the hydrogen concentration by using conventional sensors but it is difficult to know the behavior of hydrogen gas from long distance. This study measured hydrogen dispersion by using Raman scattering light. Generally some delays occur when using conventional sensors but there are almost no delays by using the new Raman sensor. In the experiments 6mm & 1mm diameter holes are used as a spout nozzle to change initial velocities. To ensure the result a special sheets are used which turns transparent when it detected hydrogen and visualized the hydrogen behaviour. As a result the behaviour of the hydrogen gas in the small container was observed. In addition measurable distance is increased by the improvement of the device.
Consequence Models for Vented Hydrogen Deflagrations: CFD vs. Engineering Models
Sep 2017
Publication
This paper compares two approaches for predicting the consequences of vented hydrogen deflagrations: empirical engineering models (EMs) and computational fluid dynamics (CFD) simulations. The study is part of the project ‘Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations’ (HySEA) funded by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH JU) under grant agreement No 671461. The HySEA project focuses on vented hydrogen deflagrations in containers and smaller enclosures with internal congestion representative of industrial applications. Data from experiments conducted as part of the HySEA project are used to evaluate predictions from a selection of EMs and the CFD tool FLACS. The experiments involve various obstacle and venting configurations and initially quiescent homogeneous hydrogen-air mixtures with hydrogen concentrations in the range 15–24 vol%. There is a significant scatter in the maximum reduced overpressures predicted by the different EMs in the present study. For certain configurations there is an order of magnitude difference between the different EM predictions. Two versions of the CFD tool FLACS are used in the present study: i) the standard commercial release FLACS v10.7r2 and ii) an in-house development version termed FLACS-beta. The commercial release generally over-predicts the maximum overpressures measured in the experiments while the development version of FLACS gives improved results for several configurations.
Interaction of Hydrogen Jets with Hot Surfaces of Various Sizes and Temperatures
Sep 2019
Publication
The formation of hydrogen jets from pressurized sources and ignition has been studied by many projects also when hitting hot devices. In the paper presented at the conference 2 years ago the ignition was caused by glow plug a “point like source” at various temperatures distances of igniter and source and source pressures. In continuation of that work ignition now occurred by 1 or 3 platelets of size 45 x 18 mm at a temperatures of 1223 K. When hitting these hot platelets the resulting flame explosions and flame jets show interesting characteristics in contrast to the point like ignition where the explosions drifts downstream with the jet. Parameters of the experiments vary in initial pressure of the tubular source (10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (1223 K). The initial explosions stabilize already at the stagnation point or the wake of the hot platelets. Furthermore flames propagate upstream and downstream depending on the pressure of the hydrogen reservoir and the distance. The achieved flame velocities vary strongly from 30 to 240 m/s. With all investigated hydrogen pressures strong reactions v > 40 m/s occur at platelet distances of 3 and 5 m. The higher values are mainly achieved with jets with 40 MPa pressure at 3 m distance. In these cases the initial explosion contours show irregular shapes. Various effects are found like explosion separation further independently initiated explosions and two parallel flame jets upstream as well as downstream.
Validation of a 3d Multiphase-multicomponent CFD Model for Accidental Liquid and Gaseous Hydrogen Releases
Sep 2017
Publication
As hydrogen-air mixtures are flammable in a wide range of concentrations and the minimum ignition energy is low compared to hydrocarbon fuels the safe handling of hydrogen is of utmost importance. Additional hazards may arise with the accidental spill of liquid hydrogen. Such a release of LH2 leads to a formation of a cryogenic pool a dynamic vaporization process and consequently a dispersion of gaseous hydrogen into the environment. Several LH2 release experiments as well as modelling approaches address this phenomenology. In contrast to existing approaches a new CFD model capable of simulating liquid and gaseous distribution was developed at Forschungszentrum Jülich. It is validated against existing experiments and yields no substantial lacks in the physical model and reveals a qualitatively consistent prediction. Nevertheless the deviation between experiment and simulation raises questions on the completeness of the database in particular with regard to the boundary conditions and available measurements.
Predicting the Probability of Failure of Gas Pipelines Including Inspection and Repair Procedures
Sep 2007
Publication
This paper is concerned with predicting the impact on the probability of failure of adding hydrogen to the natural gas distribution network. Hydrogen has been demonstrated to change the behaviour of crack like defects which may affect the safety of pipeline or make it more expensive to operate. A tool has been developed based on a stochastic approach to assess the failure probability of the gas pipeline due to the existence of crack-lie defects including the operational aspects of the pipeline such as inspection and repair procedures. With various parameters such as crack sizes material properties internal pressure modelled as uncertainties a reliability analysis based on failure assessment diagram is performed through direct Monte Carlo simulation. Inspection and repair procedures are included in the simulation to enable realistic pipeline maintenance scenarios to be simulated. In the data preparation process the accuracy of the probabilistic definition of the uncertainties is crucial as the results are very sensitive to certain variables such as the crack depth length and crack growth rate. The failure probabilities of each defect and the whole pipeline system can be obtained during simulation. Different inspection and repair criteria are available in the Monte Carlo simulation whereby an optimal maintenance strategy can be obtained by comparing different combinations of inspection and repair procedures. The simulation provides not only data on the probability of failure but also the predicted number of repairs required over the pipeline life thus providing data suitable for economic models of the pipeline management. This tool can be also used to satisfy certain target reliability requirement. An example is presented comparing a natural gas pipeline with a pipeline containing hydrogen.
Hydrogen–methane Mixtures: Dispersion and Stratification Studies
Sep 2011
Publication
The study of hydrogen as an alternative fuel clean and “environment friendly” has been in the last years and continues to be object of many studies international projects and standard development. Hydrogen is a fundamental energy carrier to be developed together with other renewable resources for the transition to a sustainable energy system.<br/>But experience has shown how often the introduction and establishment of a new technology does not necessarily pass through radical changes but can be stimulated by slight modifications to the “present situation”.<br/>So the worldwide experience with natural gas as industrial automotive and domestic fuel has been the incentive to the present interest towards hydrogen–methane mixtures. The possible use of existing pipeline networks for mixtures of natural gas and hydrogen offers a unique and cost-effective opportunity to initiate the progressive introduction of hydrogen as part of the development of a full hydrogen system.<br/>The aim of the work presented in this paper is the investigation of the dispersion and stratification properties of hydrogen and methane mixtures. Experimental activities have been carried out in a large scale closed apparatus characterized by a volume of about 25 m3 both with and without natural ventilation. Mixtures of 10%vol. hydrogen – 90%vol. methane and 30%vol. hydrogen – 70%vol. methane have been studied with the help of oxygen sensors and gas chromatography.
On the Use of Spray Systems- An Example of R&D Work in Hydrogen Safety for Nuclear Applications
Sep 2007
Publication
The aim of the present work is to investigate the interaction between a water spray and a laminar hydrogen-air flame in the case of steam inerted mixture. A first work is devoted to study the thermodynamics involved in the phenomena via a lumped parameter code. The flow is two- phase and reactive the gas is multi-component the water spray is polydisperse and the droplet size has certainly an influence on the flame propagation. The energy released by the reaction between hydrogen and oxygen vaporizes suspended droplets. The next step of this study will be to consider a drift-flux model for the droplets and air under hypotheses that the velocity and thermal disequilibria are weak. The multi-component feature of the gas will be further taken into account by studying a gas mixture containing hydrogen air and water vapor. A second study concerns an experimental investigation of the effect of droplets on the flame propagation using a spherical vessel. A Schlieren system is coupled to the spherical vessel in order to record the flame propagation on a digital high speed camera. Both studies will help improve our knowledge of safety relevant phenomena.
A Reappraisal of Containment Safety Under Hydrogen Detonation
Sep 2005
Publication
The response of a typical steel-lined reinforced concrete nuclear reactor containment to postulated internal hydrogen detonations is investigated by detailed axisymetric non-linear dynamic finite element analysis. The wall pressure histories are calculated for hydrogen detonations using a technique that reproduces the sharp discontinuity at the shock front. The pressure results can be applied to geometrically similar vessels. The analysis indicates that the response is more sensitive to the point of initiation than to the strength of the detonation. Approximate solutions based on a pure impulse assumption where the containment is modelled as a single-degree-of freedom (SDOF) system may be seriously unconservative. This work becomes relevant because new nuclear reactors are foreseen as a primary of source of hydrogen supply.<br/><br/>
A Numerical Simulation on the Leakage Event of a High-Pressure Hydrogen Dispenser
Dec 2021
Publication
For the sake of the increasing demand of hydrogen fuel cell vehicles there are more concerns on the safety of hydrogen refueling stations. As one of the key pieces of equipment the hydrogen dispenser has drawn attention on this aspect since it involves massive manual operations and may be bothered by a high probability of failure. In this paper a numerical study is conducted to simulate the possible leakage events of the hydrogen dispenser based on a prototype in China whose working pressure is 70 MPa. The leakage accident is analyzed with respect to leakage sizes leak directions and the time to stop the leakage. It is found that due to the large mass flow rate under such high pressure the leak direction and the layout of the components inside the dispenser become insignificant and the ignitable clouds will form inside the dispenser in less than 1 s if there is a leakage of 1% size of the main tube. The ignitable clouds will form near the vent holes outside the dispenser which may dissipate quickly if the leakage is stopped. On the other hand the gas inside the dispenser will remain ignitable for a long time which asks for a design with no possible ignition source inside. The results can be useful in optimizing the design of the dispenser regarding the reaction time and sensitivity requirements of the leakage detector the size and amount of vent holes etc.
A Study of Barrier Walls for Mitigation of Unintended Releases of Hydrogen
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure wall deflection radiative heat flux and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers computations of the thermal radiation field around barriers predicted overpressure from ignition and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.
Hydrogen Subsonic Upward Release and Dispersion Experiments in Closed Cylindrical Vessel
Sep 2007
Publication
Report presents the preliminary experimental results on hydrogen subsonic leakage in a closed vessel under the well-controlled boundary/initial conditions. Formation of hydrogen-air gas mixture cloud was studied for a transient (10 min) upward hydrogen leakage which was followed by subsequent evolution (15 min) of explosive cloud. Low-intensity ( 0.46⋅10−3 m3/sec) hydrogen release was performed via circular (diameter 0.014 m) orifice located in the bottom part of a horizontal cylindrical vessel ( ≈4 m3). A spatially distributed net of the 24 hydrogen sensors and 24 temperature sensors was used to permanently track the time dependence of the hydrogen concentration and temperature fields in vessel. Analysis of the simultaneous experimental records for the different spatial points permits to delineate the basic flow patterns and stages of hydrogen subsonic release in closed vessel in contrast to hydrogen jet release in open environment. The quantitative data were obtained for the averaged speeds of explosive cloud envelop (50% fraction of the Lower Flammability Limit (LFL)) propagation in the vertical and horizontal directions. The obtained data will be used as an experimental basis for development of the guidelines for an indoors allocation of the hydrogen sensors. Data can be also used as a new benchmark case for the reactive Computational Fluid Dynamics codes validation.
An Overview of Hydrogen Safety Sensors and Requirements
Sep 2009
Publication
There exists an international commitment to increase the utilization of hydrogen as a clean and renewable alternative to carbon-based fuels. The availability of hydrogen safety sensors is critical to assure the safe deployment of hydrogen systems. Already the use of hydrogen safety sensors is required for the indoor fueling of fuel cell powered forklifts (e.g. NFPA 52 Vehicular Fuel Systems Code [1]). Additional Codes and Standards specific to hydrogen detectors are being developed [2 3] which when adopted will impose mandatory analytical performance metrics. There are a large number of commercially available hydrogen safety sensors. Because end-users have a broad range of sensor options for their specific applications the final selection of an appropriate sensor technology can be complicated. Facility engineers and other end-users are expected to select the optimal sensor technology choice. However some sensor technologies may not be a good fit for a given application. Informed decisions require an understanding of the general analytical performance specifications that can be expected by a given sensor technology. Although there are a large number of commercial sensors most can be classified into relatively few specific sensor types (e.g. electrochemical metal oxide catalytic bead and others). Performance metrics of commercial sensors produced on a specific platform may vary between manufacturers but to a significant degree a specific platform has characteristic analytical trends advantages and limitations. Knowledge of these trends facilitates the selection of the optimal technology for a specific application (i.e. indoor vs. outdoor environments). An understanding of the various sensor options and their general analytical performance specifications would be invaluable in guiding the selection of the most appropriate technology for the designated application.
Fast Turbulent Deflagration and DDT of Hydrogen-Air Mixtures in Small Obstructed Channel
Sep 2007
Publication
An experimental study of flame propagation acceleration and transition to detonation in hydrogen-air mixture in 2 m long rectangular cross section channel filled with obstacles located at the bottom wall was performed. The initial conditions of the hydrogen-air mixture were 0.1 MPa and 293 K. Three different cases of obstacle height (blockage ratio 0.25 0.5 and 0.75) and four cases of obstacle density were studied with the channel height equal to 0.08 m. The channel width was 0.11 m in all experiments. The propagation of flame and pressure waves was monitored by four pressure transducers and four in house ion probes. The pairs of transducers and probes were placed at various locations along the channel in order to get information about the progress of the phenomena along the channel. To examine the influence of mixture composition on flame propagation and DDT the experiments were performed for the compositions of 20% 25% and 29.6% of H2 in air by volume. As a result of the experiments the deflagration and detonation regimes and velocities of flame propagation in the obstructed channel were determined.
Novel Wide-area Hydrogen Sensing Technology
Sep 2007
Publication
Element One Inc. is developing novel indicators for hydrogen gas for applications as a complement to conventional electronic hydrogen sensors or as a low-cost alternative in situations where an electronic signal is not needed. The indicator consists of a thin film coating or a pigment of a transition metal oxide such as tungsten oxide or molybdenum oxide with a catalyst such as platinum or palladium. The oxide is partially reduced in the presence of hydrogen in concentrations as low as 300 parts per million and changes from transparent to a dark colour. The colour change is fast and easily seen from a distance. In air the colour change reverses quickly when the source of hydrogen gas is removed in the case of tungsten oxide or is nearly irreversible in the case of molybdenum oxide. A number of possible implementations have been successfully demonstrated in the laboratory including hydrogen indicating paints tape cautionary decals and coatings for hydrogen storage tanks. These and other implementations may find use in vehicles stationary appliances piping refuelling stations and in closed spaces such as maintenance and residential garages for hydrogen-fuelled vehicles. The partially reduced transition metal oxide becomes semi conductive and increases its electrical conductivity by several orders of magnitude when exposed to hydrogen. The integration of this electrical resistance sensor with an RFID tag may extend the ability of these sensors to record and transmit a history of the presence or absence of leaked hydrogen over long distances. Over long periods of exposure to the atmosphere the indicator’s response may slow due to catalyst degradation. Our current emphasis is on controlling this degradation. The kinetics of the visual indicators is being investigated along with their durability in collaboration with the NASA Kennedy Space Center.
Risk-Informed Separation Distances For Hydrogen Refuelling Stations
Sep 2007
Publication
The development of an infrastructure for the future hydrogen economy will require the simultaneous development of a set of codes and standards. As part of the U.S. Department of Energy Hydrogen Fuel Cells & Infrastructure Technologies Program Sandia National Laboratories is developing the technical basis for assessing the safety of hydrogen-based systems for use in the development/modification of relevant codes and standards. This work includes experimentation and modelling to understand the fluid mechanics and dispersion of hydrogen for different release scenarios including investigations of hydrogen combustion and subsequent heat transfer from hydrogen flames. The resulting technical information is incorporated into engineering models that are used for assessment of different hydrogen release scenarios and for input into quantitative risk assessments (QRA) of hydrogen facilities. The QRAs are used to identify and quantify scenarios for the unintended release of hydrogen and to identify the significant risk contributors at different types of hydrogen facilities. The results of the QRAs are one input into a risk-informed codes and standards development process that can also include other considerations by the code and standard developers. This paper describes an application of QRA methods to help establish one key code requirement: the minimum separation distances between a hydrogen refuelling station and other facilities and the public at large. An example application of the risk-informed approach has been performed to illustrate its utility and to identify key parameters that can influence the resulting selection of separation distances. Important parameters that were identified include the selected consequence measures and risk criteria facility operating parameters (e.g. pressure and volume) and the availability of mitigation features (e.g. automatic leak detection and isolation). The results also indicate the sensitivity of the results to key modelling assumptions and the component leakage rates used in the QRA models.
Simulation of the Fast Filling of Hydrogen Tanks
Sep 2009
Publication
High pressure storage of hydrogen in tanks is a promising option to provide the necessary fuel for transportation purposes. The fill process of a high-pressure tank should be reasonably short but must be designed to avoid too high temperatures in the tank. The shorter the fill should be the higher the maximum temperature in the tank climbs. For safety reasons an upper temperature limit is included in the requirements for refillable hydrogen tanks (ISO 15869) which sets the limit for any fill optimization. It is crucial to understand the phenomena during a tank fill to stay within the safety margins.<br/>The paper describes the fast filling process of hydrogen tanks by simulations based on the Computational Fluid Dynamics (CFD) code CFX. The major result of the simulations is the local temperature distribution in the tank depending on the materials of liner and outer thermal insulation. Different material combinations (type III and IV) are investigated.<br/>Some measurements from literature are available and are used to validate the approach followed in CFX to simulate the fast filling of tanks. Validation has to be continued in future to further improve the predictability of the calculations for arbitrary geometries and material combinations.
Potential for Hydrogen Production from Biomass Residues in the Valencian Community
Sep 2007
Publication
The production of hydrogen from renewable sources is essential to develop the future hydrogen economy. Biomass is an abundant clean and renewable energy source and it can be important in the production of hydrogen. The Valencian Community due to its great agricultural and forestry activities generates an important quantity of biomass residues that can be used for energy generation approximately 778 kt of wet biomass residues per year. This great quantity of biomass can be transformed into a hydrogen-rich gas by different thermochemical conversion processes. In this article the potential of production of hydrogen-rich gas is analyzed considering several factors affecting the conversion yield of these processes. As a result of this analysis it could be possible to produce 1271 MNm3 of H2 per year considering the total biomass residues of the community and selecting the gasification processes.
Materials Considerations in Hydrogen Production
Sep 2007
Publication
Correct selection and application of materials is essential to ensure safety and economy in production transportation and storage of hydrogen. There are several sources of materials challenges related to hydrogen. Established component producers may have limited experience in this specific field. Process developments may involve new process conditions with new demands on the materials. Further new materials will be added to the engineering toolbox to be used. The behaviour of these materials for hydrogen service may need additional documentation. Finally focus on hydrogen susceptibility and hydrogen damages alone may take away awareness of other subjects as trace elements by-products and change in raw materials which may be of as high importance for safety and quality. This overview of challenges and recommendations is made with emphasis on water electrolysis.
Modeling of Sudden Hydrogen Expansion from Cryogenic Pressure Vessel Failure
Sep 2011
Publication
We have modelled sudden hydrogen expansion from a cryogenic pressure vessel. This model considers real gas equations of state single and two-phase flow and the specific “vessel within vessel” geometry of cryogenic vessels. The model can solve sudden hydrogen expansion for initial pressures up to 1210 bar and for initial temperatures ranging from 27 to 400 K. For practical reasons our study focuses on hydrogen release from 345 bar with temperatures between 62 K and 300 K. The pressure vessel internal volume is 151 L. The results indicate that cryogenic pressure vessels may offer a safety advantage with respect to compressed hydrogen vessels because i) the vacuum jacket protects the pressure vessel from environmental damage ii) hydrogen when released discharges first into an intermediate chamber before reaching the outside environment and iii) working temperature is typically much lower and thus the hydrogen has less energy. Results indicate that key expansion parameters such as pressure rate of energy release and thrust are all considerably lower for a cryogenic vessel within vessel geometry as compared to ambient temperature compressed gas vessels. Future work will focus on taking advantage of these favourable conditions to attempt fail-safe cryogenic vessel designs that do not harm people or property even after catastrophic failure of the inner pressure vessel.
Initial Assessment of the Impact of Jet Flame Hazard from Hydrogen Cars in Road Tunnels and the Implication on Hydrogen Car Design
Sep 2007
Publication
Underground or partial underground tunnels form a very important part of modern road transportation systems. As the development of hydrogen cars advancing into the markets it is unavoidable in the near future that hydrogen cars would become the users of ordinary road tunnels. This paper discusses potential fire scenarios and fire hazards of hydrogen cars in road tunnels and implications on the fire safety measures and ventilation systems in existing tunnels. The information needed for carry out risk assessment of hydrogen cars in road tunnels are discussed. hydrogen has a low ignition energy and wide flammable range suggesting that leaks have a high probability of ignition and result hydrogen flame. CFD simulations of hydrogen fires in a full scale 5m by 5m square cross-section tunnel were carried out. The effect of the ventilation on controlling the back-layering and the downstream flame are discussed.
Hydrogen Release from a High-Pressure Gh2 Reservoir in Case of a Small Leak
Sep 2009
Publication
High-pressure GH2 systems are of interest for storage and distribution of hydrogen. The dynamic blow-down process of a high-pressure GH2 reservoir in case of a small leak is a complex process involving a chain of distinct flow regimes and gas states which needs to be understood for safety investigations.<br/>This paper presents models to predict the hydrogen concentration and velocity field in the vicinity of a postulated small leak. An isentropic expansion model with a real gas equation of state for normal hydrogen is used to calculate the time dependent gas state in the reservoir and at the leak position. The subsequent gas expansion to 0.1 MPa is predicted with a zero-dimensional model. The gas conditions after expansion serve as input to a newly developed integral model for a round free turbulent H2-jet into ambient air. The model chain was evaluated by jet experiments with sonic hydrogen releases from different reservoir pressures and temperatures.<br/>Predictions are made for the blow-down of hydrogen reservoirs with 10 30 and 100 MPa initial pressure. The evolution of the pressure in the reservoir and of the H2 mass flux at the orifice are presented in dimensionless form which allows scaling to other system dimensions and initial gas conditions. Computed hydrogen concentrations and masses in the jet are given for the 100 MPa case. A normalized hydrogen concentration field in the free jet is presented which allows for a given leak scenario the prediction of the axial and radial range of burnable H2-air mixtures.
Molecular Transport Effects of Hydrocarbon Addition on Turbulent Hydrogen Flame Propagation
Sep 2007
Publication
We analytically investigated the influence of light hydrocarbons on turbulent premixed H2/air atmospheric flames under lean conditions in view of safe handling of H2 systems applications in H2 powered IC engines and gas turbines and also with an orientation towards modelling of H2 combustion. For this purpose an algebraic flame surface wrinkling model included with pressure and fuel type effects is used. The model predictions of turbulent premixed flames are compared with the set of corresponding experimental data of Kido et al. (Kido Nakahara et al. 2002). These expanding spherical flame data include H2–air mixtures doped with CH4 and C3H8 while the overall equivalence ratio of all the fuel/air mixtures is fixed at 0.8 for constant unstretched laminar flame speed of 25 cm/s by varying N2 composition. The model predictions show that there is little variation in turbulent flame speed ST for C3H8 additions up to 20-vol%. However for 50 vol% doping flame speed decreases by as much as 30 % from 250 cm/s that of pure H2–air mixtures for turbulence intensity of 200 cm/s. With respect to CH4 for 50 vol% doping ST reduces by only 6 % cf. pure H2/air mixture. In the first instance the substantial decrease of ST with C3H8 addition may be attributed to the increase in the Lewis number of the dual-fuel mixture and proportional restriction of molecular mobility of H2. That is this decrease in flame speed can be explained using the concept of leading edges of the turbulent flame brush (Lipatnikov and Chomiak 2005). As these leading edges have mostly positive curvature (convex to the unburned side) preferential-diffusive-thermal instabilities cause recognizable impact on flame speed at higher levels of turbulence with the effect being very strong for lean H2 mixtures. The lighter hydrocarbon substitutions tend to suppress the leading flame edges and possibly transition to detonation in confined structures and promote flame front stability of lean turbulent premixed flames. Thus there is a necessity to develop a predictive reaction model to quantitatively show the strong influence of molecular transport coefficients on ST.
No more items...